Fast Generalized Haar Transforms


  • Hakob G. Sarukhanyan Institute for Informatics and Automation Problems of NAS RA


The fast generalized Haar transform algorithms of orders 4n; 3n; and 5n are presented.


Ahmed N., Rao K.R. Orthogonal Transforms for Digital Signal Processing. Springer-Verlag, New York, 1975.

Haar Z. Zur Theorie der orthogonalen funktionen systeme, Math. Ann., vol 69, p. 331-371, 1914.

Rao K.R., Narasimham, Revuluri K.A Family of discrete Haar transforms, Comput. Electr. Engrg., vol. 2, p. 367-368, 1975.

Seberry J., Zhang X.M. Some orthogonal designs and complex Hadamard matrices by using two Hadamard matrices. Austral. J. of Combin. Theory., No. 4, p. 93-102, 1991.

Corinthios M.J. A new class of general-base matrices and a formalism for optimal parallel/pipelined computer architecture. Electrical and Computer Engineering, 1993. Canadian Conference on 14-17 Sept., vol. 2, p. 851-856, 1993.

Mingyong Zhou, Zhongkan Liu, Hama H. A resolution-controllable harmonical retrieval approach on the Chrestenson discrete space. IEEE Transactions, Signal Processing, vol. 42, Issue 5, p. 1281-1284, 1994.

Moraga, C., Poswig J. Properties of the Zhang-Hartley spectrum of patterns. Proceedings of the Twentieth International Symposium, Multiple-Valued Logic, p. 62-68, 1990.

Agaian S., Bajadian H. Generalized orthogonal Haar systems: Synthesis, Metric and Computing Properties. Haar Memorial Conference, vol. 1, p. 97-113, Collog. Math. Soc. Janos Bolyai, 49, North-Holland, Amsterdam, New York, 1987.

Mallat S.A Wavelet Tour of Signal Processing. Academic Press, 2001.




How to Cite

Sarukhanyan, H. G. . (2008). Fast Generalized Haar Transforms. Mathematical Problems of Computer Science, 31, 79–89. Retrieved from