On an Algebraic Classification of Multidimensional Recursively Enumerable Sets Expressible in Formal Arithmetical Systems
Keywords:
Predicate formula, Universal algebra, Recursively enumerable set, Mathematical structure, Deductive system, Formal arithmeticAbstract
Abstract Algebraic representations of multidimensional recursively enumerable sets which are expressible in formal arithmetical systems based on the 1, are introduced and x , S), where S(x) , S), (0,,), (0,, S,signatures(0, investigated. The equivalence is established between the algebraic and logical representations of multidimensional recursively enumerable sets expressible in the mentioned systems.
References
S. C. Kleene, Introduction to Metamathematics, D. Van Nostrand Comp., Inc., New York-Toronto, 1952.
E. Mendelson, Introduction to Mathematical Logic, D. Van Nostrand Comp., Inc., Princeton-Toronto-New York-London, 1964.
H. Enderton, A Mathematical Introduction to Logic, 2 nd ed., San Diego, Harcourt, Academic Press, 2001.
S. N. Manukian, “Algebras of recursively enumerable sets and their applications to fuzzy logic”, Journal of Mathematical Sciences, vol. 130, no. 2, pp. 4598-4606, 2005.
S. N. Manukian. “On the representation of recursively enumerable sets in weak arithmetics”, Transactions of the IIAP of NAS RA, Mathematical Probelms of Computer Science, vol. 27, pp. 90--110, 2006.
S. N. Manukian, “Some algebraical and logical properties of two-dimensional arithmetical sets representable in Presburger’s System”, Transactions of the IIAP of NAS RA, Mathematical Probelms of Computer Science, vol. 37, pp. 64--74, 2012.
S. Manukian, “On the inductive representation of many-dimensional recursively enumerable sets definable in some arithmetical structures”, Proceedings of the International Conference “Computer Science and Information Technologies”, CSIT-09, Yerevan, Armenia, pp. 51--53, 2009.
S. N. Manukian. “Classification of many-dimensional arithmetical sets represented in M. Presburger’s system”, Reports of the National Academy of Science of Armenia, (in Russian), vol. 111, no. 2, pp. 114--120, 2011.
G. Graetzer, Universal Algebra, 2nd Edition, New-York-Heidelberg-Berlin, 1979.
A. I. Malcev, Algebraic Systems, Springer Verlag, 1973.
D. Hilbert and P. Bernays, Grundlagen der Mathematik, Band I.Zweite Auflage, Berlin- Heidelberg-New York, Springer Verlag, 1968.
M. Presburger, “Über die Vollständigkeit eines gewissen System der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt”, Comptes Rendu de I Congres der Mathematiciens des Pays Slaves, Warszawa, pp. 92--101, 1930.
R. Stansifer, Presburger’s Article on Integer Arithmetic: Remarks and Translation, Department of Computer Science, Cornell University, Ithaca, New York, 1984.
G. S. Tseytin, “One method of representation for the theory of algorithms and enumerable sets”, Transactions of Steklov Institute of the Russian Academy of Sciences, (in Russian), vol. 72, pp. 69--98, 1964.
S. N. Manukian. “On the structure of recursively enumerable fuzzy sets”, Transactions of the IIAP of NAS RA and YSU, Mathematical Probelms of Computer Science, (in Russian), vol. 17, pp. 86--91, 1997.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.