The Optimal Approach for Kolmogorov-Smirnov Test Calculation in High Dimensional Space


  • Norayr Z. Akopov Yerevan Physics Institute
  • Narek H. Martirosyan Yerevan Physics Institute


Statistics, Kolmogorov–Smirnov test, Goodness-of-Fit tests, PRNG


Numerical estimation of the Kolmogorov-Smirnov discrepancy DN in high dimensional space is an extremely time and memory consuming problem. New approach with the minimal bin number, which essentially reduces the time and memory requirements, to perform the DN tests in two and more dimensional space is discussed.


A. Justel, D. Pena and R. Zamar, “A multivariate Kolmogorov-Smirnov test of goodness of Fit”, Statistics & Probability Letters 35, pp. 251-259, 1997.

J. A. Peacock, “Two-dimensional goodness-of-fit testing in astronomy”, Monthly Notices Royal Astronomy Society, vol. 202, pp. 615-627, 1983.

G. Fasano and A. Franceschini, “A multidimensional version of the Kolmogorov-Smirnov Test”, Monthly Notices Royal Astronomy Society, vol. 225, pp. 155-170, 1987.

M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator”, ACM Transactions on Modeling and Computer Simulation, vol. 8, pp. 3-30, 1998.

[Online]. Available:

M. A. Stephens, “EDF statistics for goodness of fit and some comparisons”, Journal of the American Statistical Association (American Statistical Association), vol. 69, pp. 730–737, 1974.

G. Marsaglia, W. W. Tsang and J. Wang, “Evaluating Kolmogorov’s distribution”, Journal of Statistical Software, vol. 8, pp. 1-4, 2003.

D. Knuth, The Art of Computer Programming, V.2, Addison-Wesley Publishing Company, 1981.




How to Cite

Akopov, N. Z. ., & Martirosyan, N. H. . (2021). The Optimal Approach for Kolmogorov-Smirnov Test Calculation in High Dimensional Space. Mathematical Problems of Computer Science, 44, 138–144. Retrieved from