Combined Digital Methods for Solving Optimal Resource Allocation Problems


  • Hasmik S. Derdzyan Vanadzor State University


Simulated annealing, Downhill simplex, Modification, Allocation, Resources


This article is devoted to the development of new effective methods for solving optimal resource allocation problems. The simulated annealing and genetic methods of digital optimization are widely used for solving these kinds of problems. Though these methods approach to the optimal solution of the problem, as usual, a long period of time is required for obtaining the exact solution. This article offers to combine the simulated annealing method with the modification of downhill simplex method to increase the convergence of the optimization method.


S. H. H. Doulabi, A. Seifi and S.Y. Shariat, “Efficient hybrid genetic algorithm for resource leveling via activity splitting”, Journal of Construction Engineering and Management, vol.137, no. 2, pp. 137–146, 2011.

A. R. Mushi, Algorithms for the Resource Leveling Problem, PhD thesis, Dublin City University, 1997.

A. R. Hedar and M. Fukushima, “Hybrid simulated annealing and direct search method for nonlinear unconstrained global Optimization”, Optimization Methods and Software, vol. 17, no. 5, pp. 891-912, 2002.

A. R. Hedar and M. Fukushima, “Simplex coding genetic algorithm for the global optimization of nonlinear functions”, Multi-objective programming and goal programming, part 2, pp. 135-140, 2003.

S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, “Optimization by simulated annealing”, Science, New Series, vol. 220, no. 4598, pp. 671-680, 1983.

J. A. Nelder and R. Mead, “A simplex method for function minimization”, Computer Journal, vol. 7,pp. 308-313, 1965.

В. С. Овсепян и А. С. Дерцян, “Модификация метода последовательного симплексного планирования и ее применение к решению задач оптимизации”, Известия МГТУ “МАМИ”, Москва, т. 4, стр. 40-48, 2013 г.




How to Cite

Derdzyan, H. S. . (2021). Combined Digital Methods for Solving Optimal Resource Allocation Problems. Mathematical Problems of Computer Science, 44, 85–92. Retrieved from