On Exactly Solvable Lattice Models and Their Mathematical Properties
DOI:
https://doi.org/10.51408/1963-0135Keywords:
Exactly solvable lattice models, Non-equilibrium systems, Self-organized criticalityAbstract
This paper provides a comprehensive review of our previously obtained results on exactly solvable lattice models, with a primary focus on the Abelian sandpile model, dimer model, loop-erased random walks and their connections to the enumeration of spanning trees.
References
E. Ising, “Beitrag zur theorie des ferromagnetismus”, Z. Phys., vol.31, pp. 253–258, 1925.
R. Peierls, “On Ising’s model of ferromagnetism”, Math. Proc. Camb. Phil. Soc., vol. 32, pp. 477–481, 1936.
L. Onsager, “Crystal statistics. I. A two-dimensional model with an order-disorder transition”, Phys. Rev., vol. 65, pp. 117–149, 1944.
R.B. Potts, “Some generalized order-disorder transformations”, Math. Proc. Camb. Phil. Soc., vol. 48, pp. 106–109, 1952.
B.M. McCoy and T.T. Wu, Two-dimansional Ising model, Harvard University Press, Cambridge, 1973.
R.J. Baxter, ‘Exactly solved models in statistical mechanics, Academic Press, London, 1982.
F.Y. Wu, “The Potts model”, Rev. Mod. Phys., vol. 54, vol. 1, pp. 235–268, 1982.
C.A. Hurst, H.S. Green, “New solution of the Ising problem for a rectangular lattice”, J. Chem. Phys., vol. 33, vol. 4, pp. 1059–1062, 1960.
P.W. Kasteleyn, “The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice”, Physica, vol. 27, vol. 12, pp. 1209–1225, 1961.
P.W. Kasteleyn, “Dimer statistics and phase transitions”, J. Math. Phys., vol. 4, pp. 287–293, 1963.
R.H. Fowler and G.S. Rushbrooke, “An attempt to extend the statistical theory of perfect solutions”, Trans. Faraday Soc., vol. 33, pp. 1272–1294, 1937.
H.N.V. Temperley and M.E. Fisher, “Dimer problem in statistical mechanics - An exact result”, Phil. Mag., vol. 6, pp. 1061–1063, 1961.
M.E. Fisher, “Statistical mechanics of dimers on a plane lattice”, Phys. Rev., vol. 124, pp. 1664–1672, 1961.
M.E. Fisher and J. Stephenson, “Statistical mechanics of dimers on a plane lattice. II. Dimer correlations and monomers”, Phys. Rev., vol. 132, vol. 4, pp. 1411–1431, 1963.
E.W. Montroll, “Lattice statistics”, in “Applied combinatorial mathematics”, edited by E.F. Beckenbach, John Wiley and Sons, New York, 1964.
F.Y. Wu, “Dimers on two-dimensional lattices”, Int. J. Mod. Phys. B, vol. 20, no. 32, pp. 5357–5371, 2006.
R. Kenyon, “Dominos and the Gaussian free field”, Ann. Probab., vol. 29, pp. 1128–1137, 2001.
R. Kenyon, “Lectures on dimers”, arXiv:0910.3129 [math.PR], 2009.
H.N.V. Temperley, in “Combinatorics: Proceedings of the British Combinatorial Conference 1973”, London Math. Soc. Lecture Notes Series, vol. 13, pp. 202–204, 1974.
R. Burton and R. Pemantle, “Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances”, Ann. Probab., vol. 21, vol. 3, pp. 1329–1371, 1993.
R. Kenyon, “The asymptotic determinant of the discrete Laplacian”, Acta Math., vol. 185, no. 2, pp. 239–286, 2000.
J. Bouttier, M. Bowick, E. Guitter and M. Jeng, “Vacancy localization in the square dimer model”, Phys. Rev. E, 76, 041140, 2007.
V.S. Poghosyan, V.B. Priezzhev and P. Ruelle, “Jamming probabilities for a vacancy in the dimer model”, Phys. Rev. E, 77, 041130, 2008.
J.G. Brankov, V.S. Poghosyan, V.B. Priezzhev and P. Ruelle, “Transfer matrix for spanning trees, webs and colored forests”, J. Stat. Mech., 499910, 2014.
P.W. Kasteleyn and C.M. Fortuin, “Phase transitions in lattice systems with random local properties”, J. Phys. Soc. Jpn. Suppl., vol. 26, pp. 11–14, 1969.
C.M. Fortuin and P.W. Kasteleyn, “On the random-cluster model. I. Introduction and relation to other models”, Physica, vol. 57, pp. 536–564, 1972.
W.T. Tutte, “A contribution to the theory of chromatic polynomials”, Canad. J. Math., vol. 6, pp. 80–91, 1954.
W.T. Tutte, “On dichromatic polynomials”, J. Combin. Theory, vol. 2, pp. 301–320, 1967.
A. Broder, “Generating random spanning trees”, in 30th Annual Symposium on Foundations of Computer Science, IEEE, pp. 442–447, 1989.
V.S. Poghosyan and V.B. Priezzhev, “Correlations in the n → 0 limit of the dense O(n) loop model”, J. Phys. A: Math. Theor., 46, 145002, 2013.
G. Kirchhoff, “Ueber die Aufl¨osung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung Galvanischer Str¨ome gef¨uhrt wird”, Ann. Phys. Chem., vol. 72, pp. 497–508, 1847. English transl. “On the solution of the equations obtained from the investigation of the linear distribution of galvanic currents”, IRE Trans. Circuit Theory, vol. 5, pp. 4–7, 1958.
P. Bak, C. Tang and K. Wiesenfeld, “Self-organized criticality: An explanation of the 1/f noise”, Phys. Rev. Lett., vol. 59, no. 4, pp. 381–384, 1987.
P. Bak, C. Tang and K. Wiesenfeld, “Self-organized criticality”, Phys. Rev. A, vol. 38, no. 1, pp. 364–374, 1988.
K. Wiesenfeld, J. Theiler and B. McNamara, “Self-organized criticality in a deterministic automaton”, Phys. Rev. Lett., vol. 65, no. 8, pp. 949–952, 1990.
D. Dhar, “Self-organized critical state of sandpile automaton models”, Phys. Rev. Lett., vol. 64, no. 14, pp. 1613–1616, 1990.
S.N. Majumdar and D. Dhar, “Height correlations in the Abelian sandpile model”, J. Phys. A: Math. Gen., vol. 24, no. 7, L357–L362, 1991.
S.N. Majumdar and D. Dhar, “Equivalence between the Abelian sandpile model and the q → 0 limit of the Potts model”, Physica A, vol. 185, no. 1, pp. 129–145, 1992.
V.B. Priezzhev, “Structure of Two-Dimensional Sandpile. I. Height Probabilities”, J. Stat. Phys., vol. 74, no. 5, pp. 955–979, 1994.
P. Grassberger and S.S. Manna, “Some more sandpiles”, J. Phys. France, vol. 51, pp. 1077–1098, 1990.
H. Takayasu and M. Matsuzaki, “Dynamical phase transition in threshold elements”, Phys. Lett. A, vol. 131, no. 4, pp. 244–247, 1988.
M. Sahimi, M.C. Robertson and C.G. Sammis, “Fractal distribution of earthquake hypocenters and its relation to fault patterns and percolation”, Phys. Rev. Lett., vol. 70, no. 14, pp. 2186–2189, 1993.
B. Drossel and F. Schwabl, “Self-organized critical forest-fire model”, Phys. Rev. Lett., vol. 69, no. 11, pp. 1629–1632, 1992.
B. Drossel and F. Schwabl, “Self-organized criticality in a forest-fire model”, Physica A, vol. 191, no. 1, pp. 47–50, 1992.
T. Hwa and M. Kardar, “Dissipative transport in open systems: An investigation of self-organized criticality”, Phys. Rev. Lett., vol. 62, no. 16, pp. 1813–1816, 1989.
M. Jeng, G. Piroux, and P. Ruelle, “Height variables in the Abelian sandpile model: Scaling fields and correlations”, J. Stat. Mech., P10015, 2006.
D. Dhar, “Theoretical studies of self-organized criticality”, Physica A, vol. 369, no. 1, pp. 29–70, 2006.
V.S. Poghosyan, S.Y. Grigorev, V.B. Priezzhev and P. Ruelle, “Pair correlations in the sandpile model: A check of logarithmic conformal field theory”, Phys. Lett. B, vol. 659, pp. 768–772, 2008.
S.Y. Grigorev, V.S. Poghosyan and V.B. Priezzhev, “Three leg correlations in the Twocomponent spanning tree on the upper half-plane”, J. Stat. Mech., P09008, 2009.
V.S. Poghosyan, S.Y. Grigorev, V.B. Priezzhev and P. Ruelle, “Logarithmic two-point Correlations in the Abelian sandpile model”, J. Stat. Mech., P07025, 2010.
U.S. Poghosyan, V.S. Poghosyan, V.B. Priezzhev and P. Ruelle, “Numerical study of correspondence between the dissipative and fixed-energy Abelian sandpile models”, Phys. Rev. E, 84, 066119, 2011.
V.S. Poghosyan and V.B. Priezzhev, “The Problem of Predecessors on Spanning Trees”, Acta Polytechnica, vol. 51, no. 1, pp. 59–62, 2011.
V.S. Poghosyan, V.B. Priezzhev and P. Ruelle, “Return probability for the loop-erased random walk and mean height in the Abelian sandpile model: a proof”, J. Stat. Mech., P10004, 2011.
M. Jeng, “Some logarithmic conformal field theory correlators from the Abelian sandpile model”, Phys. Rev. E, 71, 036153, 2005.
M. Jeng, “The scaling limit of the Abelian sandpile height probabilities: A conjecture”, Phys. Rev. E, 71, 016140, 2005.
G. Piroux and P. Ruelle, “Logarithmic scaling in the Abelian sandpile model”, Phys. Lett. B, vol. 607, pp. 188–196, 2005.
A. Fey, L. Levine, and D.B. Wilson, “Approach to the critical state in sandpiles”, Phys. Rev. Lett., 104, 145703, 2010.
A. Fey, L. Levine, and D.B. Wilson, “Driving sandpiles to criticality and beyond”, Phys. Rev. E, 82, 031121, 2010.
L. Levine, “Threshold State and a Conjecture of Poghosyan, Poghosyan, Priezzhev and Ruelle”, Commun. Math. Phys., vol. 335, pp. 1003–1017, 2015.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Vahagn S. Poghosyan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.




