On Sub-Gaussianity in Banach Spaces

Authors

  • George Giorgobiani Muskhelishvili Institute of Computational Mathematics of the Georgian Technical University
  • Vakhtang Kvaratskhelia Muskhelishvili Institute of Computational Mathematics of the Georgian Technical University
  • Vazha Tarieladze Muskhelishvili Institute of Computational Mathematics of the Georgian Technical University

DOI:

https://doi.org/10.51408/1963-0120

Keywords:

Sub-Gaussian random variable, Gaussian random variable, weakly sub- Gaussian random element, T−sub-Gaussian random element, Banach space, Hilbert space

Abstract

We show that if X is a Banach space and a weakly sub-Gaussian random element in X induces the 2-summing operator, then it is T−sub-Gaussian provided that X is a reflexive type 2 space. Using this result we obtain a characterization of weakly sub-Gaussian random elements in a Hilbert space which are T−sub-Gaussian.

References

R. G. Antonini, “Subgaussian random variables in Hilbert spaces“, Rend. Sem. Mat. Univ. Padova, vol. 98, pp. 89–99, 1997.

V. V. Buldygin and Yu. V. Kozachenko, “Sub-Gaussian random variables“, Ukrainian Mathematical Journal, vol. 32, pp. 483–489, 1980.

V. V. Buldygin and Yu. V. Kozachenko, Metric Characterization of Random Variables and Random Processes. American Mathematical Soc., 2000.

S. A. Chobanjan and V. I. Tarieladze, “Gaussian characterizations of certain Banach spaces”, J. Multivariate Anal., vol. 7, no. 1, pp. 183–203, 1977.

R. Fukuda, “Exponential integrability of sub-Gaussian vectors”, Probab. Theory Relat. Fields, vol. 85, no. 4, pp. 505–521, 1990.

G. Giorgobiani, V. Kvaratskhelia and M. Menteshashvili, “Unconditional Convergence of Sub-Gaussian Random Series”, Pattern Recognition and Image Analysis, vol. 34, no. 1, pp. 92–101, 2024.

G. Giorgobiani, V. Kvaratskhelia and V. Tarieladze, “Notes on sub-Gaussian random elements”, In Applications of Mathematics and Informatics in Natural Sciences and Engineering: AMINSE 2019, Tbilisi, Georgia, pp. 197–203, Springer International Publishing, 2020.

J. P. Kahane, “Proprietes locales des fonctions a series de Fourier aleatoires”, Studia Math., 19, pp. 1–25, 1960.

V. Kvaratskhelia, V. Tarieladze and N. Vakhania, “Characterization of γ-Subgaussian Random Elements in a Banach Space”, Journal of Mathematical Sciences, vol. 216, no. 4, pp. 564–568, 2016.

A. Pietsch, “Absolute p-summierende abbildugen in normierten raumen”, Studia Math., vol. 28, pp. 333–353, 1967.

W. Slowikowski, “Absolutely 2-summing mappings from and to Hilbert spaces and a Sudakov Theorem”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., vol. 17, pp. 381–386, 1969.

M. Talagrand, “Regularity of gaussian processes”, Acta Math., vol. 159, no. 1-2, pp. 99–149, 1987.

N. Vakhania, “On subgaussian random vectors in normed spaces”, Bull. Georgian Acad. Sci., vol. 163, no. 1, pp. 8–11, 2001.

N. N. Vakhania, V. V. Kvaratskhelia and V. I. Tarieladze, “Weakly sub-Gaussian random elements in Banach spaces”, Ukrainlan Math. J., vol. 57, no. 9, 1387–1412, 2005.

N. N. Vakhania, V. I. Tarieladze and S. A. Chobanyan, Probability distributions on Banach spaces. Dordrecht: Reidel, 1987.

Downloads

Published

2024-12-01

How to Cite

Giorgobiani, G., Kvaratskhelia, V., & Tarieladze, V. (2024). On Sub-Gaussianity in Banach Spaces. Mathematical Problems of Computer Science, 62, 52–58. https://doi.org/10.51408/1963-0120