Image Reconstruction Using the sinc Kernel Function
DOI:
https://doi.org/10.51408/1963-0104Keywords:
Integral equation, Correct, Kernel functionAbstract
This study is devoted to address the challenge of solving ill-posed integral equations for image restoration. The integral equation is widely recognized as an ill-posed problem [1]. Our study demonstrates that utilizing a two- dimensional function as a kernel function in the integral equation leads to stable solutions, by establishing a consistent dependence between the solutions and the input data (images).
We were able to obtain solutions for the integral equation without employing a regularization process, which significantly reduces the duration of the calculation process.
References
Ж. Адамар, Задача Коши для линейных уравнений с частными производными гиперболического типа, М. Наука, 1978.
Н. Ахмед и К. Рао, Ортогональные преобразования при обработке цифровых сигналов, Москва, Связь, 1980.
А. Н. Тихонов, «O регуляризации некоppектно поставленных задач», ДАН CCCP, т. 153, н. 1, сс. 49 - 52, 1963.
Ghulghazaryan, S. Alaverdyan and D. Piliposyan, “Accuarate pressure calculation method for CMP modeling using Fourier analysis", Reviesed Selected papers, Computer Science and Information Technologies (CSIT), doi: 10.1109/CSITechnol.2019.8895113, pp . 43 -46, 2019.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Suren B. Alaverdyan
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.