Analytical Inversion of Tridiagonal Hermitian Matrices
DOI:
https://doi.org/10.51408/1963-0088Keywords:
Inverse matrix, Tridiagonal matrix, Hermitian matrix, Toeplitz matrixAbstract
In this paper we give an algorithm for inverting complex tridiagonal Hermitian matrices with optimal computational efforts. For matrices of a special form and, in particular, for Toeplitz matrices, the derived formulas lead to closed-form expressions for the elements of inverse matrices.
References
G. H. Golub and Ch. F. van Loan, Matrix Computations, The John Hopkins University Press, 1996.
D. Kincaid and W. Cheney, Numerical Analysis, Brooks/Cole, Pacific Grove, CA, 1991.
D. S. Watkins, Fundamentals of matrix computations, A Wiley Intercience Publ., 2010.
B. Buchberger and G. A. Yemel’yanenko, ”Methods for inverting tridiagonal matrices”, J. Comput. Math. and Math. Physics, vol. 13, No.3, pp. 546-554, 1973 (in Russian).
M. El-Mikkawy and A. Karawia, ”Inversion of general tridiagonal matrices”, Applied Math. Letters, vol. 19, pp. 712-720, 2006.
V.P. Il’in and Yu. I. Kuznetsov, Tridiagonal Matrices and Their Applications, (in Russian), Nauka, 1985.
G.Y . Hu and R.F. O'Connell, "Analytical inversion of symmetric tridiagonal matrices", J. Phys. A: Math. Gen., vol. 29, pp. 1511-1513, 1996.
Y. Huang and W.F. McColl, "Analytic inversion of general tridiagonal matrices", J. Phys. A: Math. Gen., vol. 30, pp. 7919-7933, 1997.
J.W. Lewis, "Inversion of tridiagonal matrices" ,Numer. Math., vol. 38, pp. 333-345, 1982.
R.A. Usmani, "Inversion of Jacobi's tridiagonal matrix", Computers Math. Applic., vol. 27, no. 8, pp. 59-66, 1994.
R. Horn and Ch. Johnson, Matrix Analysis, Cambridge University Press, 1986.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Yuri R. Hakopian and Avetik H. Manukyan
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.