On Polynomially Equivalence of Minimal Frege Systems

Authors

  • Sergey M. Sayadyan Yerevan State University
  • Armine A. Chubaryan Yerevan State University

Abstract

In this paper is shown that any two minimal Frege systems polynomially simulate each other. This result is the extension of the similar result about polynomially equivalence of intuitionistic Frege system. The latter is proved by G. Mints and A. Kojevnikov [1].

References

G. Mints, A. Kojevnikov, Intuitionistic Frege systems are polinomially equivalent, Записки научных семинаров ПОМИ, 316 (2004), 129-145.

S. Buss, P. Pudlak, On the computational content of intuitionistic propositional proofs, Annals of Pure and Applied Logic 109, Nos. 1-2 (2001), 49-64.

S.A. Cook, A.R. Reckhow, The relative efficiency of propositional proof systems, The Journal of Symbolic Logic 44, No. 1 (1979), 36-50.

A. Goerdt, Complexity of the intuitionistic sequent calculus, Theoretische Informatik, TCK Chemnitz (2005), 3-13.

R. Harrop, Concerning formulas of the types A!B_C,A!(Ex)B(x) in intuitionistic formal systems, The Journal of Symbolic Logic 25, No 1 (1960), 27-32.

H. Friedman, One Hundred and Two Problems in Mathematics Logic, The Journal of Symbolic Logic 40, No.2 (1975), 113-129.

R. Iemhoff, On the admissible rules of intuitionistic propositional logic, The Journal of Symbolic Logic 66, No. 1 (2001), 231-243.

S.C. Kleene, Introduction to metamathematics, D. Van Nostrand company, INC, 1952.

Ս. Սայադյան, Ինտուիցիոնիստական ասույթային հաշվի որոշ համակարգերի համեմատում, ԵՊՀ Գիտական տեղեկագիր, 2, 2005, 25-30.

Downloads

Published

2021-12-10

How to Cite

Sayadyan, S. M. ., & Chubaryan, A. A. . (2021). On Polynomially Equivalence of Minimal Frege Systems. Mathematical Problems of Computer Science, 28, 141–145. Retrieved from http://mpcs.sci.am/index.php/mpcs/article/view/512