Completely Normal Elements in Iterated Quadratic Extensions of Finite Fields of Odd Characteristics
Abstract
In this paper computationally easy explicit constructions of sequences of irreducible and normal monic polynomials over finite fields of odd characteristic are presented.
References
R. Chapman, “Completely normal elements in iterated quadratic extensions of finite fields”, Finite Fields Appl., Volume 3, pp. 3-10, 1997.
S. D. Cohen, “The explicit construction of irreducible polynomials over finite fields”, Design, Codes and Cryptography, Volume 2, pp. 169-174, 1992.
M. K. Kyuregyan, “Recurrent methods for constructing irreducible polynomials over q F of odd characteristics”, Finite Fields Appl., Volume 9, pp. 39-58, 2003.
G. McNay, Topics in finite fields, Ph.D. Thesis, University of Glasgow, 1995.[5] A. J. Menezes, I. F. Blake, X. Gao, R. C. Mullin, S. A. Vanstone, T. Yaghoobian, “Applications of Finite Fields”, Kluwer Publishers, Boston, Dordrecht, Lancaster, 1993.[6] H. Meyn, “Explicit N-polynomials of 2-power degree over finite fields”, I, Designs, Codes and Cryptography, Volume 6, pp. 107-116, 1995.
A.J. Menezes, I.F. Blake, X. Gao, R.C. Mullin, S.A. Vanstone, T.Yaghoobian, “Applications of Finite Fields”, Kluwer Publishers, Boston, Dordrecht, Lancaster, 1993.
H. Meyn, “Explicit N-polynomials of 2-power degree over finite fields”, I, Designs, Codes and Cryptography, Volume 6, pp. 107-116, 1995.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.