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Abstract 
 

The problem of full-reference image quality assessment is considered based on the 
application of the mathematical model of the Rice distribution. The gradient field of an 
image is adequately described by the Weibull distribution, which allows one to effectively 
analyze image properties, evaluate their similarity, classify them by quality, etc. In this 
paper, an attempt is made to solve similar problems using the above-mentioned model, 
relying, in particular, on additional properties of the Rice distribution associated with the 
normal approximation of the latter. It is shown that the structural similarity measure used 
in different problems is also applicable to the case of the Rice gradient field model. In 
particular, images from the TID2013 database are experimentally studied. The modeling 
results obtained from both the Weibull and Rice distribution models were compared using 
the mean square and structural similarity measures, as well as the Mean Opinion Score 
(MOS) values. It is shown that the types of distortions in these indicators are in complete 
agreement, while for some other types, the Rice distribution model shows better results. 
Keywords: Gradient magnitude, Weibull distribution, Rice distribution, Parameter 
estimation, Image similarity, MOS. 
Article info: Received 29 January 2025; sent for review 6 Febuary 2025; accepted 28 
April 2025. 
 
 

1. Introduction 
 
Creating effective quality assessment methods is one of the most popular and applied tasks in the 
field of image processing. The existing quality assessment methods are divided into two classes: 
Full-Reference and No-Reference methods. The Full-Reference method assumes the presence of 
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an initial reference image and a set of test images that differ from the reference due to the impact 
of certain distorting factors on the reference. In this case, the task of quality assessment consists 
of comparing the test and reference images using a pre-selected criterion.  
 No-reference methods do not assume the presence of a standard and the quality of the tested 
image assessing using only the internal properties of the image. The literature devoted to methods 
for assessing image quality is quite extensive. Of particular interest are methods that use the 
properties of the human visual system (HVS), since the "final judge" of quality assessment is a 
person. These methods often include Mean Opinion Score (MOS) values obtained by experts for 
images pre-distorted by different methods, which allows for checking the ability of the tested 
method to assess image quality. For this purpose, researchers have created extensive image 
databases accompanied by MOS assessments. Brief descriptions and links to dozens of such 
databases are given in [1]. 
 Previously, we proposed a method for assessing image quality based on statistical analysis 
of the gradient field of an image [2]-[3]. In this case, the Weibull distribution model was adopted 
to describe the set of gradient magnitudes. It is shown that this model allows for solving many 
relevant applied problems. Thus, in [4], a Full-Reference algorithm for assessing image quality is 
proposed using the TID2013 database of distorted samples [5], for which MOS values are also 
given. The latter circumstance allows for assessing the quality of both the tested image and the 
applied testing algorithm. 
 This paper attempted to supplement the proposed approach using other gradient field models. 
The proposed method is based on the Rice distribution, which, unlike the Weibull distribution, 
converges to a normal distribution with appropriate parameter values, thus creating additional 
opportunities for adequate analysis and assessment of image quality.  
 The paper considers the following tasks: 

• Modeling Weibull and Rice distributions with the ability to estimate parameters using 
various methods. 

• Calculating the similarity of the original test image with distorted samples based on the 
proximity of the parameter values of the original and distorted samples. Comparison and 
analysis of the results obtained for both distribution models. 

• Comparison of similarity values with the corresponding MOS values, comparing and 
analyzing the existing discrepancies, and developing appropriate recommendations. 
 

2. Research Methodology 
  
The methodology involves modeling the Weibull and Rice distributions, calculating the 
magnitudes of the gradients of the tested images, and estimating the parameters of both 
distributions based on these data. In this case, the gradients are estimated using the Sobel operator. 
The parameters of the Weibull distribution are estimated using the method of moments [3], and 
the maximum likelihood method is used to estimate the parameters of the Rice distribution [6]. 
The experiments were conducted on images from the TID2013 database, which also contains other 
auxiliary information. The MOS values, PSNR and W2 image similarity measures were used to 
compare the results.  
 The probability density function of the two-parameter Weibull distribution is defined by the 
formula 

     ,0,exp),;(
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where 0>η  - Shape parameter, and 0>λ  - Scale parameter. 
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 The Rice distribution density is 
𝑓𝑓(𝑥𝑥|𝜈𝜈,𝜎𝜎) = 𝑥𝑥
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where 𝐼𝐼0(𝑧𝑧)- modified Bessel function of the first kind of zero order.  
 Unlike the Weibull distribution, in the literature, it is customary to define the shape and scale 
parameters in the Rice case as the following functions of the initial parameters 𝜈𝜈 and 𝜎𝜎: Shape 
parameter 𝐾𝐾 = 𝜈𝜈2

2𝜎𝜎2
, and Scale parameter Ω = 𝜈𝜈2 + 2𝜎𝜎2. With the values of these quantities, we 

can estimate the initial parameters of the Rice distribution using the formulas 

𝜈𝜈 = � 𝐾𝐾Ω
𝐾𝐾+1

,  𝜎𝜎 = � Ω
2(𝐾𝐾+1)

. 

 It should be noted that in the field of signal processing theory and technology [7], an 
important characteristic is the signal-to-noise ratio, which is determined by the expression 𝜉𝜉 =
𝜐𝜐/𝜎𝜎. It is known that ξ→∞ the Rice distribution tends to a normal distribution with parameters 𝜐𝜐 
and 𝜎𝜎. Moreover, for 𝜉𝜉 ≥ 3, this approximation is quite acceptable. This means that under this 
condition, we have Κ ≥ 4.5, and the estimation of the parameters of the Rice distribution can be 
performed by traditional statistical methods.  

 The similarity (closeness) of two images can be estimated by the degree of closeness of the 
corresponding empirical Weibull or Rice distributions constructed from the set of magnitudes of 
the gradients of the compared images. However, instead of nonparametric statistical criteria of 
goodness of fit, we use a less accurate but simple measure [2], based on the closeness of the 
parameter estimates of the  of the distributions under study themselves according to the formula
  

      
),max(),max(
),min(),min(

2121

21212

λληη
λληη

=W  10 2 ≤<W . 

 The resulting image similarity scores were then compared with the MOS scores using the 
Spearman correlation coefficient. This measure is often conveniently assessed by visual analysis, 
classifying their absolute values as equal to or less than one. 
 We have repeatedly and successfully applied the described method to various problems [3]. 
In particular, in [4], by analyzing the database data, the types of distortions for which the estimates 
of the Weibull distribution parameters belonged to one or another class from those described above 
were identified. In the present work, a similar analysis was carried out concerning the Rice 
distribution data. 
 
 
3. Results of Modeling 
  
Modeling was performed on all 3000 images of the database [5] simultaneously using both models. 
By analyzing the modeling results, the types of distortion identified for which the Weibull model 
leads to high or low values of the W2 correlation with MOS. The corresponding values obtained 
using the Rician model are also recorded. It turned out those types of distortions, and chaotic 
behaviour of W2 estimates were observed using the Weibull model, while the situation is much 
better using the Rician model. Of course, there may also be types of distortions for which the 
behaviour of these estimates completely coincides. Examples of this kind are given below.  
 Example 1. Matching indicators. Let us consider the images I01_01 and I01_04 of the base. 
Table 1 shows the calculation results. 
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Table 1. Comparative results for images I01 and I04 
 

I01_01 PSNR W2 
Weibull 

W2 
Rician MOS i01_04 PSNR W2 

Weibull 
W2 

Rician MOS 

i01_01_1 36.50 0.92 0.92 5.51429 i01_04_1 30.14 0.69 0.69 5.76190 
i01_01_2 33.56 0.87 0.87 5.56757 i01_04_2 29.26 0.55 0.55 5.47619 
i01_01_3 30.48 0.79 0.78 4.94444 i01_04_3 27.85 0.40 0.38 4.92857 
i01_01_4 27.51 0.68 0.66 4.37838 i01_04_4 25.95 0.27 0.23 4.26829 
i01_01_5 24.50 0.56 0.51 3.86486 i01_04_5 23.61 0.18 0.13 4.00000 

 
 Visual analysis of the data in Table 1 shows that the nature of the change in the values of the 
considered indicators for these images is generally the same. First, we note the monotonic decrease 
in PSNR with an increase in the degree of applied distortion, which is a serious argument for using 
this indicator in the absence of MOS-type data. In this case, PSNR can also be used to assess the 
quality of the experiment to create MOS data. We also note the practical coincidence of the W2 
values for the considered images and the Weibull and Rice distributions, despite some deviations 
in the MOS series. However, as shown in [4], these patterns are not always observed, so several 
similar examples with appropriate comments are given below.  
 Table 2 compares the calculation results for images i05 and i07, subjected to the same type 
of distortion (Contrast change). As can be seen, PSNR decreases monotonically in both cases, and 
W2 with the Rice distribution also decreases monotonically in the case of image i05_17. However, 
deviations from monotony are observed for i0._17. 
 

Table 2.  Comparison of similarity scores with MOS scores 
 

I05_17 PSNR 

 
W2 

Weibull 
 

W2 
Rician MOS i07_17 PSNR W2 

Weibull 
W2 

Rician MOS 

1 33.51 0.9 0.79 5.3 1 35,97 0.9 0.8 5.54545 
2 28.92 0.85 0.74 6.82927 2 30.28 0.84 0.77 6.4 
3 25.53 0.75 0.55 4.025 3 28.06 0.75 0.55 4.40476 
4 22.81 0.77 0.53 6.56098 4 23.60 0.72 0.6 6.72727 
5 19.47 0.5 0.24 2.8 5 22.00 0.5 0.25 3.34091 

 
 The MOS values do not decrease monotonically, as expected by the meaning of the 
experiments, but the nature of the changes is similar for both images. This effect can be explained 
by the peculiarities of the human visual system (HVS) that inadequately react to changes in image 
contrast in one direction or another. 
 Thus, the results of Table 2 indicate some advantages of using the Rice distribution when 
assessing image quality. 
 It is interesting to compare the calculation results for the same image with different types of 
distortion. Table 3 shows the data for the i04 image with changes in brightness (Mean shift 
(intensity shift)) and contrast (Contrast change). In this case, deviations from the monotony of the 
similarity indices W2 with the Weibull model and MOS were observed, while W2 with the Rician 
model decreased monotonically, corresponding to the meaning of the experiment on creating the 
TID2013 database. 
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Table 3. Comparison of ratings for different types of image distortion 
 

I04_16 PSNR W2 
Weibull 

W2 
Rician MOS i04_17 PSNR W2 

Weibull 
W2 

Rician MOS 

1 33.33 0.99 0.84 6.28571 1 30.51 0.9 0.84 6 
2 24.63 1 0.68 6.64286 2 28.79 0.81 0.68 6.66667 
3 24.52 0.98 0.59 6.09524 3 27.62 0.75 0.59 4.78049 
4 17.57 0.99 0.50 5.66667 4 24.47 0.69 0.50 7.21429 
5 17.94 0.79 0.26 5.15385 5 23.13 0.50 0.26 3.925 

 
 Similar results were obtained for images i21, i24 and several others from the same database 
with the same types of distortions.         
 
 
4. Conclusions 
  
The problem of Full-Reference image quality assessment is considered based on applying the 
mathematical model of the Rice distribution. The previously proposed technique is based on the 
application of the Weibull distribution model and the measures of mean square and structural 
similarity of images. In this paper, the properties of images from the TID2013 database are 
experimentally investigated, evaluating and comparing their similarity indices according to the 
Weibull and Rice models, as well as the MOS index. This shows that the applied measure of 
structural similarity is also applicable to the case of the Rice gradient field model. It is also shown 
that for types of distortion, these indices are in complete agreement, while for some other types; 
the Rice distribution model shows better results. 
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Ամփոփում 

 

 Դիտարկվում է ստուգանմուշի հետ համեմատման մեթոդով պատկերի որակի 
գնահատման խնդիրը Ռայսի բաշխման մաթեմատիկական մոդելի կիրառման հիման 
վրա: Հայտնի է, որ պատկերի գրադիենտային դաշտը համարժեքորեն նկարագրվում 
է Վեյբուլի բաշխմամբ, ինչը թույլ է տալիս արդյունավետորեն վերլուծել պատկերների 
հատկությունները, գնահատել դրանց նմանությունը, դասակարգել դրանք ըստ 
որակի և այլն: Այս հոդվածում փորձ է արվել լուծել նմանատիպ խնդիրներ՝ 
օգտագործելով վերը նշված մոդելը՝ հենվելով, մասնավորապես, Ռայսի բաշխման 
լրացուցիչ հատկությունների վրա՝ կապված վերջինիս նորմալ մոտարկման հետ: 
Ցույց է տրվել, որ տարբեր խնդիրներում օգտագործվող կառուցվածքային 
նմանության չափանիշը կիրառելի է նաև Ռայսի մոդելի դեպքում: Մասնավորապես, 
փորձնականորեն ուսումնասիրվել են TID2013 տվյալների բազայի պատկերները։ 
Վեյբուլի և Ռայսի բաշխման մոդելների միջոցով ստացված մոդելավորման 
արդյունքները համեմատվել են՝ օգտագործելով միջին քառակուսային և 
կառուցվածքային նմանության չափանիշները, ինչպես նաև՝ փորձագիտական  
կարծիքի միջին գնահատականի արժեքները (MOS): Ցույց է տրված, որ 
աղավաղումների տեսակների այս ցուցանիշները լիովին համընկնում են, մինչդեռ 
որոշ այլ տեսակների համար Ռայսի բաշխման մոդելը ցույց է տալիս ավելի լավ 
արդյունքներ: 
 Բանալի բառեր՝ գրադիենտային մագնիտուտ, Վեյբուլի բաշխում, Ռայսի 
բաշխում, պարամետրերի գնահատում, պատկերների նմանություն, կարծիքի միջին 
գնահատական (MOS)։ 
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Аннотация 
 
 

 Рассматривается задача оценивания качества изображения методом сравнения с 
эталоном, основанная на применении математической модели распределения Райса. 
Известно, что градиентное поле изображения достаточно адекватно описывается 
распределением Вейбулла, что позволяет эффективно анализировать свойства 
изображений, оценивать их сходство, классифицировать по качеству и др. В данной работе 
сделана попытка решать аналогичные задачи по упомянутой модели, рассчитывая, в 
частности, на дополнительные свойства распределения Райса, связанные с нормальным 
приближением последнего. Показано, что применяемая в разных задачах мера 
структурного сходства применима и в случае райсовской модели градиентного поля. В 
частности, экспериментально исследованы изображения из базы данных TID2013. 
Сопоставлены результаты моделирования, полученные по моделям распределений 
Вейбулла и Райса, используя меры среднеквадратического и структурного сходства, а также 
значения экспертных оценок (MOS). Показано, что для определённых типов искажений эти 
показатели находятся в полном согласии, в то время как для некоторых других типов 
модель распределения Райса показывает лучшие результаты.           
 Ключевые слова։ магнитуда градиента, распределение Вейбулла, распределение 
Райса, оценивание параметров, сходство изображений, MOS. 
 

mailto:dasat@iiap.sci.am
mailto:grigorsazhumyan@gmail.com


Mathematical Problems of Computer Science 63, 14–24, 2025.

doi:10.51408/1963-0128

UDC 519.72

Reliability Criteria in Source Coding Problem with

Secret Component

Mariam E. Haroutunian1, Jemma S. Santrosyan2 and Parandzem M. Hakobyan1

1Institute for Informatics and Automation Problems of NAS RA, Yerevan, Armenia
2Vanadzor State University, Vanadzor, Armenia

e-mail: armar@sci.am, j.santrosian@gmail.com, par h@iiap.sci.am

Abstract

This work addresses a source coding problem for one-way sources with correlated
outputs. In this scenario, one source output must be transmitted to the receiver within
a specified distortion level, similar to conventional source coding. Simultaneously,
the other source output must be kept as confidential as possible from the receiver
or a potential wiretapper. For this model, the rate-reliability-distortion-equivocation
function and the equivocation-reliability-distortion function are defined and analyzed.
Keywords: Rate-reliability-distortion-equivocation function, Source coding.
Article info: Received 27 March 2025; sent for review 1 April 2025; accepted 2 May
2025.

1. Introduction

The source coding problem in information theory focuses on the efficient encoding of infor-
mation generated by a source so it can be transmitted or stored with minimal redundancy.
The main goal is to represent the information as compactly as possible while still enabling
perfect or near-perfect reconstruction of the original message.

In lossy coding, some information is sacrificed to achieve greater compression. The re-
constructed data is an approximation of the original, acceptable when perfect fidelity isn’t
necessary. JPEG for images and MP3 for audio are examples of lossy coding methods. In
general, source coding is fundamental to efficient data transmission and storage in various
fields, including:

• Digital communications (e.g., reducing bandwidth in cellular networks),

• Data compression (e.g., ZIP files, media codecs),

• Machine learning and statistics (e.g., feature selection and data encoding),

• Distributed storage systems (e.g., minimizing storage costs by reducing redundancy).

14
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Shannon rate-distortion function (RD) [1] shows the dependence of the asymptotically
minimal coding rate on a required average fidelity (distortion) threshold for source noiseless
transmission.

The source coding problem for a one-way communication system with correlated source
outputs was considered by Yamamoto in [2], where one of the outputs must be transmitted
to the receiver within a given distortion level as in ordinary source coding, while the other
source output has to be kept as secret as possible from the wiretapper (Fig. 1). The
rate-distortion-equivocation function (RDE) was defined and evaluated, which is the
minimum rate necessary to attain both the equivocation tolerance for the wiretapper and
the distortion tolerance for the receiver.

Source -
(x, y) Encoder f -

l = f(x,y) Decoder g -
x̂

Fig.1. One-way communication system with correlated source outputs.

Previously, Yamamoto [3] studied the source coding problem for cascade and branching
communication systems. Later in [4], he considered the RD problem for a communication
system with a secondary decoder to be hindered, where security is evaluated by the distortion
measure instead of the equivocation function used in [2]. RD problem related to security
setting is considered also in [5].

Another characteristic in source coding subject to a distortion criterion can be considered,
namely rate-reliability-distortion function (RRD) as the minimal rate at which the
message of a source can be encoded and then reconstructed by the receiver with an error
probability that decreases exponentially with the codeword length. The coding rate as a
function of the given distortion level and error exponent E has been studied for various
source models. We refer to [6], which in turn refers to the list of main results. In addition
to that list, it is worth mentioning [7], where the RRD region with partial secrecy under
the distortion criterion is considered, which is the generalization of the encoding problem
studied in [3].

Here we introduce and investigate the rate-reliability-distortion-equivocation func-
tion (RRDE) for the model from [2]. This function combines all aspects, including error
control and security. This framework is useful in scenarios involving secure and reliable data
transmission, where the goal is to balance the trade-offs among rate, reliability, distortion,
and secrecy. Balancing these four elements in a single framework is challenging because
improving one aspect often comes at the expense of another.

This setting of source coding with a secret component has many applications, including:

- sensor networks in distributed systems like IoT, to ensure that data is compressed,
securely transmitted, and reliably received,

- video and audio streaming to ensure high-quality, low-latency streaming with some
degree of security against unauthorized access,

- cryptographic communication systems need guidelines for encoding methods that bal-
ance data rate, fidelity, error protection, and secrecy.

Particularly, in [8], the utility-privacy tradeoff problem is modeled as source coding and
solved using the tool of RRD theory.



16 Reliability Criteria in Source Coding Problem with Secret Component

In this paper, we introduce and study the set of E-achievable (R,∆d,∆e) triples.
As a consequence, we obtain the equivocation-reliability-distortion function and the rate-
reliability-distortion function.

The paper is organized as follows. In the next section, the main notations and definitions
are given. The main results are formulated in Section 3. The proof of the main theorem is
given in the Appendix. The paper is summarized in Section 5.

2. Notations and Definitions

The Discrete Memoryless Source (DMS) is defined as a sequence {(Xi, Yi)}∞i=1 of discrete
independent identically distributed (i. i. d.) random variables X and Y , taking values in
finite sets X and Y , which are the alphabets of messages of the source, respectively. Let

P ∗ = {P ∗(x, y), x ∈ X , y ∈ Y}

be the generating probability distribution of the source outputs (X, Y ). The source is
memoryless, which means that for N -length vector pairs x = (x1, x2, ..., xN) ∈ XN and
y = (y1, y2, ..., yN) ∈ YN

P ∗N(x,y) =
N∏

n=1

P ∗(x, y).

The finite set X̂ , different in general from X , is the reproduction alphabet at the receiver.
A code (fN , gN) is defined by a pair of mappings: a coding

fN : XN × YN → {1, 2, ..., L(N)},

and decoding
gN : {1, 2, ..., L(N)} → X̂ ,

where L(N) is the code volume. Code rate is

R(fN , gN) =
1

N
logL(N).

Throughout this paper, all log-s and exp-s are of base 2.
We consider the distortion measure

d : X × X̂ → [0;∞)

between source and reconstruction messages. The distortion measure forN -length sequences
is the average of the components’ distortions

d(x, x̂) =
1

N

N∑
n=1

d(x, x̂).

The task of this system is to ensure restoration of one of the components of source
messages, i.e. X, at the receiver within a given distortion level ∆d and with a small error
probability. At the same time, the other source output Y has to be kept as secret as possible
from the receiver or wiretapper. This protection level is measured by the equivocation
rate, defined as

Re =
1

N
H(Y|L(N)),
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where H(Y|L(N)) is the conditional entropy [9]. In other words, the equivocation rate
indicates the receiver’s uncertainty about y given l.

We define the error probability of the code (fN , gN) as

e(fN , gN , P
∗,∆d) = 1− P ∗N(A),

where A is the set of satisfactorily transmitted vectors:

A = {(x,y) : gN(fN(x,y)) = x̂, d(x, x̂) ≤ ∆d}.

Definition 1. The triple (R,∆d,∆e) is called E-achievable for given P ∗, E > 0,∆d ≥
0,∆e ≥ 0, if for every ϵ > 0, δ > 0, there exists a code (fN , gN) such that

1

N
logL(N) ≤ R + ϵ,

the error probability is exponentially small

e(fN , gN , P
∗,∆d) ≤ exp{−N(E − δ)}

and the equivocation rate
Re ≥ ∆e − ϵ.

We denote by R∗(E) the set of all E-achievable triples. We will consider the distortion-
equivocation E-achievable region:

R∗
∆d,∆e

(E) = {(∆d,∆e) : (R,∆d,∆e) ∈ R∗(E) for some R ≥ 0}.

Then the RRDE function is defined as

R∗(E,∆d,∆e) = min
(R,∆d,∆e)∈R∗(E)

R.

At last, the equivocation-reliability-distortion function (ERD) is:

Γ∗(E,∆d) = max
(∆d,∆e)∈R∗

∆d,∆e
(E)

∆e.

3. Formulation of the Results

Let
Q = {Q(x̂|x, y), x ∈ X , y ∈ Y , x̂ ∈ X̂}

be a conditional PD on X̂ for given x, y.
Consider the following set of distributions P :

α(E,P ∗) = {P : D(P ||P ∗) ≤ E},

where D(P ||P ∗) is the KL-divergence [9].
Let Q(P,∆d,∆e) be the set of all conditional PDs QP (x̂|x, y) = QP , corresponding to

the PD P , for which the following conditions hold:

Ed(X, X̂) =
∑
x,y,x̂

P (x, y)QP (x̂|x, y)d(x, x̂) ≤ ∆d, (1)

HP,QP
(Y |X̂) ≥ ∆e.
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Then
Q(P,∆d) =

⋃
HP,QP

(Y |X)≤∆e≤HP,QP
(Y )

Q(P,∆d,∆e).

The main result of this paper is presented in the following theorem.

Theorem 1. For given P ∗, every E > 0,

R∗(E) =



(R,∆d,∆e) : ∆d ≥ 0,∆e ≥ 0,

0 ≤ Re ≤ min
P∈α(E,P ∗)

max
QP∈Q(P,∆d)

HP,QP
(Y |X̂),

R ≥ max
P∈α(E,P ∗)

min
QP∈Q(P,∆d,∆e)

IP,QP
(X, Y ; X̂)


.

Corollary 2. The ERD function equals

Γ∗(E,∆d) = min
P∈α(E,P ∗)

max
QP∈Q(P,∆d)

HP,QP
(Y |X̂).

Corollary 3.

R∗
∆d,∆e

(E) =


R(E,∆d,∆e) : ∆d ≥ 0,

0 ≤ ∆e ≤ Γ∗(E,∆d)

 .

Corollary 4. The RRDE function equals

R∗(E,∆d,∆e) = max
P∈α(E,P ∗)

min
QP∈Q(P,∆d,∆e)

IP,QP
(X, Y ; X̂).

Corollary 5. The limits of the RRDE and ERD functions when E tends to 0, coincide with
the RDR and ED functions stated in [2]:

lim
E→0

R∗(E,∆d,∆e) = R∗(∆d,∆e) = min
Q∗

P∈Q(P ∗,∆d,∆e)
IP ∗,Q∗

P
(X, Y ; X̂).

lim
E→0

Γ∗(E,∆d) = Γ∗(∆d) = max
QP∗∈Q(P ∗,∆d)

HP ∗,QP∗ (Y |X̂).

The proofs are given in the Appendix and are based on the method of types [10].

4. Conclusion

In this paper, we introduced and examined the set of E-achievable (R,∆d,∆e) triples. Ad-
ditionally, we defined and analyzed the ERD function and the RRDE. The limits of these
functions, when E tends to 0, coincide with the results from [2].
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Appendix

For the proof of Theorem 1, we will use the following modification of the Covering Lemma
[11], [6].

Lemma 1. Let for ϵ > 0

J(P,Q) = exp{N(IP,Q(X, Y ; X̂) + ϵ)}.

Then, for every type P and conditional type Q, there exists a collection of vectors

{x̂j ∈ T N
P,Q(X̂), j = 1, ..., J(P,Q)},

such that the set
{T N

P,Q(X, Y |x̂j), j = 1, ..., J(P,Q)},

covers T N
P (X, Y ) for N large enough, that is

T N
P (X, Y ) ⊂

J(P,Q)⋃
j=1

T N
P,Q(X, Y |x̂j).

We omit the proof of Lemma 1, since it is similar to the proof of Lemma 5.5. from [6].

Proof of the Theorem 1: First we shall show that

R∗(E) ⊇



(R,∆d,∆e) : ∆d ≥ 0,∆e ≥ 0,

0 ≤ Re ≤ min
P∈α(E,P ∗)

max
QP∈Q(P,∆d)

HP,QP
(Y |X̂),

R ≥ max
P∈α(E,P ∗)

min
QP∈Q(P,∆d,∆e)

IP,QP
(X, Y ; X̂)


.

Let us represent the set of all source messages of length N as follows:

XN × YN =
⋃

P∈PN (X×Y )

T N
P (X, Y ),

where PN(X × Y ) is the set of possible types of pairs (x,y) ∈ XN × YN.
Using the properties of types and the definition of the set α(E,P ∗) for each δ > 0,

we can find the estimation of the probability of appearance of the source of types beyond
α(E + δ, P ∗) as follows:

P ∗N

 ⋃
P ̸∈α(E+δ,P ∗)

T N
P (X, Y )

 =
∑

P ̸∈α(E+δ,P ∗)

P ∗N
(
T N
P (X, Y )

)

≤ (N + 1)|X ||Y| exp

{
−N min

P ̸∈α(E+δ,P ∗)
D(P ||P∗)

}
(2)

≤ exp {−NE −Nδ + |X ||Y| log(N + 1)}

≤ exp {−N(E + δ/2)} .
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For each ∆d ≥ 0, let us pick some types P ∈ α(E + δ, P ∗) and some QP ∈ Q(P,∆d,∆e).
Let

C(P,QP , j) = T N
P,QP

(X, Y |x̂j)−
⋃
j′<j

T N
P,QP

(X, Y |x̂j′), j = 1, J(P,QP ).

We define a code (fN , gN) for vector pairs of type P with the encoding:

fN(x,y) =


j, when (x,y) ∈ C(P,QP , j), P ∈ α(E + δ, P ∗),

j0, when (x,y) ∈ T N
P (X, Y ), P ̸∈ α(E + δ, P ∗),

and the decoding

gN(j) = x̂j, gN(j0) = x̂0,

where the number j0 and the reconstruction vector x̂0 are fixed. Obviously, with such code,
an error occurs only when the number j0 is sent.

According to the definition of the code and the inequality (1), for P ∈ α(E + δ, P ∗) and
QP ∈ Q(P,∆d,∆e) we have:

d(x, x̂j) =
1

N

∑
x,x̂

n(x, x̂|x, x̂j)d(x, x̂)

=
∑
x,y,x̂

P (x, y)QP (x̂|x, y)d(x, x̂)

= EP,QP
d(X, X̂) ≤ ∆d, j = 1, J(P,QP ).

According to Lemma 1, the number of vectors x̂ for a fixed type P and corresponding
conditional type QP ∈ Q(P,∆d,∆e) is:

LP,QP
(N) = exp

{
N(IP,QP

(X, Y ; X̂) + ϵ)
}
.

Then, taking into account that the number of types has a polynomial estimate [10]

L(N) ≤
∑

P∈α(E+δ,P ∗)

min
QP∈Q(P,∆d,∆e)

LP,QP
(N)

≤ (N + 1)|X ||Y| max
P∈α(E+δ,P ∗)

min
QP∈Q(P,∆d,∆e)

exp
{
N(IP,QP

(X, Y ; X̂) + ϵ)
}
.

Hence, the corresponding limit for the transmission rate is:

1

N
logLP,QP

(N)− ϵ− 1

N
|X ||Y| log(N + 1) ≤

≤ max
P∈α(E+δ,P ∗)

min
QP∈Q(P,∆d,∆e)

IP,QP
(X, Y ; X̂). (3)

Taking into account the arbitrariness of ϵ and δ and the continuity of the information
expression (3), we get:

R∗(E,∆d,∆e) ≤ max
P∈α(E,P ∗)

min
QP∈Q(P,∆d,∆e)

IP,QP
(X, Y ; X̂). (4)
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For this code, the equivocation rate can be evaluated as follows:

1

N
H(Y|L(N)) ≥ 1

N

L(N)∑
j=1

HP ∗,QP∗ (Y |x,y ∈ C(P,QP , j)))P
∗{x,y ∈ C(P,QP , j)} (5)

=
1

N

L(N)∑
j=1

− ∑
y:x,y∈C(P,QP ,j)

P ∗{y|x,y ∈ C(P,QP , j)} logP ∗{y|x,y ∈ C(P,QP , j)}


×P ∗{x,y ∈ C(P,QP , j)}.

For any y such that x,y ∈ C(P,QP , j) for some x

P ∗{y|x,y ∈ C(P,QP , j)} =
P ∗{x,y ∈ C(P,QP , j)|y}P ∗{y}

P ∗{x,y ∈ C(P,QP , j)}

=

∑
x,y∈C(P,QP ,j)

P ∗{x,y|y}P ∗{y}∑
x,y∈C(P,QP ,j)

P ∗{x,y}
≤

∑
x∈T N

P,QP
(X|y,x̂j)

P ∗{x|y}P ∗{y}

∑
x,y∈C(P,QP ,j)

P ∗{x,y}
. (6)

As the probability of the pair (x,y) is constant within the same type, from (6) we obtain
that

P ∗{y|x,y ∈ C(P,QP , j)} ≤
|T N

P,QP
(X|y, x̂j)|

|C(P,QP , j)|

≤ exp[N(HP,QP
(X|Y X̂)]

(N + 1)|X ||Y| exp[N(HP,QP
(XY |X̂)]

≤ exp[−N(HP,QP
(Y |X̂)− ϵ)]. (7)

Then, from (5), (7) and (2) we obtain that

1

N
H(Y|L(N)) ≥

1

N

L(N)∑
j=1

N ∑
y:x,y∈C(P,QP ,j)

P ∗{y|x,y ∈ C(P,QP , j)}(HP,QP
(Y |X̂)− ϵ)


×P ∗{x,y ∈ C(P,QP , j)}

= P ∗{x,y ∈
L(N)⋃
j=1

C(P,QP , j)}(HP,QP
(Y |X̂)− ϵ)

≥ (1− exp{−N(E + δ/2)})(HP,QP
(Y |X̂)− ϵ).

For N large enough, we obtain that

Re ≥ HP,QP
(Y |X̂)− ϵ ≥ ∆e − ϵ. (8)

According to (2), (4) and (8), we state that the triple (R,∆d,∆e) is E-achievable.
Now we pass to the inverse part, let us prove that:

R∗(E) ⊆



(R,∆d,∆e) : ∆d ≥ 0,∆e ≥ 0,

0 ≤ Re ≤ min
P∈α(E,P ∗)

max
QP∈Q(P,∆d)

HP,QP
(Y |X̂),

R ≥ max
P∈α(E,P ∗)

min
QP∈Q(P,∆d,∆e)

IP,QP
(X, Y ; X̂)


.
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Let ϵ > 0 be fixed. Consider a code (fN , gN) for each blocklength N with (R,∆d,∆e) E-
achievable triple. We must show that for some QP ∈ Q(P,∆d,∆e) the following inequalities
hold for N large enough:

1

N
logL(N) + ϵ ≥ max

P∈α(E,P ∗)
IP,QP

(X, Y ; X̂), (9)

1

N
H(Y|L(N))− ϵ ≤ min

P∈α(E,P ∗)
HP,QP

(Y |X̂). (10)

Let A′ be the complement of the set A. The following statement is true:∣∣∣A⋂
T N
P (X, Y )

∣∣∣ = ∣∣∣T N
P (X, Y )

∣∣∣− ∣∣∣A′⋂ T N
P (X, Y )

∣∣∣ .
For P ∈ α(E − ϵ, P ∗)

∣∣∣A′⋂ T N
P (X, Y )

∣∣∣ =
P ∗N(A′ ⋂ T N

P (X, Y ))

P ∗N(x,y)

≤ exp {N(HP (X, Y ) +D(P ||P ∗))} exp {−N(E − ϵ)}

≤ exp {N(HP (X, Y )− ϵ)} .

Hence,∣∣∣A⋂
T N
P (X, Y )

∣∣∣ ≥ (N + 1)−|X ||Y| exp {NHP (X, Y )} − exp {N(HP (X, Y )− ϵ)}

= exp {N(HP (X, Y )− ϵ)}
(

exp{Nϵ}
(N + 1)|X ||Y| − 1

)
(11)

≥ exp {N(HP (X, Y )− ϵ)} .

For each x,y ∈ A⋂ T N
P (X, Y ) corresponds a unique vector x̂ such that

x̂ = gN(fN(x,y)) and x̂ ∈ T N
P,Q(X̂|x,y).

Let us divide the set of all vectors
∣∣∣A⋂ T N

P (X, Y )
∣∣∣ into subsets by conditional types QP .

The class having maximum cardinality for given P, we denote by(∣∣∣A⋂
T N
P (X, Y )

∣∣∣)
QP

.

According to the number of conditional types Q, for sufficiently large N , we have:∣∣∣A⋂
T N
P (X, Y )

∣∣∣ ≤ (N + 1)|X ||Y|
(∣∣∣A⋂

T N
P (X, Y )

∣∣∣)
QP

≤ exp{Nϵ/2}
(∣∣∣A⋂

T N
P (X, Y )

∣∣∣)
QP

. (12)

Let

D =
{
x̂ : gN(fN(x,y)) = x̂, for some (x,y) ∈ A

⋂
T N
P (X, Y )

⋂
T N
P,QP

(X, Y |x̂)
}
.
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From definition of the code |D| ≤ L(N), then∣∣∣(A⋂
T N
P (X, Y )

)∣∣∣
QP

≤
∑
x̂∈D

∣∣∣T N
P,Q(X, Y |x̂)

∣∣∣
≤ L(N) exp{NHP,QP

(X, Y |X̂)}. (13)

From (11-13) follows
L(N) ≥ exp{N(IP,QP

(X, Y ; X̂)− ϵ)}
for each P ∈ α(E − ϵ, P∗) and some QP for which EP,QP

d(X, X̂) ≤ ∆d, because x,y ∈ A.
From achievability follows that

∆e − ϵ ≤ 1

N
H(Y|L(N)) ≤ HP,QP

(Y |X̂).

So QP ∈ Q(P,∆d,∆e) and inequalities (9) and (10) are valid. Theorem 1 is proved.
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Â äàííîé ðàáîòå ðàññìàòðèâàåòñÿ çàäà÷à êîäèðîâàíèÿ èñòî÷íèêà äëÿ
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ïîëó÷àòåëÿ èëè ïîòåíöèàëüíîãî ïåðåõâàò÷èêà. Äëÿ äàííîé ìîäåëè îïðåäåëÿþòñÿ
è àíàëèçèðóþòñÿ ôóíêöèè ñêîðîñòü-íàä¸æíîñòü-èñêàæåíèå-íåîïðåäåë¸ííîñòü è
íåîïðåäåë¸ííîñòü-íàä¸æíîñòü-èñêàæåíèå.
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Abstract 
 

    In this survey, we explore the broad applications of Information Theory in Machine 
Learning, highlighting how core concepts like entropy, Mutual Information, and KL-
divergence are used to enhance learning algorithms. Since its inception by Claude 
Shannon, Information Theory has provided mathematical tools to quantify uncertainty, 
optimize decision-making, and manage the trade-off between model flexibility and 
generalization. These principles have been integrated across various subfields of Machine 
Learning, including neural networks, where the Information Bottleneck offers insights into 
data representation, and reinforcement learning, where entropy-based methods improve 
exploration strategies. Additionally, measures like Mutual Information are critical in 
feature selection and unsupervised learning. This survey bridges foundational theory with 
its practical implementations in modern Machine Learning by providing both historical 
context and a review of contemporary research.. We also discuss open challenges and 
future directions, such as scalability and interpretability, highlighting the growing 
importance of these techniques in next-generation models. 
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1. Introduction 

 

The intersection of Information Theory (IT) and Machine Learning (ML) has become increasingly 
pivotal in advancing the state of the art across a wide range of subfields. IT, formalized by Claude 
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Shannon in his seminal 1948 work [1], introduced foundational concepts like entropy, which 
measures the uncertainty or disorder of a system, and Mutual Information (MI), which quantifies 
the amount of information one variable contains about another. These principles have profound 
implications in ML, particularly in optimizing algorithms, managing uncertainty, and improving 
decision-making processes. 

In the context of ML, models often grapple with the bias-variance trade-off, striving to 
balance flexibility with generalization. Information-theoretic techniques such as minimum 
description length [2] provide an elegant way of navigating this trade-off by minimizing the 
complexity of models while maintaining accuracy. Similarly, maximum entropy models [3] 
leverage entropy to derive distributions that reflect uncertainty in the absence of prior knowledge, 
making them useful in many predictive models. 

 
The impact of IT on ML is far-reaching: 

● In neural networks, the Information Bottleneck (IB) method offers a theoretical framework 
for understanding how deep networks compress and transmit information through their 
layers [4]. 

● Reinforcement learning employs entropy-based regularization to enhance exploration 
strategies, helping agents avoid local optima and discover better policies [5]. 

● Feature selection relies on MI to identify the most relevant variables while discarding 
redundant or irrelevant data, which is crucial for high-dimensional datasets [6]. 

● Unsupervised learning techniques such as autoencoders and variational autoencoders  rely 
on information-theoretic measures like KL-divergence to ensure that latent representations 
capture the essential structure of data [7]. 

 
As the field of ML continues to evolve, information-theoretic methods remain central to 

the development of robust and efficient models. Recent advancements have brought renewed 
attention to these techniques, particularly in addressing the challenges of scalability, 
interpretability, and privacy in deep learning systems. The IB theory, for example, provides 
insights into how models generalize and perform in real-world tasks by analyzing the flow of 
information between inputs and outputs [8]. Moreover, information-theoretic approaches have 
been increasingly employed in cutting-edge fields such as quantum ML, where quantum IT 
principles are applied to create more powerful algorithms [9]. 

This survey aims to provide a comprehensive overview of the recent developments, current 
applications, and future directions of IT in ML. This investigation will provide future good basis 
for bridging the gap between foundational theory [10] and cutting-edge research. 

The paper is organized as follows: in the next section main concepts of IT are described. 
Main IT tools applied in ML are discussed in Section 3. Particular emphasis is placed on the IB 
framework in Section 4. Section 5 discusses the challenges and limitations of IT in ML. The paper 
is summarized in Section 6. 
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2.  Useful IT Concepts 
 
Entropy: Measuring Uncertainty 
 Entropy is the cornerstone of IT, introduced by Claude Shannon in 1948 [1], and is a measure 
of the uncertainty or randomness inherent in a random variable or a probability distribution [11]. 
In ML, entropy plays critical role in quantifying the amount of unpredictability in data, making it 
a crucial tool for optimizing algorithms and decision-making processes. 

For a discrete random variable 𝑋𝑋 with a probability distribution 𝑃𝑃(𝑋𝑋), where 𝑋𝑋 can take 
values {𝑥𝑥1, 𝑥𝑥2, ..... , 𝑥𝑥2 } with probabilities {𝑝𝑝(𝑥𝑥1), 𝑝𝑝(𝑥𝑥2), ..... , 𝑝𝑝(𝑥𝑥𝑛𝑛)}, the 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑒𝑒 𝐻𝐻(𝑋𝑋) is 
defined as: 

𝐻𝐻(𝑋𝑋) =  −∑ 𝑝𝑝𝑛𝑛
𝑖𝑖=1 (𝑥𝑥𝑖𝑖)𝑙𝑙𝑒𝑒𝑙𝑙 𝑝𝑝(𝑥𝑥𝑖𝑖), 

where:  
● 𝑝𝑝(𝑥𝑥𝑖𝑖) is the probability of accurrence of the outcome 𝑥𝑥𝑖𝑖, 
● 𝑙𝑙𝑒𝑒𝑙𝑙  is the logarithm base 2, as entropy is typically measured in bits.  

The formula represents the expected number of bits required to encode the outcomes of 𝑋𝑋 
given their probabilities. Entropy achieves its maximum value when all outcomes are equally 
probable (maximum uncertainty) and its minimum value when one outcome is certain (no 
uncertainty). 

Conditional Entropy and Joint Entropy are extensions of this concept. Conditional Entropy     
𝐻𝐻(𝑋𝑋 | 𝑌𝑌) quantifies the uncertainty of 𝑋𝑋 given that Y is known, while Joint Entropy 𝐻𝐻(X, 𝑌𝑌) 
captures the combined uncertainty of two random variables. 

 

 𝐻𝐻(𝑋𝑋 | 𝑌𝑌)  =  −�  
𝑦𝑦∈𝑌𝑌

𝑝𝑝(𝑒𝑒)�  
𝑥𝑥∈𝑋𝑋

𝑝𝑝(𝑥𝑥|𝑒𝑒)𝑙𝑙𝑒𝑒𝑙𝑙 𝑝𝑝(𝑥𝑥|𝑒𝑒), 

𝐻𝐻(𝑋𝑋,𝑌𝑌)  = −∑  ∑  𝑥𝑥∈𝑋𝑋𝑦𝑦∈𝑌𝑌  𝑝𝑝(𝑥𝑥,𝑒𝑒)𝑙𝑙𝑒𝑒𝑙𝑙 𝑝𝑝(𝑥𝑥,𝑒𝑒). 

Mutual Information: Quantifying Shared Information 
 MI measures the amount of information shared between two random variables, quantifying 
how much knowing the value of one variable reduces uncertainty about the other. Formally, the 
MI between two random variables 𝑋𝑋 and 𝑌𝑌 is defined as: 

𝐼𝐼(𝑋𝑋;  𝑌𝑌)  =  𝐻𝐻(𝑋𝑋) –   𝐻𝐻(𝑋𝑋 | 𝑌𝑌)  = ∑  𝑦𝑦∈𝑌𝑌 ∑  𝑥𝑥∈𝑋𝑋  𝑝𝑝(𝑥𝑥,𝑦𝑦)
𝑝𝑝(𝑥𝑥)𝑝𝑝(𝑦𝑦)

. 

MI can be thought of as the reduction in uncertainty about 𝑋𝑋 when 𝑌𝑌 is known. Unlike 
correlation, which captures linear relationships, MI detects any kind of dependency between the 
variables, making it more robust for applications like feature selection [6]. In ML, MI is used to 
rank features based on their relevance to the target variable, allowing models to focus on the most 
informative inputs. For example, in feature selection, MI helps to identify and remove irrelevant 
or redundant features, significantly improving model performance by reducing overfitting in high-
dimensional spaces. 
 
KL-Divergence: Measuring the Difference Between Distributions 
Kullback-Leibler Divergence (KL-Divergence), also known as relative entropy, is a measure of 
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how one probability distribution differs from a second, reference distribution. For two probability 
distributions 𝑃𝑃 and 𝑄𝑄, the KL-Divergence from 𝑄𝑄 to 𝑃𝑃 is defined as: 

𝐷𝐷KL(𝑃𝑃||𝑄𝑄)  =  ∑  𝑥𝑥∈𝑋𝑋 𝑝𝑝(𝑥𝑥)𝑙𝑙𝑒𝑒𝑙𝑙 𝑝𝑝(𝑥𝑥)
𝑞𝑞(𝑥𝑥)

. 

KL-Divergence is non-negative and equals zero when the distributions are identical. Unlike 
traditional distance metrics, it is asymmetric, meaning 𝐷𝐷𝐾𝐾𝐾𝐾 (𝑃𝑃||𝑄𝑄) ≠  𝐷𝐷𝐾𝐾𝐾𝐾 (𝑄𝑄||𝑃𝑃).  

KL-Divergence is particularly useful in tasks where we approximate a complex distribution 
𝑃𝑃 with a simpler distribution 𝑄𝑄, such as in variational inference [7]. 

In variational autoencoders, KL-Divergence is used to measure how close the learned 
latent variable distribution is to a prior distribution, such as a standard normal distribution. This 
ensures that the learned representations are regularized and maintain structure during training. 
 
Cross-Entropy: Optimizing Classification Models 

Cross-Entropy is closely related to KL-Divergence, but is more commonly used in 
classification problems. While KL-Divergence measures the divergence between two probability 
distributions, cross-entropy quantifies the total number of bits needed to encode a distribution 𝑃𝑃 
using another distribution 𝑄𝑄, cross-entropy is given by: 

𝐻𝐻(𝑃𝑃,𝑄𝑄) =  −∑  𝑥𝑥∈𝑋𝑋 𝑝𝑝(𝑥𝑥) log   𝑞𝑞(𝑥𝑥). 
In ML, cross-entropy loss is widely used as a loss function for classification tasks, particularly for 
models that output probability distributions, like softmax classifiers. It measures how well the 
predicted probabilities (from model 𝑄𝑄) align with the true distribution (actual labels, 𝑃𝑃). 
Minimizing cross-entropy encourages the model to assign high probabilities to the correct classes. 

For binary classification problem, the cross-entropy loss can be written as:  
𝐾𝐾 =  −[𝑒𝑒𝑙𝑙𝑒𝑒𝑙𝑙 𝑝𝑝 + (1 − 𝑒𝑒)𝑙𝑙𝑒𝑒𝑙𝑙(1 − 𝑝𝑝)], 

where 𝑒𝑒 is the true label (0 or 1), and 𝑝𝑝 is the predicted probability of the label being 1. 
 
Maximum Entropy Principle 
 The Maximum Entropy principle suggests that, when faced with uncertainty, the best 
distribution to choose is the one that maximizes entropy, subject to any known constraints. This 
principle underprints maximum entropy models, often used in areas like natural language 
processing [12]. These models choose the distribution that remains as uncertain as possible (i.e., 
has the highest entropy) while still satisfying the constraints imposed by the available data. 

The principle encourages generality and reduces assumptions, making it useful for creating 
unbiased models when prior knowledge is limited. 
  
 
3. Overview of IT Tools for ML 
 
The application of IT concepts, such as entropy, MI, KL-divergence, and cross-entropy, has 
significantly advanced ML methodologies. These tools enable effective feature selection, model 
optimization, regularization, and performance evaluation. Below, we explore how these principles 
are utilized in practical ML tasks.  
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Feature Selection and Dimensionality Reduction 
 One of the most prominent applications of MI is in feature selection. In high-dimensional 
datasets, identifying the most relevant features for the model is crucial to improve performance 
and reduce overfitting. MI helps in selecting features that share maximum information with the 
target variable while avoiding redundant or irrelevant features. The Max-Relevance and Min-
Redundancy algorithm is a widely used feature selection technique, that maximizes MI between 
features and the target variable while minimizing redundancy among the selected features [6]. This 
ensures that the selected features are both informative and diverse. In [6], MI was applied to gene 
selection for cancer detection. This approach identified the genes most relevant for distinguishing 
between cancerous and non-cancerous cells, reducing the dataset’s dimensionality while retaining 
the most predictive features. This process significantly improved the performance of classification 
algorithms, such as Support Vector Machines, by focusing on the genes that contained the most 
meaningful information about the cancer type. Here, MI 𝐼𝐼(𝑋𝑋;  𝑌𝑌) is used to quantify the 
relationship between the input features 𝑋𝑋  and the target label 𝑌𝑌, ensuring that the selected features 
contribute significantly to the predictive power of the model.  

Building upon MI-driven feature selection, [13] proposed a fast binary feature selection 
method using Conditional MI. This approach refines MI-based selection by conditioning on 
already-selected features, ensuring that each additional feature contributes new, independent 
information to the model. The efficiency of this method enables rapid selection from datasets with 
tens of thousands of features, making it highly suitable for large-scale applications in computer 
vision and pattern recognition. Additionally, [14] explored MI-based feature selection techniques 
tailored for non-Gaussian data distributions. Their work introduced new feature selection and 
visualization algorithms that address challenges posed by high-dimensional, non-Gaussian 
datasets. By leveraging information-theoretic measures, their method improves both 
interpretability and feature selection performance in complex data environments, making it 
particularly useful in scientific and industrial applications, where data distributions deviate from 
Gaussian assumptions. Another approach leveraging MI for feature selection is presented in [15]. 
The method selects class-specific informative features, maximizing MI with the target class to 
enhance classification performance. This allows even a simple linear classifier to be effective, 
reducing reliance on complex models. While applied to object recognition, its principles extend to 
high-dimensional classification tasks, where efficient feature selection is essential. 
  
Decision Trees and Information Gain 
 Entropy plays a central role in the construction of decision trees, where it is used to 
calculate information gain. Information gain measures the reduction in uncertainty (or entropy) 
when a dataset is split based on a particular feature. A decision tree algorithm selects features 
with the highest information gain to create branches, effectively reducing the overall entropy of 
the system [16]. In the popular ID3 and C4.5 decision tree algorithms, the feature that results in 
the greatest reduction in entropy after splitting is chosen to create nodes in the tree. This process 
continues recursively, ensuring that each split reduces uncertainty and leads to the most 
informative partitions of the data. 

𝐼𝐼𝑒𝑒𝐼𝐼𝑒𝑒𝑒𝑒𝐼𝐼𝐼𝐼𝑒𝑒𝐼𝐼𝑒𝑒𝑒𝑒 𝐺𝐺𝐼𝐼𝐼𝐼𝑒𝑒 =  𝐻𝐻(𝑌𝑌)  −  𝐻𝐻(𝑌𝑌|𝑋𝑋). 
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By minimizing entropy at each step, decision trees efficiently organize data and create 
models that are easy to interpret. However, their usage extends beyond traditional datasets into 
fields like high-energy physics, where rapid detection of rare phenomena is critical. A recent study 
[17] demonstrates the application of decision trees in detecting anomalies in proton-proton 
collision data at nanosecond timescales. This work specifically focuses on identifying rare Higgs 
boson decays in real-time. The decision trees in this application rely on fast, efficient calculations 
of information gain to classify particle collision data, reducing entropy by isolating potential 
anomalies that deviate from expected particle behaviors. 

Another interesting work is [18]. This study tackles the challenge of securely training and 
evaluating decision trees in cloud environments without exposing sensitive data. The authors 
introduce a method based on additive secret sharing and the Paillier cryptosystem to protect both 
user queries and the cloud-hosted model. Their approach ensures secure computation while 
supporting offline users, making it suitable for resource-constrained applications like Internet of 
Thinking. Experimental results confirm its efficiency, particularly for deep but sparse trees, 
demonstrating reduced computational and communication overhead. 

 
Clustering and Similarity Measurement 

In unsupervised learning tasks like clustering, MI is used to measure the similarity between 
data points or clusters. The goal of clustering is to group similar data points together, and MI can 
help to determine how much information is shared between the clustering results and the true 
labels, when available. 

One notable application of ML in clustering is Normalized MI, which measures the 
similarity between two clusterings. Normalized MI is particularly valuable when evaluating the 
quality of clustering results, as it quantifies the shared information between the true class labels 
and the predicted clusters, normalized by the entropy of both distributions. This ensures that the 
score is independent of the number of clusters and the size of the dataset. Normalized MI is widely 
used in applications such as document clustering, image segmentation and analyzing [19], where 
it is crucial to assess the quality of unsupervised learning methods.  

Fuzzy clustering (a form of clustering in which each data point can belong to more than 
one cluster) plays a critical role in ML applications. Traditional clustering algorithms, such as k-
means, assume hard partitioning of the data, meaning each data point belongs exclusively to one 
cluster. However, in many real-world scenarios, data points may naturally belong to multiple 
clusters with varying degrees of membership. Fuzzy clustering, specifically Probabilistic Fuzzy 
Clustering, allows for such flexibility by assigning each data point a degree of membership across 
different clusters. 

The Robust Possibilistic Fuzzy Additive Partition Clustering method, as introduced in a 
recent study [20], builds upon these principles by incorporating deep local information to optimize 
the clustering process. This method leverages local data structures to improve clustering accuracy, 
particularly in noisy and uncertain environments. The algorithm dynamically adjusts the 
partitioning of data, thus reducing the impact of noise and outliers - a common issue in clustering. 
A significant extension of MI-based clustering techniques comes from the Information-Theoretic 
Co-Clustering approach introduced in [21]. This method simultaneously clusters both rows and 
columns of a data matrix, optimizing an MI loss function to uncover latent structures within 
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datasets. This framework has been particularly influential in text mining and bioinformatics, where 
data is inherently organized in two dimensions, such as documents and words, or genes and 
experimental conditions. By minimizing information loss in the clustering process, this method 
provides a more interpretable and structured representation of high-dimensional data.  

Further advancing the theoretical foundations of MI in clustering, [22] proposed 
Information-Theoretical Clustering via Semidefinite Programming. Unlike conventional 
clustering approaches, which often rely on heuristic optimization, this method employs 
semidefinite programming to ensure a globally optimal partitioning of data based on MI principles. 
The approach has shown effectiveness in areas such as image segmentation and social network 
analysis, where precise and stable clustering is crucial.  

In the domain of collaborative filtering, [23] introduced an Information-Theoretic Co-
Clustering approach to improve recommendation systems. Traditional collaborative filtering often 
suffers from sparsity issues, where users have rated only a small fraction of available items. By 
leveraging MI to extract shared patterns from user-item matrices, this method enhances 
recommendation accuracy by capturing both cluster-based preferences and rating similarities. This 
improvement makes it particularly valuable for applications in e-commerce and content 
recommendation platforms. A more recent contribution by [24] introduces Co-Clustering via 
Information-Theoretic Markov Aggregation. This method constructs a random walk on a bipartite 
graph, optimizing an MI-based cost function to extract meaningful co-clusters. By reducing 
information loss during clustering, this technique closely aligns with the IB framework, 
demonstrating superior performance in structured datasets like Newsgroup20 and MovieLens100k. 
Its effectiveness in real-world applications highlights the growing importance of MI-based 
clustering in data-driven decision-making and knowledge discovery. A new information-
theoritical distance measure for evaluating community detection algorithms was introduced in 
[25]. 

These contributions collectively reinforce the role of MI in clustering, from optimizing 
objective functions to handling complex, structured datasets. As research continues, integrating 
MI-based clustering with deep learning and representation learning frameworks remains a 
promising direction for uncovering intricate patterns in high-dimensional data. 
 
Regularization and Neural Networks 
 KL-Divergence plays a central role in generative models such as Variational Autoencoders, 
which are used to generate new data samples by learning the latent structure of the data. In this 
context, KL-divergence is used to regularize the latent space by ensuring that the learned 
distribution (the approximate posterior) is close to the prior distribution. The KL-divergence 
regularization term encourages the latent variable distribution to resemble a standard Gaussian 
distribution, promoting generalization and preventing overfitting [7]. By minimizing KL-
divergence, the model ensures that the learned latent representations are smooth and continuous, 
allowing for better generation of new data samples and improved model robustness. Beyond 
generative models, MI and IB principles have also been explored as regularization techniques for 
deep learning. [8] introduced an information-theoretic analysis of Deep Neural Networks, showing 
that training consists of two key phases: an initial empirical risk minimization phase, followed by 
a compression phase, where MI between the input and the hidden layers is gradually reduced. This 
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compression process aligns with the (IB) principle, acting as a form of implicit regularization. 
Their findings provide theoretical support for why deep networks generalize well despite 
overparameterization, suggesting that MI-based constraints naturally shape the learning dynamics. 
Expanding on this, [26] proposed a framework for learning deep representations by maximizing 
MI between input data and learned representations. Their method, Deep InfoMax (DMI), uses 
contrastive learning objectives to estimate MI and enforce high-information content in learned 
representations. Unlike traditional supervised learning, which relies on external labels, DMI 
ensures that learned features are task-relevant while filtering out noise. This MI maximization 
strategy has proven effectiveness in improving self-supervised learning, domain adaptation, and 
robust feature extraction, reinforcing the growing role of information-theoretic constraints in deep 
learning regularization. Cross-entropy remains the standard loss function for optimizing 
classification tasks, ensuring that models align their predicted probability distributions with true 
labels to achieve accurate predictions [27]. Together, these information-theoretic measures (KL-
Divergence, MI and Cross-Entropy) serve as fundamental tools in deep learning regularization, 
helping models generalize, reduce overfitting, and learn meaningful representations. 

The applications of IT in ML are both diverse and fundamental. Core concepts, such as 
entropy, MI, KL-divergence and Cross-Entropy, underpin a variety of crucial tasks in ML, from 
feature selection and decision-making to unsupervised learning and generative modeling. 

 
Metric and Deep Learning 
 MI and other information-theoretic measures play a fundamental role in Metric Learning and 
Deep Learning, guiding how models learn structured and generalizable representations. By 
leveraging entropy, divergence measures, and the IB principle, researchers have developed 
techniques, that enhance similarity learning, privacy-aware learning, and transfer learning. 
 A foundational contribution in metric learning comes from [28], where Information-Theoretic 
Metric Learning (ITML) was introduced. Their method optimizes a Mahalanobis distance metric 
by minimizing differential entropy, ensuring that similar points are pulled closer while maintaining 
constraints on dissimilarity. Unlike traditional distance-learning approaches, ITML leverages 
relative entropy constraints, making it more robust in high-dimensional feature spaces. This 
approach has influenced a range of applications, from face verification to text similarity 
measurement. Privacy concerns in deep learning have led to the development of information-
theoretic frameworks that balance data utility and confidentiality. 

[29] proposed a privacy-aware time-series data-sharing framework using Deep 
Reinforcement Learning. Their approach formulates data sharing as an optimization problem, 
where the agent learns an optimal information disclosure policy under privacy constraints. By 
integrating MI constraints, the model selectively reveals useful data while minimizing privacy 
risks, demonstrating its effectiveness in financial and healthcare applications.  

The theoretical foundations of Information-Theoretic Learning (ITL) were established in 
[30], introducing a framework for learning based on entropy and divergence measures rather than 
traditional statistical learning methods. ITL provides a more general approach to feature selection, 
clustering, and kernel methods, making it a precursor to modern information-based deep learning 
models. The use of Renyi entropy and Cauchy-Schwarz divergence in ITL offers an alternative to 
classical probability-based learning techniques, leading to more flexible and adaptive models. 
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Beyond individual learning paradigms, information-theoretic generalization bounds provide 
insights into the transferability of learned representations. [31] explored the role of MI in Transfer 
Learning, analyzing how information retained from the source domain affects generalization in 
the target domain. Results of this work highlight the importance of controlling information flow 
between layers in deep networks to prevent overfitting while maximizing knowledge transfer. This 
work establishes upper bounds on transfer learning generalization errors, making it highly relevant 
for domain adaptation and self-supervised learning. 
 Together, these studies illustrate the growing intersection between IT and Deep Learning, 
demonstrating how MI, entropy, and divergence measures drive advancements in metric learning, 
privacy-aware learning, and transfer learning. As deep learning models continue to evolve, 
information-theoretic regularization techniques are expected to play an even greater role in 
improving model robustness and interpretability. 
 
4. IB Framework Applications in ML 
 
The IB framework, first introduced in [32], has become a fundamental tool in ML by providing a 
principled approach to optimizing information flow in learning systems. IB offers a way to balance 
compression and relevance, formalizing the principle as an information-theoretic tradeoff between 
MI with the input and relevance to the target, ensuring that models retain the most essential 
information while discarding irrelevant noise. Over the years, IB has been applied across various 
ML domains, including representation learning, clustering, deep learning, privacy-aware learning, 
and image processing. The follow-up work [33] further refined the mathematical foundations of 
IB, emphasizing how different distortion measures impact information retention in learning 
systems. [34] expanded IB’s role in representation learning, showcasing IB's effectiveness in 
enhancing generalization for multi-agent systems. In the context of deep learning, in [35], the 
authors introduced Deep Variational Information Bottleneck, which extends IB by incorporating 
variational inference. This approach has been widely adopted in training robust and generalizable 
neural networks by enforcing a structured latent space that reduces overfitting and improves 
generalization. Similarly, in [36] information flow in Deep Neural Networks is explored, 
demonstrating how IB principles guide the learning process by distinguishing between 
representation compression and task-relevant information. In [37], IB is further analyzed for 
application in Convolutional Neural Networks, optimizing feature extraction and regularization. 
In [38], the authors explored IB for splitting composite neural networks, improving model 
modularity and efficiency. 
 The IB framework has also found extensive applications in image processing. In [39], IB is 
applied to image segmentation, optimizing feature selection for improved segmentation accuracy. 
In [40], the authors introduced the Residual Bottleneck Dense Network for image super-resolution, 
demonstrating how IB-based architectures enhance high-resolution image synthesis. In [41], IB is 
explored for compressed sensing image reconstruction, leveraging IB principles to enhance the 
quality of reconstructed images in resource-constrained environments. IB's role in 5G-LDPC 
decoding with coarse quantization is examined in [42], improving information retention in error-
correcting code applications. Additionally, in [43], Exponential IB Theory is applied to pedestrian 
attribute recognition, optimizing robustness against intra-attribute variations. 
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Beyond vision-related tasks, the IB principle has been successfully applied to a range of 
other domains, including clustering and feature selection [44],[45],[46],[47], geospatial learning 
[48], and multimodal natural language processing [49]. The IB framework has also been utilized 
in speech and audio processing [50],[51],[52], as well as in environmental monitoring and time-
series analysis [53], while continuing to play a central role in self-supervised visual representation 
learning [54]. 

In privacy-aware ML, IB has been utilized to balance data utility and confidentiality. A 
Privacy-Aware Joint Source-Channel Coding method based on Disentangled IB is introduced in 
[55], optimizing secure data transmission. Similarly, in [56], the authors proposed FIBNet, 
demonstrating how IB can prevent leakage of sensitive attributes while retaining necessary 
identification information. In [57], Robust IB feature extraction is explored, enhancing adversarial 
robustness in ML models. 

Several additional contributions have extended the application of the IB framework across 
diverse ML domains. In reinforcement learning and decision-making, Collaborative [58] and Two-
Way Cooperative [59] IB frameworks were introduced to optimize multi-agent systems under 
information-theoretic constraints. In the context of scheduling and optimization, an IB-based 
heuristic for job-shop scheduling is proposed in [60], demonstrating IB's utility in large-scale 
combinatorial problems. In [61], the authors applied tunable IB with Rényi measures to improve 
fairness and interpretability in classification tasks.  

As IB research continues to evolve, its applications across deep learning, clustering, privacy, 
and reinforcement learning highlight its broad impact in ML. Future directions include integrating 
IB with large-scale self-supervised learning and enhancing IB-based optimization techniques for 
more efficient model training. The increasing adoption of IB principles underscores its importance 
as a fundamental tool for structured and efficient learning in ML. For more details on this topic, 
we refer to a comprehensive survey [62]. 
 
 
5. Challenges and Limitations of IT in ML 
 
While IT has significantly contributed to the advancement of ML, its practical application is not 
without challenges. Techniques using entropy, MI, and KL-divergence offer powerful tools for 
managing uncertainty, optimizing models, and guiding decision-making. However, as ML models 
scale to handle ever-increasing amounts of data and complexity, several challenges emerge. 
 One key limitation is the scalability of information-theoretic measures, particularly when 
applied to high-dimensional datasets. Computing metrics like MI or entropy often becomes 
computationally expensive as the dimensionality of the data increases. For example, in [63] 
authors introduced MINE (Mutual Information Neural Estimation), a scalable method for 
estimating MI by using gradient descent over neural networks. While MINE improves scalability, 
it still faces computational challenges when applied to extremely large datasets or high-
dimensional input spaces, requiring efficient optimization techniques to ensure the model doesn’t 
become prohibitively slow. 

Another challenge is Approximation errors, as noted in [64], estimating MI accurately is 
difficult in practice, especially for continuous variables. MI is sensitive to the quality of the 
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probability distribution estimates, and small errors in density estimation can lead to significant 
misestimation of MI values. 
 Despite these challenges, efforts to address the limitations of IT in ML are ongoing. 
Researchers are continuously exploring ways to improve the scalability and accuracy of 
information-theoretic measures, particularly in high-dimensional spaces. For instance, 
advancements in approximation techniques, such as neural estimation methods like MINE, provide 
a promising foundation for mitigating computational constraints. Additionally, adaptive models 
that can handle noisy and imbalanced data more effectively, such as the IB framework, continue 
to evolve. 
 Moving forward, future work will likely focus on refining these methods to better suit real-
world datasets, particularly those characterized by non-stationarity and high dimensionality. By 
developing more robust estimation techniques and improving the adaptability of models in 
dynamic environments, researchers can further harness the power of IT to unlock its full potential 
in ML. 
 
6. Conclusion 
 
This survey has highlighted the critical role that IT plays in ML, providing a framework for 
managing uncertainty, optimizing models, and improving decision-making. Through the use of 
concepts like entropy, MI, and KL-divergence, information-theoretic approaches have enhanced 
various ML tasks. However, challenges such as scalability, approximation errors, and dependency 
on accurate data modeling remain key obstacles. 
 Addressing these issues through ongoing research and improved techniques will help unlock 
the full potential of IT in ML, driving future innovations and making models more robust and 
adaptable to complex, real-world problems. 
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Аннотация 

 
В данной статье рассматривается широкое применение Теории Информации в Машинном 
Обучении, подчеркивается, как основные понятия используются для улучшения 
алгоритмов обучения. Техники Теории информации были интегрированы в различные 
подполя Машинного Обучения, включая нейронные сети. В частности метод 
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величины, как взаимная информация, имеют решающее значение для отбора признаков и 
обучения без контроля. Предоставляя последние достижения и обзор современных 
тенденций, эта статья связывает фундаментальную теорию с ее практической реализацией 
в современном машинном обучении. Мы также обсуждаем открытые проблемы и будущие 
направления, такие как масштабируемость, интерпретируемость, подчеркивая растущую 
важность этих методов в моделях нового поколения: масштабируемость, 
интерпретируемость, подчеркивая растущую важность этих методов в моделях нового 
поколения. 
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Abstract

A fractal analysis of the most important architectural monuments (temples) of me-
dieval Armenia is given. Quantitative (objective) evaluations of their artistic appeal
are obtained. These evaluations confirm the generally accepted (subjective) appeal of
these temples as masterpieces of Armenian architecture. Based on the fractal data
obtained, statistical conclusions are made about the high degree of architectural com-
patibility of the plans and facades of the monuments under consideration.
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1. Introduction

The basic figures of classical (Euclidean) geometry are simple and clear: circle, sphere,
cylinder, pyramid, etc. The impressive achievements of this science allowed ancient thinkers
to assume that the geometric picture of the world is described by Euclidean geometry based
on the five Platonic solids (regular polyhedra).

Over time, it became clear that this position was only partly true, since it was impossible
to describe the shapes of objects such as clouds, mountain ranges, coastlines of seas and lakes,
etc. within the framework of classical geometry.

The question of the existence of a geometry that can describe and study the forms of such
objects has been a topic of interest for scientists for a long time. However, it was only with
the development of powerful computing systems (enabling us to visualize such structures)
that the construction of such a theory became possible.

Geometry describing non-standard forms was proposed by B. Mandelbrot [1] based on
the concept of fractal introduced by him. It was called fractal geometry.
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The difference between this geometry and classical Euclidean geometry is as follows. In
classical geometry, objects are idealized, meaning their surfaces are assumed to be perfectly
smooth, without any irregularities, cracks, or breaks. In contrast, fractal geometry studies
the patterns inherent in natural objects, processes, and phenomena with the presence of
roughness, brokenness, and other complexities (see, for example, [2, 3]). It offers a variety
of ways to describe and measure both natural and man-made objects.

Thanks to the development of fractal geometry, it has recently become possible to ob-
jectively (quantitatively) evaluate the aesthetic appeal of architectural compositions for the
first time.

There are many monuments of world architecture for which fractal analysis has been
carried out. These are remarkable Gothic cathedrals in Europe, beautiful mosques of Islamic
architecture, unique Hindu temples (see, for example, [4, 5, 6, 7]). Such an analysis has not
been carried out for Armenian temples. This paper attempts to fill this gap. It is devoted
to the application of fractal geometry to the quantitative evaluation of the attractiveness of
such outstanding architectural monuments of medieval Armenia as the Zvartnots, Hripsime
and the Cathedral of the Holy Virgin in Ani.

When conducting fractal analysis, various computing tools are used. In this work, the
analysis is carried out on the basis of the FrakOut! package, which is very convenient for
calculating the fractal parameters of buildings. When evaluating the architectural compati-
bility of the plan and facade of the temples under consideration, the STATISTICA software
package was used to find statistical estimates based on the available data.

2. Fractals and Fractal Geometry

According to Mandelbrot [1], a fractal is a structure consisting of parts that are in some
sense similar to the whole (or to each other).

Fractals can be found almost everywhere in nature. For example, tree crowns, snowflakes,
broccoli heads, crystals, etc.

From a mathematical point of view, a fractal is a geometric figure (a set of points in
Euclidean space) whose fractal dimension (the Hausdorff–Besicovitch dimension) is either
fractional or exceeds its topological dimension.

The Hausdorff-Besicovitch dimension of some finite set G, G ⊂ Rn, is defined as follows.
Consider an n-dimensional cubic lattice in Rn with the length of the edge of a cube (cell)
equal to ∆. Let N(∆) be the minimum number of cubes needed to cover the set G. Then
the fractal dimension D of this set is defined based on the following requirement:

lim
∆→0

N(∆)∆d =

{
0, if d > D,
∞, if d < D.

From this it is clear that the dimension D of the set G is essentially the boundary that
shows that if d < D, then the number of cubes N(∆) is insufficient to cover the set G, and
if d > D, then the number of cubes N(∆) is excessive for coverage.

It is generally accepted that the fractal dimension is a characteristic property of fractals,
i.e., if the dimension D is not an integer, then the set G is considered a fractal. In practice,
approximate numbers are used. For ∆ ≈ 0, D ≈ − lnN(∆)/ ln∆.

In addition to natural fractals, there are also artificial (non-natural) fractals. The first
examples of non-natural fractals were constructed at the end of the nineteenth century in
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connection with purely mathematical problems of function theory. From the point of view
of classical mathematical analysis, they had extremely unusual properties. For example, this
is the Cantor set (Cantor dust), the nowhere differentiable Weierstrass function, the Koch
snowflake, the Brownian curve on the plane, etc. For some of them, fractal dimensions have
been calculated: the Cantor set has a fractal dimension of D = ln 2/ ln 3, and for a Brownian
curve on a plane, it is equal to 2, that is, exceeds its topological dimension.

It should also be noted that fractal principles are present in the theory of fractional
integro-differentiation as well. The fact is that in a fractal environment, the change in
physical quantities can slow down to such an extent that it is impossible to describe such
a process using an ordinary derivative. This can only be done using integro-differential
equations that include a fractional derivative with respect to time. Armenian mathematicians
M. Djrbashian and A. Nersessian made a significant contribution to this theory (see [8]).

3. Quantitative Evaluation of Aesthetic Appeal of Fractal Structures

Fractal geometry can be used as a method for analyzing the structure of buildings. It has been
noted that if the fractal component of an architectural structure is clearly traced, then this
structure has strong architectural aesthetics. Psychologists have developed a quantitative
method to assess such aesthetics.

The first systematic studies of the perception of fractal forms were conducted by J.
Sprott and his colleagues. These studies analyzed the relationships between objective (fractal
dimension) and subjective assessments of the visual attractiveness of various objects (the
results of these works are summarized in [9]). It was later shown that subjective assessments
of visual attractiveness correlate quite strongly with fractal dimension and are reproduced
upon repeated testing [10, 11, 12]. It was also shown that the fractal dimension is the
main factor influencing subjective assessments of the attractiveness of objects with fractal
properties. Preference is given to objects with an average fractal dimension in the range of
1.3–1.5 (flat images). Subsequently, many studies were devoted to the empirical study of the
perception of fractals of natural and artificial origin (see, for example, [13, 10, 14, 15]).

Research by K. Hagerhall and her group [14] has established that emotional states in
relation to natural landscapes can be predicted by typical fractal characteristics, i.e., by
fractal dimension.

These studies confirmed the relationship between assessments of aesthetic appeal and
complexity with fractal dimension.

4. Fractal Analysis of Armenian Temples

In architecture, fractal principles are used in the design of objects using computer modeling.
These principles can be used to create unique and very interesting architectural forms (see,
for example, [16]). In this case, practical methods for calculating the fractal dimension of
the structures under consideration play an important role.

One of the most popular methods is the method of counting cells that have a non-empty
intersection with the image being studied (box-counting dimension method). Apparently,
W. Lorenz [17] and C. Bovill [18] were the first to study and use this method most fully.

Let us describe in general terms the algorithm for applying this method.
In the first step, a cubic (square) grid with the cell edge length (scale) equal to ∆ is

superimposed on the image under study. Initially, ∆ is taken to be equal to L, where L is
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the length of the rectangle containing all the images. Let N(∆) be the number of all cubes
that have a non-empty intersection with the image under study.

Next, the following ration is considered

− logN(∆)/ log∆,

and its behavior is investigated under stepwise changes in the scale ∆.

The scale is reduced by half at each step. The process can continue indefinitely, but in
practical applications, it is stopped depending on the requirements of the task. The slope of
the graph of logN(∆) from − log∆ gives an approximate value of the fractal dimensions of
the image.

Below, we will present a fractal analysis of the temples of Hripsime and Zvartnots, as
well as the Ani Cathedral, using the FrakOut! program. In parallel, a statistical analysis of
the compatibility of the plan and facade of these buildings is also carried out.

The results obtained show that the temples under consideration have high architectural
attractiveness, and their plan and facade are in excellent agreement with each other.

The temple was built by Catholicos Komitas in 618 to the east of Echmiadzin on the burial
site of Saint Hripsime. It is a central-domed structure with an internal cross-shaped base.
It is a recognized masterpiece of Armenian architecture.

Appendix 1 contains fragments of the process of calculating the fractal dimension of the
facade and plan of the Hripsime temple. The results of the calculations are summarized in
Table 1.

Calculation of fractal dimension between: fractal dimension
large grid size small grid size facade plan

200 100 1.46 1.74
100 50 1.48 1.58
50 25 1.49 1.49
25 12.5 1.49 1.51

general fractal dimension 1.48 1.58

From the obtained data, it follows that the temple of Hripsime has an average fractal
dimension of 1.48. The calculations also show that the standard deviation of these data
from the average is 0.014. Regarding the architectural plan, the following estimates were
obtained: the average fractal dimension is 1.58 with a standard deviation of 0.113. The
correlation between the fractal dimensions of the facade and the plan is −0.997.

Fig. 1 shows a graph of the dependence of logN(∆) on − log∆ for the facade of the
temple, which is a linear regression constructed using the obtained values of the fractal
dimension.

4.1 Hripsime

Table 1. Fractal dimension of the Hripsime Cathedral facade and plan
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Fig. 1. Hripsime: graph of the dependence of logN(∆) on log(1/∆).

The Zvartnots Cathedral was founded by Catholicos Nerses III in the middle of the 7th
century, not far from Vagharshapat (Echmiadzin) in the place where, according to legend,
Gregory the Illuminator and the king of Armenia Trdat met. This majestic temple is a
tetraconch (a central-domed structure with a plan in the form of a cross with rounded ends).

Appendix 2 contains fragments of the process of calculating the fractal dimension of the
facade and plan of the Zvartnots temple. The results of the calculations are summarized in
Table 2.

Calculation of fractal dimension between: fractal dimension
large grid size small grid size facade plan

200 100 1.64 1.67
100 50 1.54 1.57
50 25 1.48 1.49
25 12.5 1.47 1.43

general fractal dimension 1.533 1.540

From the obtained data, it follows that the Zvartnots temple has an average fractal
dimension of 1.533. The calculations also show that the standard deviation of these data
from the average is 0.008. Regarding the architectural plan, the following estimates were

4.2 Zvartnots

Table 2. Fractal dimension of the Zvartnots Cathedral facade and plan.
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obtained: the average fractal dimension is 1.54 with a standard deviation of 0.104. The
correlation between the fractal dimensions of the facade and the plan is 0.974.

Fig. 2 shows a graph of the dependence of logN(∆) on − log∆ for the facade of the
temple, which is a linear regression constructed using the obtained values of the fractal
dimension.

Fig. 2. Zvartnots: graph of the dependence of logN(∆) on log(1/∆).

The Ani Cathedral is the pinnacle of Armenian architecture of the 9th-11th centuries. It is
a prototype of Gothic architecture. Its architectural forms are similar to European Gothic.

Regarding Gothic, we note that there is a very reasonable assumption that the first
object where Gothic principles were applied was not the Cathedral of Saint-Denis (a suburb
of Paris), but the Cathedral of the Holy Virgin in Ani. The interior of this temple clearly
contains such architectural compositions as elongated pointed arches, bunches of columns
with ribbed vaults. These compositions were developed in Gothic architecture, which was
widespread in Western Europe.

In his major work [19], Professor of the University of Vienna J. Strzygowski writes:
“Consequently, it remains to be recognized that the Armenians built in the Gothic style
approximately 150 years earlier than was the case in Europe”.

Appendix 3 contains fragments of the process of calculating the fractal dimension of the
facade and plan of the Ani Cathedral. The results of the calculations are summarized in
Table 3.

4.3 Cathedral of the Holy Virgin in Ani
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Calculation of fractal dimension between: fractal dimension
large grid size small grid size facade plan

200 100 1.56 1.48
100 50 1.53 1.50
50 25 1.56 1.43
25 12.5 1.5 1.13

general fractal dimension 1.537 1.385

From the obtained data, it follows that the Ani Cathedral has an average fractal dimen-
sion of 1.537. The calculations also show that the standard deviation of these data from the
average is 0.029. Regarding the architectural plan, the following estimates were obtained:
the average fractal dimension is 1.385 with a standard deviation of 0.172. The correlation
between the fractal dimensions of the facade and the plan is 0.797.

Fig. 3 shows a graph of the dependence of logN(∆) on − log∆ for the facade of the
temple, which is a linear regression constructed using the obtained values of the fractal
dimension.

Fig. 3. Cathedral in Ani: graph of the dependence of logN(∆) on log(1/∆).

5. Conclusion

Fractal analysis of the examined Armenian churches showed a high level of consistency
between subjective and objective assessments of their aesthetic appeal.

Table 3. Fractal dimension of the Ani Cathedral facade and plan.
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Appendix

Appendix 1. Calculation of the fractal dimension of the facade and plan of the Hripsime temple.
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Appendix 2. Calculation of the fractal dimension of the facade and plan of the Zvartnots temple.
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Appendix 3. Calculation of the fractal dimension of the facade and plan of the Ani Cathedral.



52 Fractal Geometry and Quantitative Evaluation of the Aesthetic Appeal of Ancient Armenian Architecture

References

[1] B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, San Francisco, 1982.

[2] R. M. Crownover, Introduction to Fractals and Chaos, Jones and Bartlett Publishers,
1995.

[3] J. Feder, Fractals, Publisher New York: Plenum Press, 1988.

[4] P. K. Acharya, An encyclopaedia of Hindu architecture, Oxford University Press, 2010.

[5] H. D. A. Ismail, “Fractal analysis of masterpieces of Islamic architecture — Ahmad Shah
Mosque and Taj Mahal: justification of the method and experience of application”, (in
Russian), Architecture and Modern Information Technologies, vol. 4, no. 21, 11 pp.,
2012.

[6] H. D. A. Ismail and M. Yu. Shishin, “Application of multi-stage fractal method in
the analysis of the masterpiece of Islamic architecture — Ahmad Shah Mosque”, (in
Ruassin), Art of Eurasia, vol. 3, no. 10, pp. 37–47, 2018.

[7] I. A. Mayatskaya, G. I. Fazylzyanova, B. M. Yazyev and S. B. Yazyeva, “Fractality of
gothic architecture”, (in Russian), Engineering Bulletin of the Don, vol. 4, 15 pp., 2025.

[8] M. M. Djrbashian and A. B. Nersessian, “Fractional derivatives and the Cauchy problem
for differential equations of fractional order”, (in Russian), Izv. Akad. Nauk Armjan.
SSR. Ser. Mat., vol. 3, pp. 3–29, 1968.

[9] J.C. Sprott, Strange attractors: Creating patterns in chaos, New York, M&T Books,
1993.

[10] N. A. Salingaros, “Fractal art and architecture reduce physiological stress”, Computers
and Graphics, vo. 27, no. 5, pp. 813–820, 2003.

[11] S. Pyankova, “Fractal analysis in psychology: perception of self-similar objects”, (in
Russian),Psychological Studies, vol. 9, no. 46, 14 pp., 2016.

[12] S. Pyankova, “Subjective estimates of visual complexity and aesthetical appeal of frac-
tal images: individual differences and genetic influences”, (in Russian), Psychological
Studies, vol. 12, no. 63, 16 pp., 2019.

[13] R. P. Taylor, “Reduction of Physiological Stress Using Fractal Art and Architecture”,
Leonardo, vol. 39, no. 3, 2006.

[14] C. M. Hagerhall, T. Purcell and R. Taylor, “Fractal dimension of landscape silhouette
outlines as a predictor of landscape preference”, Journal of Environmental Psychology,
vol. 24, no. 2, pp. 247–255, 2024.

[15] F. I. Mavrikidi, “Fractal mathematics and the nature of change” (in Russian), Delphis,
vol. 54, no. 2, 2008.

[16] N. A. Salingaros, “Architecture, Patterns, and Mathematics”, Nexus Network Journal,
vol. 1, no. 1, pp. 75–86, 1999.

[17] W. E. Lorenz, Fractals and Fractal Architecture, Department of Computer Sided
Planning and Architecture: Site Vienna University of Technology Vienn, 2003,
www.fractalatinitest.com

[18] C. Bovill, “Fractal geometry in architecture and design”, Birkhäuser, pp. 73–92, 1996.
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1. Introduction

We consider a sequence of independent, identically distributed random variables with the
distribution function F (x). Suppose that for x → +∞, an asymptotic relation is executed:

1− F (x) ∼ x−αL(x)

Γ(1− α)
, (1)

where 0 < α < 1, Γ(α) =
∫∞
0

xα−1e−xdx, L(x) - slowly varying function at infinity (SVFI),
i.e., a positive function defined for (0,∞) and for each x > 0 fulfills the condition

lim
t→+∞

L(tx)

L(t)
= 1.

Subsequently, according to Theorem 2 (see [1], XIII.6, p. 448), if F is the probability
distribution, concentrated on (0,∞) and such that upon n → ∞

F n∗(anx) → G(x), (2)

54
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(at points of continuity), where F n∗(·) - n-fold convolution of distribution F with itself, while
G is the proper distribution, not concentrated at one point and if the type of distribution F
is (1), an variates in standard measure may be selected in a way that

nL(an)

aαn
→ 1. (3)

In this case, the asymptotic relation (2) is executed along with the distribution of probabili-
ties G = Gγ, where Gα is a stable distribution with 0 < α < 1, parameter focused on (0,∞)
having Laplace-Stieltjes transform e−λα

.

2. The Behavior of the Normalizing Constants in V. Feller’s Theorem at
Infinity

The positive function R is called (accurately) regularly varying at infinity if it is measurable
on the [A,∞), A > 0 semiaxis and there exists such a number as α ∈ (−∞,+∞), which for
a certain x > 0

lim
t→+∞

((R(xt)/(R(t)) = xα.

Meanwhile, α is called the order (indicator) of the function R.
Suppose that an = n1/αφ(n) and find out what features shall possess function φ(n) in

order to execute asymptotic (3).
By plugging in (3) an equation for an, we will deduce an equivalent (3) relation:

L
(
n1/alphaφ(n)

)
∼ φα(n),

or in a more general form:
L
(
t1/alphaφ(t)

)
∼ φα(t). (4)

Consider the following relation:

Rt(x) =
L((xt)1/αφ(tx))

L(t1/alphaφ(t))
. (5)

By virtue of asymptotic relation (4) upon t → +∞ out of (5), it follows that

Rt(x) ∼
(
φ(tx)

φ(t)

)α

. (6)

In ([2], p. 10), the following is proved:

Theorem 1. (On the introduction of SVFI). If funcion L, defined on semiaxis [A,+∞),
A > 0 – SVFI, such number B ≥ A will be found so that for all x ≥ B occurs the following
representation:

L(x) = exp

{
η(x) +

∫ x

B

ε(u)

u
du

}
, (7)

where η- limited measurable function on [B,+∞) is such that
a) η(x) → c (|c| < ∞) and
b) ε(x) - continuous function on [B,+∞) is such that ε(x) → 0 in case of x → +∞.
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Since L is SVFI, therefore using the relation (5), it is not complicated to deduce the following
equation for Rt(x):

Rt(x) = exp{η((tx)1/αφ(tx))− η((t)1/αφ(t))} · exp

{∫ (tx)1/αφ(tx)

t1/αφ(t)

ε(y)

y
dy

}
. (8)

By introducing the notation at(x) = φ(tx)
φ(t)

, the expression (7) will be transformed into the
following type:

Rt(x) = exp{η((tx)1/αφ(tx))− η((t)1/αφ(t))} · exp

{∫ x1/αat(x)

1

ε
(
ε
(
t1/αφ(t)z

))
z

dz

}
. (9)

In the case of t → +∞, the first factor in the right-hand part of the relation (8) by virtue
of condition b) of Theorem 1, tends to unity. Therefore, upon the availability of sufficiently
high t

Rt(x) ∼ exp

{∫ x1/αat(x)

1

ε
(
s
(
t1/αφ(t)y

))
y

dy

}
. (10)

Theorem 2. In case of any x > 0, the following equation is true:

lim
t→+∞

x1/αat(x) = 1.

Proof. It shall firstly be proved that limt→+∞at(x) ↛ +∞ for all x ∈ (0,+∞). Suppose
that the contrary takes place: then for each x > 0, there exists a sufficiently high t0 = t0(x),
that in the case of all t > t0, the following condition is executed:

x1/αat(x) > 1. (11)

Further, condition b) means that for any δ > 0, there exists y0 = y0(δ), such that for all
y > y0 occurs the the following inequality:

ε(y) < δ. (12)

Besides, since t1/αφ(t) → +∞ in case of t → +∞, we will select t1 ≥ t0 such that upon
t > t1 inequality t1/αφ(t) > y0 is executed by virtue of selecting t0 and condition z ≥ 1
apparent from (12), uniformly in z follows the inequality ε(zt1/αφ(t)) < δ. Therefore, after
uncomplicated transformation, the following inequality is deduced:

exp

{∫ x1/αat(x)

1

s
(
t1/αφ(t)y

)
y

dy

}
≤ xδ/αaδt (x). (13)

On the other hand, by virtue of asymptotic relation (4) in the case of t → +∞, the following
is concluded:

Rt(x) =
L
(
(xt)1/αφ(tx)

)
L (t1/αφ(t))

∼
(
φ(tx)

φ(t)

)α

= aαt (x). (14)

That’s the inequality (11) from which we deduce the following:

xδ/αaδt (x) ≥ aαt (x).
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By selecting δ < α from the previous inequality, we have the following:

xδ/α ≥ a
α−δ(x)
t . (15)

Upon fixing x > 0, the left-hand side of (13) is limited, while the right-hand side by the
virtue of limitation α − δ > 0 for t → +∞ tends to infinity, resulting in a contradiction.
Thus, it can be concluded from (10) that for any x > 0, the following inequality holds:

lim
t→+∞

x1/αat(x) ≤ 1. (16)

Let’s demonstrate that at(x) ↛ 0 in the case of t → +∞. We’ll also conduct the proof by
an indirect proof method. Assume that for each x > 0 there exists such t′ = t′(x), that for
all t > t′, the following condition is satisfied:

x1/αat(x) < 1. (17)

Simultaneously t′′ > max(t′, t1) may be taken as high that

x1/αat(x) · t1/αφ(t) = (xt)1/αφ(xt) > y0,

where y0 is defined in (11).
Taking into consideration the above, it is not difficult to prove that

exp

{∫ x1/αat(x)

1

ε
(
t1/αφ(t)y

)
y

dy

}
= exp

{
−
∫ 1

x1/αat(x)

ε
(
t1/αφ(t)y

)
y

dy

}
≥ exp

{
−δ ln z|1x1/αat(x)

}
(18)

= aδt (x) · xδ/α.

On the other hand, for all x > 0 upon sufficiently high t from (14), we have the following:

Rt(x) ∼ aαt (x) ≥ aδt (x) · xδ/α.

By selecting δ < α, in (12) we will have the following:

at(x) ≥ x
δ

α(α−δ) > 0,

that in the case of t → +∞ contradicts our assumption, i.e., the condition (17) is inexe-
cutable. Thus, Theorem 2 is proved.

Thereof, it follows that for all x > 0 limt→+∞ Rt(x) = 1, while from relation (6) it is
concluded that function φ(t) is SVFI.

Thus, the following is proven:

Theorem 3. If conditions (1) – (3) are executed, the norming quantity an is a regularly
varying function at infinity with the parameter 1/α.

3. Conclusion

If F is the distribution of probabilities, concentrated on (0,∞), for which in case of x →
+∞ asymptotic relation (1) is executed and Gα is a stable distribution with the parameter
0 < α < 1 concentrated on (0,∞), then

F n∗ (n1/αφ(n) · x
)
→ Gα(x),

where φ(·) is SVFI connected with SVFI L(·) by the following asymptotic relation

L
(
n1/αφ(n)

)
∼ φα(n).
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Abstract

Diophantine equations are multivariate equations, usually polynomial, in which
only integer solutions are admitted. A brute force method for finding solutions would
be to systematically substitute possible integer values for the unknown variables and
check for equality.

Grover’s algorithm is a quantum search algorithm which can find marked indices in
a list very efficiently. By treating the indices as the integer variables in the Diophantine
equation, Grover’s algorithm can be used to find solutions in a brute force way more
efficiently than classical methods. We present a hand-coded example for the simplest
possible Diophantine equation, and results for a more complicated, but still simulable,
equation encoded with a high-level quantum language.
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1. Introduction

A Diophantine equation is an equation, typically polynomial, with integer coefficients, in
more than one integer variable. A famous example occurs as Fermat’s Last Theorem, which
states that

xn + yn = zn (1)

has no solutions for n ≥ 3 where n, x, y, and z are all natural numbers. The simplest
Diophantine equation is linear in two variables and is of the form

ax+ by = n, (2)

∗Data Availability: Codes for all parts of this work are available at
https://github.com/LaraTatli18/grovers-algorithm.
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where a, b, and n are given constants. While this equation has well-known solutions, in
many other cases, solutions to Diophantine equations are not known (see e.g. the regularly-
updated paper by Grechuk keeping track of some open and solved problems [1]). Seeking
solutions to Diophantine solutions through numerical search is an established method, where
searches can prove the existence of solutions where it is posited that none exist [2].

Here, we bring quantum computing to bear upon the search for Diophantine equation
solutions, using Grover’s algorithm [3] to look for solutions for the simple linear equation of
the form (2). We choose a = b = 1 and n = 5 arbitrarily for definiteness, and also explore a
simple quadratic equation to give an indication of scaling. Both examples are deliberately
simple so that they can be encoded in a workable number of qubits on an available simulator.
While we are not aware of works explicitly solving Diophantine equations with a quantum
search algorithm, we note recent work using Grover’s algorithm to perform a series of basic
arithmetic procedures through search [4]. In our work we use standard classically-inspired
quantum circuits for arithmetic (not using search) and use Grover for the search for equality.

2. Grover’s Algorithm as Equation Solution Searcher

We give here a brief discussion of the principles of a quantum search algorithm, following the
treatment in Nielsen and Chuang’s textbook [5]. The search algorithm generally searches
through a search space of N elements. It is supposed that one can work at the level of the
index of the elements such that if presented with the index, it is easy to check if it is the
element sought. This is the case in our example where checking if given numbers x and y
are solutions of the given equation is straightforward by direct substitution and evaluation.

The algorithm uses an oracle, O, which acts as

O|x⟩|q⟩ → |x⟩|q ⊕ f(x)⟩. (3)

Here, |x⟩ is a register of index qubits, and |q⟩ is the oracle qubit. ⊕ is addition modulo 2
and f(x) is a function which returns 0 if index x is not a solution to the search problem,
and 1 if index x is a solution.

If the oracle qubit is prepared in the state |−⟩ = (|0⟩ − |1⟩)/
√
2 then the action of the

oracle is

O|x⟩
(
|0⟩ − |1⟩√

2

)
→ (−1)f(x)|x⟩

(
|0⟩ − |1⟩√

2

)
, (4)

thus the action of the oracle marks out, with a phase change, components of the register
state |x⟩ which are solutions to the problem - i.e. have f(x) = 1. The full Grover algorithm
then amplifies the states which have been marked, and suppresses the unmarked states,
using a “diffuser” circuit. The oracle-diffuser combination together constitute a single Grover

iteration. A total of O(
√
N/M) iterations are needed in general to have the solutions selected

in the register with high probability, where M is the number of solutions in the N -element
space. Note that the standard diffuser requires that valid solutions do not account for the
majority of the solution space, but this is the usual condition for an interesting Diophantine
equation.

For the case of our linear equation (2), the indexing register works by having 2m qubits
in which each half encodes one of the numbers x and y. The encoding is made directly
in standard binary and we do not consider negative numbers. Clearly the size of m will
determine the available integers in the search space, and one must apply ever more qubits
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to increase the size of the search space, though one benefits from an exponential increase in
search space as the number of qubits increases linearly.

For this exploratory study, to find solutions to the equation x + y = 5 we use a 2m = 6
qubit register |x⟩ to encode two 3-bit numbers to add together. The oracle performs the
addition and checks the result against the desired solution. The details of the quantum adder
we use is given in the next section.

3. Quantum Adder Circuit

A quantum adder capable of calculating the sum of two 3-qubit binary numbers was produced
using Qiskit. The adder was designed in such a way that the registers storing the input
numbers were not overwritten during the calculation, as is the case with e.g. ripple-carry
adders [6]. Retaining the input numbers is useful for use in further calculation, though not
vital in our case.

In this setup, shown in Fig. 1, the first 3 qubits, x0, x1 and x2, denote the binary digits
representing a natural number x in the format x0x1x2, where x2 is the least significant bit.
In the same manner, qubits y0, y1 and y2 denote the natural number y in the format y0y1y2.
Qubits a0 and a1 represent ancillary qubits used to hold carry bits in the addition. Qubits
s0, s1, s2 and s3 denote the solution to x + y in the form s0s1s2s3, where s3 is the least
significant bit. The figure shows all qubits that are needed for the full Grover algorithm.
Qubit q12 is the oracle qubit |q⟩ as in equation (3).

Fig. 1. A diagram of the quantum adder with barriers included to visually indicate each section.
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The dividers labelled A, B, and C in the circuit help label different functional parts.

In the section terminated by divider A, an addition operation is performed on the qubits
representing the least significant bits x2 and y2 using two CNOT gates and one Tofolli gate,
with the result stored in the qubit s3 and the first carry bit stored in a0.

In the section between dividers A and B, the qubits representing x1, y1, and the carry
bit a0 are added using three CNOT gates; the target is set to the sum digit s2. Three Tofolli
gates are used to compute the second carry bit, stored in a1.

In the section between B and C, the sum digit s1 is calculated using three CNOT gates
acting on the qubits representing x0, y0, and the second carry bit in a1. The final sum digit,
s0, is calculated using three Toffoli gates and takes into consideration the second carry bit.

In total, this adder employs 8 CNOT gates and 7 Toffoli gates collectively acting over
12 qubits. In terms of scaling to larger registers, adding two m-bit numbers requires 4m
qubits (2m representing the numbers to be added, m− 1 ancillary carry bits, and m+ 1 to
represent the sum). The number of gates is 3m− 1 CNOT gates and 3m− 2 Tofolli gates.

4. Application of Grover’s Algorithm

In order to apply Grover’s algorithm to solve a linear Diophantine equation ax+ by = n in
the case a = b = 1 and n = 5, it is first necessary to apply a Hadamard gate to each of the
qubits |x0 . . . x2, y0 . . . y2⟩ encoding x and y. This produces the initial superposition state
with all possible solution strings present with equal amplitude.

We then construct a quantum oracle capable of “marking” the solutions once queried.
This consists of the quantum adder and its inverse circuit with a query circuit in between
which applies a phase shift of -1 to the solution qubits of the adder, if and only if, the
solution is in the state |s0s1s2s3⟩ = |0101⟩. All other states are left unchanged. This is
achieved using two X-gates and a multi-controlled Toffoli gate targeting q12, configured to
be in the |−⟩ state prior to implementing Grover’s algorithm. X-gates are re-applied to
reverse the computation. The query circuit design used for this example is provided in the
left-hand part of Fig. 2.

Each iteration of the oracle is followed by the circuit used for the diffusion operator,
which by acting across the six qubits |x0 . . . x2, y0 . . . y2⟩ amplifies states that sum to give
the desired solution only. In this diffuser circuit, shown for our case in the right-hand part
of Fig. 2, the combination of Hadamard and X-gates, in conjunction with a multi-controlled
Toffoli gate, enable a phase change of -1 to be applied to the initial superposition state. This
completes one full iteration of the Grover algorithm. After the desired number of algorithms,
one would then perform a measurement on a real quantum computer, identically prepared
through many repeated experiments, to build up a histogram of most probable outcomes
corresponding to the sought solution(s). The multiple measurements are known as “shots”
in the language of quantum computation. In our present example, we simulate our circuit
using a full quantum statevector, so present results in the next section by simply reading
off the amplitudes of each register state. We show a simulation of a shot-based calcualtion
later, for the case of a quadratic equation.
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Fig. 2. Left: Diagram of the query circuit and its inverse used for the oracle operation, O, for the

case |s0s1s2s3⟩ = |0101⟩. This circuit is run after the quantum adder circuit and is followed by the

inverse quantum adder, forming a complete oracle. Right: The diffuser circuit used to amplify the

solution(s).

5. Implementation and Result

The full quantum circuit, including the Hadamards to initialize the superposition of the x
and y register qubits and the |−⟩ initialization of the oracle qubit, is shown for one iteration
in Fig 3. By running this full quantum circuit on BlueQubit’s statevector simulator, it is
shown that two iterations of Grover’s algorithm are sufficient to generate the full set of
solutions to our simple Diophantine equation.

The histogram displayed after one iteration is displayed in Fig. 4; the histogram for two
iterations is displayed in Fig. 5. Note that the solution should be read from left to right,
with the first three digits representing x0x1x2 and the following digits y0y1y2.
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Fig. 3. The complete circuit employing one Grover iteration. The † symbol indicates Hermitian

conjugate.

The solutions are seen to be correct solutions of the Diophantine equation x+y = 5, and
we tabulate them for clarity in Table 1.

quantum state x (base 2) y (base 2) x (base 10) y (base 10) x+ y (base 10)

101000 101 000 5 0 5
001100 001 100 1 4 5
011010 011 010 3 2 5
100001 100 001 4 1 5
000101 000 101 0 5 5
010011 010 011 2 3 5

We find that six iterations of Grover’s algorithm are required to return to the probability
distribution shown in Fig. 4.

Table 1. Solution states picked out by Grover’s algorithm in search for solutions to Diophan-
tine equation x+ y = 5.
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Fig. 4. Histogram for n=1 iterations.

Fig. 5. Histogram for n=2 iterations - probabilities of incorrect solutions effectively become zero.
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6. Example with squaring

As an example of a more complicated equation, we look for solutions of the equation

x2 + y2 = z. (5)

The complication of raising variables to a power brings in an increased overhead in ancillary
qubits and in depth of quantum circuit necessary to perform the calculations, meaning a
more automated method for circuit generation is necessary, as opposed to the hand-made
adder used in our first example.

Fig. 6. Grover search for x2 + y2 = z.

index x y z

1000010 2 0 4
1001000 0 2 4
1010110 2 1 5
1011001 1 2 5
0010001 1 0 1
0010100 0 1 1
0000000 0 0 0
0100101 1 1 2

We made use of the Classiq framework [7], which is able to automate the conversion of
quantum algebra into circuit form. The equation (5), when variables x, y, and z are encoded
with 2, 2, and 3 qubits respectively, is converted into a 18 qubit circuit with a depth of 502

Table 2. Results of simulation of quadratic equation x2 + y2 = z using Classiq platform
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basis gates. In order to search for Pythagorean triples, the circuit for x2 + y2 = z2, with the
minimum bit-representation to find the {3, 4, 5} triple was designed on the Classiq system,
and has a qubit count of 33 and a depth of 981. This latter circuit cannot be simulated on
the free Classiq platform and we present results of the simpler equation (5), shown in Fig. 6,
using a 10,000 shot simulation, as opposed to the exact statevector calculation for our first
example.

The labelled peaks, reading from left to right are shown in Table 2. Note that the
encoding used by Classiq is such that the seven bits in the indices encode the variables as
z0z1z2y0y1x0x1, witht he least significant bit at the right in each variable encoding. Note that
the noisy background for the non-amplified non-solutions in Fig. 6 is due to “shot noise”
that comes from the statistical analysis of the quantum measurement.

7. Conclusions

Grover’s algorithm can be implemented to search for solutions to simple linear Diophantine
equations. We have not attempted implementation on a real quantum computer, and the
ability of our circuit to operate on noisy intermediate-scale quantum devices would need to
be evaluated. Nevertheless, further work could investigate more complicated Diophantine
equations, if access to sufficient real or similated qubits is available. In that case, more
interesting unsolved cases, like those listed in Grechuk’s paper [1] could be tackled.

Furthermore, we have not attempted to refine or optimize the quantum algorithm, rather
concentrating on a straightforward implementation. Techniques to improve the Grover con-
vergence [8] could be applied, while inclusion of a quantum counting approach [9] would
allow one to gain knowledge of how many Grover iterations should be applied in advance
of performing each calculation. For a more general Diophantine equation solver, such en-
hancements would be desirable. We also comment that we have preformed a naive brute
force search, while standard methods for solving Diophantine equations can be invoked to
to reduce the search space.
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Àííîòàöèÿ

Äèîôàíòîâû óðàâíåíèÿ - ýòî ìíîãîìåðíûå óðàâíåíèÿ, îáû÷íî ïîëèíî-
ìèàëüíûå, â êîòîðûõ äîïóñêàþòñÿ òîëüêî öåëî÷èñëåííûå ðåøåíèÿ. Ìåòîä
ãðóáîé ñèëû äëÿ ïîèñêà ðåøåíèé çàêëþ÷àåòñÿ â ñèñòåìàòè÷åñêîé ïîäñòàíîâêå
âîçìîæíûõ öåëî÷èñëåííûõ çíà÷åíèé âìåñòî íåèçâåñòíûõ ïåðåìåííûõ è
ïðîâåðêå ðàâåíñòâà.

Àëãîðèòì Ãðîâåðà - ýòî êâàíòîâûé àëãîðèòì ïîèñêà, êîòîðûé ìîæåò î÷åíü
ýôôåêòèâíî íàõîäèòü îòìå÷åííûå èíäåêñû â ñïèñêå. Îáðàáàòûâàÿ èíäåêñû êàê
öåëî÷èñëåííûå ïåðåìåííûå â Äèîôàíòîâîì óðàâíåíèè, àëãîðèòì Ãðîâåðà ìîæåò
áûòü èñïîëüçîâàí äëÿ ïîèñêà ðåøåíèé ãðóáîé ñèëîé ãîðàçäî ýôôåêòèâíåå,
÷åì êëàññè÷åñêèå ìåòîäû. Ìû ïðåäñòàâëÿåì ïðèìåð ñ ðó÷íûì êîäèðîâàíèåì
äëÿ ïðîñòåéøåãî âîçìîæíîãî Äèîôàíòîâà óðàâíåíèÿ è ðåçóëüòàòû äëÿ áîëåå
ñëîæíîãî, íî âñå åùå ìîäåëèðóåìîãî óðàâíåíèÿ, çàêîäèðîâàííîãî ñ ïîìîùüþ
êâàíòîâîãî ÿçûêà âûñîêîãî óðîâíÿ.

Êëþ÷åâûå ñëîâà: êâàíòîâûå âû÷èñëåíèÿ, àëãîðèòì Ãðîâåðà, Äèîôàíòîâû
óðàâíåíèÿ.
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Abstract

Drone technology has enabled major advancements in autonomous systems, partic-
ularly in swarm robotics. This paper presents a novel automation technique aimed at
enhancing the efficiency, adaptability, and robustness of self-organizing drone swarms.
The system uses decentralized control algorithms and robust communication proto-
cols to enable real-time adaptive learning and decision-making among drones. Each
drone acts as an autonomous agent, adjusting its behavior based on environmental
inputs and interactions with other drones. A hybrid communication model blending
peer-to-peer and cluster-based protocols ensures effective information sharing and co-
ordination. To build a scalable and resilient architecture, multi-agent systems theory
is integrated with advanced self-organizing strategies. Extensive modeling and real-
world testing evaluated the systems performance in complex scenarios such as disaster
response, environmental monitoring, and surveillance. Results demonstrate significant
improvements in swarm efficiency, resilience to failures, and adaptability to dynamic
environments. The incorporation of adaptive learning algorithms further optimized
task allocation and execution in real time. This work represents a substantial advance-
ment in autonomous aerial robotics, offering a comprehensive framework for deploying
intelligent, self-organizing drone swarms and highlighting the transformative potential
of automata-based approaches in future autonomous systems.
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1. Introduction

Drone technology has improved dramatically in recent years, including benefits in agricul-
ture, logistics, surveillance, and disaster response. Among these advances, swarm robotics
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has emerged as a particularly promising field of study and application. Swarm robotics
draws inspiration from natural systems such as ant colonies and bird flocks to create de-
centralized, self-organizing groups of robots capable of performing complicated tasks more
effectively than individual units [1, 2]. This technique uses the collective intelligence and
collaborative skills of several robots to achieve goals that would be difficult or impossi-
ble for a single robot [3]. The application of an automata mechanism to a self-organizing
swarm of drones represents a significant leap in the field of autonomous aerial robotics. In
the context of drone swarms, an automata mechanism enables individual drones to operate
independently while seamlessly coordinating with other drones in the group. This decentral-
ized strategy enhances the swarm’s ability to adapt to changing conditions, handle system
failures, and optimize work distribution in real-time [4, 5]. This research focuses on the
creation and implementation of decentralized control algorithms, resilient communication
protocols, and adaptive learning techniques. Decentralized control algorithms enable each
drone to make autonomous decisions using local data and interactions with its peers. This
method is similar to that of social insects, in which simple individual norms evolve into
complex and flexible group behavior. Implementing such algorithms allows the drone swarm
to self-organize, distribute duties, and respond to environmental changes without the need
for a central controller [6]. Robust communication protocols are required for swarm cohe-
sion and coordination. These protocols ensure that drones can communicate data despite
communication delays or breakdowns. Integrating peer-to-peer communication and cluster-
ing techniques allows the swarm to strike a compromise between efficiency and endurance.
This hybrid communication architecture enables the dynamic formation of subgroups inside
the swarm, resulting in more efficient task execution and resource allocation [7]. Adaptive
learning techniques broaden the swarm’s potential by allowing drones to learn from their
experiences and improve their performance over time. Machine learning techniques, such as
reinforcement learning and neural networks, can be linked to the automata process, allowing
drones to optimize their activities based on environmental feedback. This continual learning
process enables the swarm to adapt to new problems while improving its overall efficiency
and effectiveness [8]. A self-organizing drone swarm has several potential applications. Drone
swarms can be used in disaster response scenarios to quickly assess damage, find survivors,
and provide crucial supplies. Swarms can collect data across huge areas for environmental
monitoring, providing vital insights into ecosystem health and climate change. In surveil-
lance and security operations, drone swarms may also cover large regions, monitor targets,
and provide real-time situational awareness. The goal of this study is to give a thorough
framework for implementing an automata mechanism in drone swarms while exhibiting the
advantages of decentralized control, robust communication, and adaptive learning. By tack-
ling the problems and opportunities connected with this technology, we hope to pave the
way for future developments in autonomous aerial robotics and open up new avenues for a
variety of applications.

2. Self-Organized Systems and Gossiping Algorithms

Self-organization, also called spontaneous order in the social sciences, is a process where some
form of overall order arises from local interactions between parts of an initially disordered
system [9]. The process can be spontaneous when sufficient energy is available without out-
side control. Self-organization is often triggered by seemingly random fluctuations amplified
by positive feedback. Self-organization is wholly decentralized and distributed over all the
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components of the entire system. As such, the organization is typically robust and able to
survive or to self-repair from substantial perturbations. A narrower, still much closed concept
related to self-organization is the phenomenon of self-ordering of systems. Complex dynamic
systems are often self-organizing, and depending on the specified leading groups of proper-
ties, they are also called self-regulating, self-adjusting, self-learning, or self-algorithmizable
systems. The Abelian sandpile model is the simplest and analytically tractable model of
self-organized criticality [10]. In [11], a detailed overview of the known results about height
probabilities and special correlation functions of the model is presented. In parallel, the
research also focuses on the rotor-router model [12], where a one-to-one correspondence be-
tween the defined recurrent states and the graph spanning trees is observed. The rotor
mechanism, first proposed in the theory of self-organized criticality under the name Eulerian
walk, was rediscovered independently as a tool for the de-randomization of the random walk
[13]. The dynamics of the rotor-router walk can be modeled over a square lattice with arrows
attached to the sites, where arrows are directed toward one of the neighbors. A particle (a
chip) performs a walk, jumping from a site to a neighboring site. Arriving at a given site,
the particle changes the direction of the arrow at that site in a prescribed order and moves
toward the neighbor pointed out by the new position of the arrow. Obviously, given an initial
orientation of arrows on the whole lattice, the rotor-router walk is deterministic. The walk
starting from uniformly distributed random initial configurations is called a uniform rotor
walk. If the lattice is finite, the walk starting from an arbitrary site settles into an Eulerian
circuit where each edge of the lattice is visited exactly once in every direction. When the
walker is on the Eulerian circuit, the configurations of rotors associated with each site are
recurrent. Graphically, the recurrent configuration representation is a unicycle. This is a
specific state where the arrows form a spanning set of directed edges containing a unique
directed cycle to which the particle belongs. Correlation between the Abelian sandpiles, Eu-
ler circuits and the rotor-router model is a subject to a rigorous mathematical survey [14].
The essential idea highlighted in the survey is the consideration of the rotor-routing action
of the sandpile group on spanning trees in parallel with rotor-routing on unicycles. The
rotor-router walk started from an arbitrary rotor configuration on a finite sink-free directed
graph G, enters into an Euler circuit (Euler tour) and remains there forever (Fig. 1) after a
finite number of steps.

In [13], the following property is proved: if at some moment, the rotors form a closed
clockwise contour on the planar graph, then the clockwise rotations of rotors generate a walk
which enters into the contour at some vertex, performs a number of steps inside the contour
so that the contour formed by rotors becomes anti-clockwise, and then leaves the contour at
the same vertex. This property generalizes the previously proved theorem for the case when
the rotor configuration inside the contour forms a cycle-rooted spanning tree, and all rotors
inside the contour perform a full rotation. We use this proven property for an analysis of
the sub-diffusive behavior of the rotor-router walk. The suggested swarm algorithms and
models have been designed based on the obtained results of the authors given below. The
distinguishing characteristic of our approach against the existing solutions is that it meets
all the classical requirements imposed on self-organizing systems, whereas the existing im-
plementations each addresses the swarm construction and management specifically. Based
on the analysis of available solutions and to best meet the requirements for UAV swarms
construction, an optimally distributed software-hardware cloud system is suggested to man-
age self-organizing UAV swarms with the below mentioned capabilities. UAVs are loaded
with basic schemes for information exchange. The development of decentralized and self-
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(a) with cycle

(b) without cycle

Fig. 1. Cycle erasing illustration

organizing swarms of logically linked UAVs involved the design of optimal and fault-tolerant
schemes (gossip/broadcast models). This enabled performing dynamic snapshotting and full
exchange of captured images of the surveyed areas during the swarm quasi-random walk
(rotor-router model). Essential definitions, concepts, and mathematical models of the con-
struction are given below [15]. The gossip problem is formulated as follows: each of the
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participants within the group possesses distinct information. The goal is to distribute all
the messages among all participants via phone calls. The minimum number of required calls
is well-known: τ = 2n− 4, n > 4. This problem can be modeled as a weighted graph, with
vertices representing participants and edges representing the times at which peer communi-
cations occur. Unlike the existing methods, our approach enables communication between
any two vertices (peers) to happen instantaneously, requiring only a single time tick. The
utilization of k-fault-tolerant gossip graphs allows for the extension of the gossip problem
to accommodate up to k arbitrary call failures. It is noteworthy that in the event of a call
failure, no information exchange takes place. Subsequently, the subsequent objective was
to determine the minimum number of calls required to achieve k-fault tolerance among n
participants, denoted as τ(n, k), which remains an unresolved challenge. Presently, there
exist only upper or lower bounds for

τ(n, k) ≤ n

2
log2 n+

nk

2
(1)

for n being a power of 2, and

τ(n, k) ≤ 2n⌊log2 n⌋+ n⌈k − 1

2
⌉, (2)

otherwise [16].

Definition 1. A Knödel graph with n ≥ 2 the vertices (n is even) and 1 ≤ ∆ ≤ ⌊log2n⌋
degrees is denoted by W∆,n, where vertices are pairs of type (i, j), i = 1, 2; 0 ≤ j ≤ n

2
− 1.

For each of j and l, 0 ≤ j ≤ n
2
− 1, l = 1, ..,∆, there exists an edge weighted l between (1, j)

and (2, j + 2l − 1− 1modn
2
) nodes.

3. Implementation of an Automata System Using Cloud Infrastructure and
Physical Drones

This section discusses the automata environment provided by the platform, including dy-
namic scenarios and environmental variables (see Fig. 2).

3.1 Generate requests from QT

The Applications collection is produced utilizing the C++/QT library and Flask APIs. So,
everything manages the toolset utilizing the QT environment. This section explains how
to create requests from the QT environment to power the platform’s functionality. An
active server is required to start the preparation platform, and programs must automatically
establish connections. Users upload location images to the server, which displays an input
window displaying a map based on the image’s coordinates. While users enter the appropriate
coordinates, the system computes the real-world coordinates for each pixel, ensuring accuracy
while configuring the simulation environment. The QT service layer protects against attacks
by utilizing strong encryption while sending data to virtual servers in the cloud architecture
over secure Internet TCP protocol communication channels. The drone map/automata
graph module allows users to construct and manage maps for drone swarm navigation and
task management. The JSON structure of all queries ensures that the platform and the
QT environment communicate effectively and transparently. Users design a flight operation
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network for the drone swarm using the computed absolute coordinates of the pixels in the
landscape image. The classification of vertices into Corner, Side Border, and Inner types
facilitate precise drone operations planning. After that, users enter the drone’s IP port
to commence communication and select specific side vertices for drone installation. When
the return router method completes any network cycles, the system generates coordinates
and navigation data, which are then sent to the drone ground station. With the correct
coordinates, the drones can travel the network without assistance from a person. Users
can indicate target locations for drone strikes on a terrain image using internal geographic
coordinates. Users can adjust the default network topology as needed. All changes are
logged in a detailed log, which immediately alerts the cloud server and ensures that all
users’ graphical interfaces are consistent.

3.2 Cloud Infrastructure

The development of a cloud-based platform for mission preparation for self-organizing drone
swarms using multi-agent systems, such as sandpile models, rotor-router models, and opti-
mal gossip broadcast schemes, represents a significant innovation in the domain of logically
interconnected and decentralized intelligent networks (see Fig 2.).

Fig. 2. Cloud infrastructure

The development of software toolsets for managing self-organizing drone swarms is both
difficult and costly. As a result, combining virtual environments, cloud technologies, and
computational resources into a single platform provides realistic solutions to these issues.
The proposed platform seeks to enable autonomous mission execution across a wide range
of activities and scenarios while lowering the time and cost associated with drone swarm
missions. Our proposed and validated solutions for building high-performance computing
infrastructures serve as the foundation for the design and implementation of this cloud plat-
form, which adheres to modern standards and includes AI-powered collection, categoriza-
tion, and processing of massive data, improved electronic infrastructure energy usage and
cloud computing settings, efficient use of HPC resources for linear algebra computations,
and cloud service disposal. Cloud computing has substantially improved the efficiency of
image-processing for drones by leveraging scalable computer resources and large amounts
of storage. Our proposed and validated solutions for building high-performance comput-
ing infrastructures serve as the foundation for the design and implementation of this cloud
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platform, which adheres to modern standards and includes AI-powered collection, catego-
rization, and processing of massive data, improved electronic infrastructure energy usage and
cloud computing settings, efficient use of HPC resources for linear algebra computations, and
cloud service disposal. Cloud computing has substantially improved the efficiency of UAV
image-processing processes by leveraging scalable computer resources and large amounts of
storage. Our strategy makes use of a serverless cloud platform for high-performance comput-
ing (HPC), which has been precisely engineered to properly handle the drone swarm’s HPC
workloads, guaranteeing that swarm operations are completed on time. A server execution
environment is created within the cloud architecture, with one server dedicated to swarm or
single-drone flying operations. This server’s IP address is documented in a functional log file
that users can access via a graphical user interface. Each server is assigned a specific task,
which involves initiating data processing and ensuring that results are visible and synced.
This architecture facilitates the dispersed and efficient execution of drone flying operations
and data processing.

4. Conclusion

This study effectively demonstrated the use of an automata mechanism to improve a drone
swarm’s self-organizing capabilities. The swarm functions efficiently and adapts to changing
situations without central control by utilizing decentralized control algorithms, strong com-
munication protocols, and adaptive learning processes. The use of cloud services enhances
these capabilities by providing scalable computer resources and real-time data processing.
Cloud-based infrastructure improves swarm communication and coordination, enabling more
efficient information sharing and dynamic work allocation. The experimental results indicate
considerable gains in task performance, resource utilization, and adaptability, demonstrating
the system’s usefulness in a variety of applications such as disaster response, environmental
monitoring, and surveillance. Finally, the synergy between automata mechanisms and cloud
services provides a solid foundation for future advances in autonomous drone swarms, paving
the way for novel solutions in complex and dynamic circumstances.
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ï»ëáõÃÛáõÝÁ ÇÝï»·ñí»É ¿ ÇÝùÝ³Ï³½Ù³Ï»ñåÙ³Ý ³é³ç³¹»Ù é³½Ù³í³ñáõÃÛáõÝÝ»ñÇ Ñ»ï: 
ÀÝ¹·ñÏáõÝ Ùá¹»É³íáñáõÙÁ ¨ Çñ³Ï³Ý å³ÛÙ³ÝÝ»ñáõÙ ÷áñÓ³ñÏáõÙÝ»ñÁ ·Ý³Ñ³ï»É »Ý 
Ñ³Ù³Ï³ñ·Ç ³ßË³ï³ÝùÁ µ³ñ¹ ëó»Ý³ñÝ»ñáõÙ, ÇÝãåÇëÇù »Ý ³Õ»ïÝ»ñÇ ³ñÓ³·³ÝùÁ, 
ßñç³Ï³ ÙÇç³í³ÛñÇ ÙáÝÇÃáñÇÝ·Á ¨ ÑëÏáÕáõÃÛ³Ý ³é³ù»ÉáõÃÛáõÝÝ»ñÁ: ²ñ¹ÛáõÝùÝ»ñÁ 
óáõÛó »Ý ïí»É »ñ³ÙÇ ³ñ¹ÛáõÝ³í»ïáõÃÛ³Ý, Ë³÷³ÝáõÙÝ»ñÇ ÝÏ³ïÙ³Ùµ Ï³ÛáõÝáõÃÛ³Ý ¨ 
¹ÇÝ³ÙÇÏ ÙÇç³í³Ûñ»ñÇÝ Ñ³ñÙ³ñí»Éáõ áõÝ³ÏáõÃÛ³Ý ½·³ÉÇ µ³ñ»É³íáõÙ: Ð³ñÙ³ñíáÕ³Ï³Ý 
áõëáõóÙ³Ý ³É·áñÇÃÙÝ»ñÇ Ý»ñ·ñ³íáõÙÁ Ñ»ï³·³ Ï»ñåáí ûåïÇÙ³É³óñ»É ¿ ³é³ç³- 
¹ñ³ÝùÝ»ñÇ µ³ßËáõÙÁ ¨ Ï³ï³ñáõÙÁ Çñ³Ï³Ý Å³Ù³Ý³ÏáõÙ: ²Ûë ³ßË³ï³ÝùÁ Ï³ñ¨áñ 
³é³çÁÝÃ³ó ¿ ÇÝùÝ³í³ñ û¹³ÛÇÝ éáµáï³ï»ËÝÇÏ³ÛáõÙ` ³é³ç³ñÏ»Éáí ÇÝï»É»Ïïáõ³É, 
ÇÝùÝ³Ï³ñ·³íáñíáÕ ²Âê »ñ³ÙÇ ï»Õ³Ï³ÛÙ³Ý Ñ³Ù³å³ñ÷³Ï ßñç³Ý³Ï ¨ ÁÝ¹·Í»Éáí 
³íïáÙ³ïÝ»ñÇ íñ³ ÑÇÙÝí³Í Ùáï»óáõÙÝ»ñÇ ÷áË³Ï»ñåáÕ Ý»ñáõÅÁ ³å³·³ ÇÝùÝ³í³ñ 
Ñ³Ù³Ï³ñ·»ñáõÙ:

´³Ý³ÉÇ µ³é»ñ`     ²Âê »ñ³Ù, ³íïáÙ³ïÝ»ñ, ÇÝùÝ³Ï³ñ·³íáñíáÕ Ñ³Ù³Ï³ñ·, 
Ù³Ã»Ù³ïÇÏ³Ï³Ý Ùá¹»ÉÝ»ñ:
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Àííîòàöèÿ

Òåõíîëîãèÿ äðîíîâ ïîçâîëèëà äîáèòüñÿ çíà÷èòåëüíûõ óñïåõîâ â àâòîíîìíûõ
ñèñòåìàõ, â ÷àñòíîñòè â ðîåâîé ðîáîòîòåõíèêå. Â ýòîé ñòàòüå ïðåäñòàâëåíà
íîâàÿ òåõíîëîãèÿ àâòîìàòèçàöèè, íàïðàâëåííàÿ íà ïîâûøåíèå ýôôåêòèâíîñòè,
àäàïòèâíîñòè è íàäåæíîñòè ñàìîîðãàíèçóþùèõñÿ ðîåâ äðîíîâ. Ñèñòåìà
èñïîëüçóåò äåöåíòðàëèçîâàííûå àëãîðèòìû óïðàâëåíèÿ è íàäåæíûå ïðîòîêîëû
ñâÿçè äëÿ îáåñïå÷åíèÿ àäàïòèâíîãî îáó÷åíèÿ è ïðèíÿòèÿ ðåøåíèé â ðåàëüíîì
âðåìåíè ñðåäè äðîíîâ. Êàæäûé äðîí äåéñòâóåò êàê àâòîíîìíûé àãåíò,
êîððåêòèðóÿ ñâîå ïîâåäåíèå íà îñíîâå âõîäíûõ äàííûõ îêðóæàþùåé ñðåäû
è âçàèìîäåéñòâèÿ ñ äðóãèìè äðîíàìè. Ãèáðèäíàÿ ìîäåëü ñâÿçè, ñî÷åòàþùàÿ
îäíîðàíãîâûå è êëàñòåðíûå ïðîòîêîëû, îáåñïå÷èâàåò ýôôåêòèâíûé îáìåí
èíôîðìàöèåé è êîîðäèíàöèþ. Äëÿ ñîçäàíèÿ ìàñøòàáèðóåìîé è óñòîé÷èâîé
àðõèòåêòóðû òåîðèÿ ìíîãîàãåíòíûõ ñèñòåì èíòåãðèðîâàíà ñ ïåðåäîâûìè
ñòðàòåãèÿìè ñàìîîðãàíèçàöèè. Îáøèðíîå ìîäåëèðîâàíèå è òåñòèðîâàíèå
â ðåàëüíûõ óñëîâèÿõ îöåíèâàëè ïðîèçâîäèòåëüíîñòü ñèñòåì â ñëîæíûõ
ñöåíàðèÿõ, òàêèõ êàê ðåàãèðîâàíèå íà ñòèõèéíûå áåäñòâèÿ, ìîíèòîðèíã
îêðóæàþùåé ñðåäû è íàáëþäåíèå. Ðåçóëüòàòû äåìîíñòðèðóþò çíà÷èòåëüíûå
óëó÷øåíèÿ ýôôåêòèâíîñòè ðîÿ, óñòîé÷èâîñòè ê ñáîÿì è àäàïòèâíîñòè ê
äèíàìè÷åñêèì ñðåäàì. Âêëþ÷åíèå àäàïòèâíûõ àëãîðèòìîâ îáó÷åíèÿ åùå
áîëüøå îïòèìèçèðîâàëî ðàñïðåäåëåíèå è âûïîëíåíèå çàäà÷ â ðåàëüíîì
âðåìåíè. Ýòà ðàáîòà ïðåäñòàâëÿåò ñîáîé ñóùåñòâåííûé ïðîãðåññ â
àâòîíîìíîé âîçäóøíîé ðîáîòîòåõíèêå, ïðåäëàãàÿ êîìïëåêñíóþ ñòðóêòóðó
äëÿ ðàçâåðòûâàíèÿ èíòåëëåêòóàëüíûõ, ñàìîîðãàíèçóþùèõñÿ ðîåâ äðîíîâ è
ïîä÷åðêèâàÿ ïðåîáðàçóþùèé ïîòåíöèàë ïîäõîäîâ íà îñíîâå àâòîìàòîâ â
áóäóùèõ àâòîíîìíûõ ñèñòåìàõ.

Êëþ÷åâûå ñëîâà: ðîé äðîíîâ, àâòîìàòû, ñàìîîðãàíèçóþùàÿñÿ ñèñòåìà,
ìàòåìàòè÷åñêèå ìîäåëè.
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Abstract 

Root-mean-square deviation (RMSD) is a crucial metric for quantifying molecular 
structure similarity. However, the associated combinatorial challenges complicate the 
calculation process when dealing with highly symmetric molecules. Although several open-
source tools have been developed to perform symmetry-corrected RMSD computations, 
each has limitations in terms of speed, accuracy, or usability. In this paper, we introduce 
FlashRMSD, a novel, rapid approach for symmetry-corrected RMSD calculation. In 
addition, we present an extensive benchmark dataset to evaluate RMSD calculation tools 
and provide a comparative analysis of existing methods alongside our proposed tool. 
Keywords:  Symmetry corrected RMSD, FlashRMSD, Molecular docking, Backtracking. 
Article info: Received 30 March 2024; sent for review 1 April 2025; accepted 2 May 2025. 

 
 

 
  

1. Introduction 
 
Root Mean Square Deviation (RMSD) is a cornerstone metric in computational chemistry, widely 
employed to measure the similarity between molecular conformations. It is pivotal in applications 
such as assessing docking outcomes, guiding lead optimization, and filtering large sets of 
candidate structures in high-throughput screening. However, RMSD calculations become 
problematic when molecules exhibit symmetry—such as repeated functional groups or identical 
substituents—because standard atom-to-atom mappings often ignore these chemical equivalences. 
This oversight can produce inflated RMSD values and hinder accurate comparisons. 
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Several open-source tools attempt to address these symmetry-related challenges, but each 
exhibits notable constraints in terms of computational efficiency. Moreover, the field currently 
lacks a standardized dataset that captures the full breadth of symmetrical molecular structures. 
This absence complicates the fair evaluation of different RMSD methods, as it is challenging to 
determine whether the observed failures originate from the algorithms themselves or from 
insufficient testing. 

Our previous studies [1] demonstrated that while existing RMSD tools can effectively process 
highly symmetrical structures, they often struggle with certain specific molecular configurations 
that are overlooked during benchmarking. These structural cases, left unexamined in typical tool 
evaluations, highlight gaps in current methodologies and the need for more comprehensive 
benchmarking datasets. 

To address these challenges, we make two key contributions in this work: 

1. Comprehensive Dataset – We curate a dataset designed to challenge RMSD tools by 
incorporating molecules with diverse and tricky symmetry patterns that can mislead certain 
tools into unnecessary computations. By spanning a broad range of molecular scaffolds, 
this dataset provides a rigorous benchmark for evaluating both existing and novel methods. 

2. FlashRMSD: A Symmetry-Corrected RMSD Tool – We introduce FlashRMSD, an 
efficient approach for symmetry-aware RMSD calculation. Our method leverages an 
optimized backtracking algorithm with pruning strategies to account for chemical 
equivalences, ensuring both accuracy and computational efficiency. 

The remainder of this paper is structured as follows. First, in Section 2, we describe the 
construction and scope of our new dataset. Section 3 then introduces the FlashRMSD tool, 
detailing its theoretical background and practical implementation. Next, in Section 4, we outline 
the benchmark setup used to evaluate FlashRMSD alongside other RMSD calculation tools. 
Finally, Section 5 presents our comparative results, and Section 6 discusses edge cases of 
molecules that are challenging for some or all RMSD calculation tools. 

1.1. Background and Related Work 

1.1.1 RMSD and Symmetry Challenges 

RMSD quantifies the structural similarity between two molecular conformations by measuring the 
root mean squared distance between corresponding atoms. While seemingly straightforward, 
RMSD calculations can be undermined by molecular symmetry. In symmetrical molecules, 
multiple valid atom mappings exist, and failing to account for all chemically equivalent 
correspondences can lead to erroneous or inflated RMSD values. These inaccuracies can influence 
the results of tasks like molecular docking, virtual screening, and structure-based drug design, 
where having reliable similarity metrics is crucial. 
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1.1.2 Existing RMSD Tools 

Several RMSD tools have been developed, each tackling different aspects of the problem with 
varying degrees of effectiveness: 

● spyRMSD[2]: 
Designed for flexibility and ease of use, spyRMSD integrates with popular libraries such 
as RDKit and Open Babel, leveraging Python for accessibility. However, its reliance on 
libraries for graph isomorphism calculations lacks problem-specific optimizations, making 
it highly inefficient. Additionally, it offers limited support for bond-type variations. 

● DockRMSD[3]: 
Optimized for computational efficiency, DockRMSD is implemented in C, allowing for 
rapid calculations with minimal overhead. However, its functionality is restricted to 
specific MOL2 file formats, and it may fail silently (e.g., via segmentation faults) when 
encountering format inconsistencies or complex symmetries. While it does account for 
bond types, it silently ignores them if no valid mappings are found. 

● obrms:  
As part of the OpenBabel[4] cheminformatics toolkit, obrms supports multiple file formats 
and cross-RMSD calculations. While it is both efficient and versatile, its packaging 
introduces some overhead, making it slightly less efficient than DockRMSD. 

Collectively, these tools highlight a common limitation: while each addresses specific user needs, 
none effectively balances speed, reliability, and robust handling of symmetrical equivalences. 
Furthermore, the absence of a comprehensive, standardized dataset encompassing diverse 
symmetrical structures makes it challenging to objectively evaluate their strengths and 
weaknesses. 

1.1.3 Motivating a New Dataset 

In the absence of a dedicated dataset that systematically tests RMSD performance on symmetrical 
structures, evaluations often rely on ad hoc collections of molecules or focus on only a few specific 
chemotypes. This approach fails to capture the breadth of symmetry types encountered in real-
world applications, ranging from simple ring systems to large, multiply substituted scaffolds.  
By presenting a new dataset that features a wide range of symmetrical patterns, we aim to provide 
a benchmark that can reveal subtle performance gaps in existing RMSD tools. This resource will 
also serve as the testing ground for our proposed FlashRMSD tool, enabling transparent 
comparisons and guiding future improvements in symmetry-corrected RMSD algorithms. 

 
2. Dataset 

Our dataset was constructed using molecules from two primary sources: the Chemical 
Component Dictionary (CCD)1[5] and the Biologically Interesting Molecule Reference 

1 https://www.wwpdb.org/data/ccd 
                                                 

https://www.wwpdb.org/data/ccd
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Dictionary (BIRD)2, both obtained from the RCSB Protein Data Bank (PDB). As of February 
2024, the CCD dataset contained 45,622 molecules, primarily small organic compounds 
commonly found in macromolecular crystallography, while the BIRD dataset contained 819 
molecules, representing biologically relevant non-polymeric entities. These datasets were selected 
for their structural diversity and derivation from real protein–ligand systems. They include a 
number of challenging symmetric or pseudo-symmetric structures, which we analyze in detail 
through specific case studies in Section 6. 

2.1 Data Preprocessing 

Since the datasets were originally in different formats, we generated a new conformation for each 
entry, saved them in the SDF file format for further processing, and subsequently merged both 
datasets.  

Initial conformer generation was primarily performed using the EmbedMolecule function of 
the RDKit toolkit [6], followed by structural optimization with the MMFF94 force field [7]. RDKit 
was chosen due to its efficient 3D embedding algorithm, improved handling of torsional strain, 
and its ability to generate high-quality conformers that are more physically realistic. In cases where 
RDKit’s conformer generation failed, OpenBabel’s conformer generation was used as a fallback 
due to its broader support for certain chemical structures and alternative embedding methods. 
Entries for which both tools failed to generate conformers were excluded from the dataset. 
Additionally, molecules containing fewer than five heavy atoms were removed to ensure structural 
relevance and meaningful molecular modeling. 

After preprocessing, the final dataset comprised 45,706 molecules. An overview of the dataset 
is provided in Table 1.  

Table 1: Overview of Molecule Sources․  

Source Molecules 
Retrieved 

Molecules 
Retained 

Conformer Generation Tool 
RDKit Openbabel 

CCD 45622 44901 44630 271 
BIRD 819 805 755 50 
Total 46441 45706 45385 321 

 
 
2.2 Conformer Generation 
 
To generate realistic 3D conformations of molecules for downstream analysis (see Section 4), we 
employed SMINA[8], a fork of AutoDock Vina, using structure-based docking against a protein 
target. 

The chosen target was HIV-1 protease from PDB entry 1EBY, selected for the following 
reasons: 

2 https://www.wwpdb.org/data/bird 
                                                 

https://www.wwpdb.org/data/bird
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● Symmetrical Dimeric Structure: HIV-1 protease functions as a symmetrical homodimer, 
which mirrors the structural symmetry observed in many small molecules, making it a 
relevant docking environment. 

● Large Binding Pocket: The active site is spacious and capable of accommodating a wide 
variety of ligand sizes, supporting the diversity of our dataset. 

For the docking simulations, default parameters were used with one exception: the 
exhaustiveness setting, which determines the thoroughness of the search, was reduced from the 
default value of 8 to 4 to obtain results within a reasonable computation time.  

For each ligand, up to nine docked conformations were generated and saved in a single SDF 
file. These conformations were subsequently used for downstream analyses, including symmetry 
evaluation and conformational clustering. 

2.3 Final Data Format and Organization 

To ensure compatibility with various RMSD calculation tools, including DockRMSD, the dataset 
underwent the following formatting and organization steps: 

● Conversion to MOL2 Format: All SDF files containing multiple conformations per 
molecule were converted to MOL2 format using the obabel tool from Openbabel toolkit, 
ensuring broad compatibility with RMSD tools. 

● Individual Conformation Files: In addition to multi-conformer files, separate files for 
each conformation were generated in both SDF and MOL2 formats to facilitate structure-
specific analyses. 

The dataset is systematically organized to provide clear accessibility: 

● Parent Directories: Molecules are categorized based on their source repository: 
o CCD/[MOLECULE_ID]/ 
o BIRD/[MOLECULE_ID]/ 

● Per-Molecule Subdirectories: Each molecule is stored in a folder named after its unique 
identifier, which contains the following files: 

o all_poses.sdf – Multi-conformation file in SDF format. 
o all_poses.mol2 – Multi-conformation file in MOL2 format. 
o pose_X.sdf – Individual conformation X in SDF format. 
o pose_X.mol2 – Individual conformation X in MOL2 format. 

This structured approach ensures efficient data retrieval, compatibility with docking validation 
tools, and seamless RMSD analysis across different molecular modeling workflows. 

2.4 Statistical Analysis of Benchmark Molecules 

To better understand the composition and structural diversity of our dataset, we performed a 
statistical analysis focusing on problem-related molecular properties like heavy atom count 
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distribution, distinct atom types count distribution, and also combinatorial properties like 
automorphisms count distribution. The results provide a comprehensive overview of the dataset’s 
characteristics, aiding in molecular modeling and cheminformatics applications.  

Heavy Atom Count Distribution: As noted earlier, atom count significantly impacts the 
computational complexity of molecular comparison tasks. However, hydrogen atoms are typically 
omitted in RMSD calculations, making heavy atom count a more relevant metric. In our dataset, 
heavy atom counts range from 5 to 244, reflecting a wide range of molecular sizes. The majority 
of molecules, however, contain fewer than 50 heavy atoms, indicating a concentration of compact, 
chemically meaningful structures (Fig ․ 1). 

 
Fig. 1. Log-scaled distribution of heavy atom counts across the dataset. 

Distinct Atom Types Count Distribution: While not as directly influential as total or heavy atom 
counts, the number of distinct atom types in a molecule can affect RMSD calculations by 
increasing the number of potential matching groups. In our dataset, this value typically ranges 
from 3 to 6, with a maximum of 8 (Fig. 2), reflecting a moderate yet meaningful degree of 
elemental diversity. This variation further supports the structural richness and chemical diversity 
of the dataset. 

 
Fig. 2. Log-scaled distribution of distinct atom type counts across the dataset. 

Automorphisms Count Distribution: We used the latest version (2.8.9) of the dreadnaut tool 
from nauty&Traces [9] toolset to quantify molecular symmetry. Graph representation files were 
generated for all molecular structures, which were then processed using dreadnaut to compute 
the number of automorphisms for each molecule. The resulting statistics are summarized in Fig. 
3. Notably, a large portion of the dataset falls into the <2, 2–5, and 5–10 bins. Molecules with 
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moderate symmetry (10–100 automorphisms) form a secondary peak, while highly symmetric 
structures (over 1000 automorphisms) are rare. 

 
Fig. 3: Log-scaled distribution of the number of automorphisms across the dataset. 

3. FlashRMSD Tool 

3.1 Overview 

The FlashRMSD tool is designed for efficient and robust symmetry-corrected RMSD calculations, 
supporting multiple molecular file formats including SDF, MOL, and MOL2, as well as files 
containing multiple conformations. It accommodates both standard and advanced use cases 
through a comprehensive set of configurable options. 

The tool provides several key features: 

● Naïve calculation (-n flag): Runs naïve search, by iterating over all permutations of 
possible matching atom groups. Can be used for results validation. 

● Hydrogen inclusion (-h flag): Includes hydrogen atoms in RMSD calculations. 
● Bond order enforcement (-b flag): Ensures strict bond order matching during atom 

mapping, preserving chemical integrity. This deterministic feature distinguishes 
FlashRMSD from other tools by enforcing chemically valid matches. 

● Verbose and assignment output (-v, -a flags): Provides detailed runtime diagnostics and 
atom-to-atom assignment outputs for in-depth analysis. 

● Cross-RMSD calculation (-x flag): Computes pairwise RMSD across all conformations 
within a single file, similar to the functionality of obrms. 

● Multi-query input support: Allows a reference conformation (first structure in a template 
file) to be compared against all conformations in a query file, enabling batch comparison 
workflows. 

3.2 Algorithm 

FlashRMSD utilizes a two-stage approach that combines descriptor-based atom featurization with 
an optimized backtracking algorithm to achieve symmetry-aware atom mapping. 
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Stage 1: Atom Descriptor Generation 

Each atom is encoded with a descriptor array created via breadth-first traversal of the molecular 
graph starting from that atom as a root. For each traversed atom, its periodic table number and the 
distance from the root atom are encoded into a single integer (descriptor) using the formula: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 210 ⋅ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑃𝑃𝐷𝐷𝑃𝑃𝐷𝐷𝐷𝐷𝑃𝑃𝐷𝐷𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷 
The resulting descriptor arrays for each atom are sorted and eventually hashed into a single integer. 
Hashing is used to avoid costly array comparisons; thus, any consistent function can be used. The 
encoding formula ensures that after sorting a descriptor array, descriptors from the same BFS 
(Breadth-First Search) layer occupy adjacent positions. This has the same effect as if we kept an 
array of descriptor arrays per distance from the root atom. In this way, a sorted descriptor array 
effectively encodes all level neighborhood information, and so does its hash. As these values 
encode BFS layers’ information, we’ll refer to them as Layer Data.  

Although this stage has a complexity of 𝑂𝑂(𝐶𝐶 × 𝑃𝑃2) (where 𝐶𝐶 is the number of conformations 
and 𝑃𝑃 the number of atoms), it lays the groundwork for efficient atom mapping. This approach 
becomes particularly advantageous during cross-RMSD calculations. In a standard RMSD 
comparison between two conformers, only two featurizations and one RMSD calculation are 
required. However, in cross-RMSD mode, the process involves 𝐶𝐶 featurizations followed by 
𝐶𝐶(𝐶𝐶 − 1)/2 RMSD computations. As the number of conformers increases, the computational load 
shifts from featurization to RMSD calculation, highlighting the importance of optimizing the latter. 

Here’s an example of how atom descriptors are generated for a single O atom of SO ₄ 

molecule (see Fig. 4). 

 
Fig. 4.  SO₄ molecule, with the sulfur atom shown in yellow and oxygen atoms in red. 

During BFS traversal, we’ll visit O atom at distance 0, S atom at distance 1, and 3 more O atoms 
at distance 2, thus O atoms descriptor will have the following value:  

ℎ𝐷𝐷𝐷𝐷ℎ([0 + 8, 1024 + 16, 2048 + 8, 2048 + 8,2048 + 8]) = 1428496640 

Stage 2: Atom Mapping via Backtracking 

The following algorithm is presented for mapping atoms between a pair of conformations, after 
the atom descriptor generation stage is completed for each: 

● Candidate lists are generated for each atom in the first conformation based on descriptor 
matches. 
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● An optimized backtracking search is performed to determine the best atom-to-atom 
mapping, with the following optimization levels: 

o Level 1: Naive backtracking using all candidates. 
o Level 2: Trivial one-to-one matches are resolved and removed before backtracking 

to reduce complexity. 
o Level 3 (default): After excluding trivial matches, atoms are grouped into 

independent blocks using a Disjoint Set Union (DSU) based on descriptor matches 
or bonding. Each block is processed independently, and results are combined for 
the final mapping. 

 
 

Fig.  5. Flowchart of the FlashRMSD Algorithm. 

This flowchart illustrates the two main stages of the FlashRMSD algorithm (see Fig. 5). The first 
stage includes the atom featurization, where each atom's descriptor is generated through a breadth-
first traversal and hashed to produce a unique fingerprint, and computation mode determination. 
The second stage depicts the pairwise mapping process: candidate list generation based on 
matching descriptors, followed by optimizations including trivial mapping exclusion and block 
decomposition, and finally, the backtracking procedure used to derive the optimal mapping. 

4. Benchmark Setup 
 
While RMSD is defined between two molecular conformations, in practical applications, 
especially within automated pipelines, it is usually computed across multiple conformations. For 
instance, in docking workflows, multiple binding poses are often generated and must be compared 
with each other to identify distinct clusters. This step typically precedes more expensive stages 
such as rescoring or molecular dynamics, making early-stage correctness and robustness crucial. 
Therefore, a more scalable interface for cross-RMSD calculations is often more important. Tools 
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that support efficient, reliable cross-RMSD interfaces better support real-world use cases such as 
clustering, redundancy filtering, and structural diversity analysis.  

Additionally, when RMSD tools are used repeatedly or integrated into long-running 
workflows, even minor issues, such as memory leaks, crashes, or incorrect output, can propagate 
and cause significant downstream errors. Therefore, we argue that benchmarking tools on their 
cross-RMSD functionality is not only representative of real usage scenarios but also a more 
comprehensive test of tool robustness and interface design. 

In our benchmarking, we consider two complementary setups: 

1. Cross-RMSD Native Benchmark – Tools are tested on their ability to compute all-pair 
RMSD values across a set of poses through their native interface. 

2. All-to-All Pairs RMSD Benchmark – Tools are also tested on computing the same 
RMSD matrix using repeated two-pose calls to simulate scenarios where no cross-RMSD 
interface is available. 

Tools will be evaluated along three criteria: 

● Reliability: Success rate across tasks, accounting for errors, crashes, indefinitely long 
runtime, or invalid outputs. 

● Correctness: Agreement with reference calculations using naïve but accurate RMSD 
implementations. 

● Performance: Execution time, measured only on cases where all tools succeed to ensure 
fair comparison. 

This setup allows us to assess both the core computational correctness and the practical utility of 
RMSD tools in scalable scientific applications. 

To ensure a fair and meaningful comparison across tools, we extended the functionality of 
DockRMSD in two key ways. First, we modified the tool to support cross-RMSD computation 
directly from a single multi-conformer input file. This significantly reduces the number of 
redundant pairwise calls and mitigates file I/O overhead, aligning DockRMSD’s interface more 
closely with tools like obrms and FlashRMSD that natively support cross-RMSD calculations. 

Second, we addressed limitations in DockRMSD’s file parsing. The original implementation 
only supported a narrow subset of MOL2 files, rejecting valid inputs that deviated from expected 
formatting. We revised the file reading logic to accommodate a broader range of MOL2 variants 
by relaxing strict constraints and improving parser robustness. These changes eliminate 
unnecessary preprocessing steps and ensure compatibility with more diverse datasets, improving 
DockRMSD’s utility in real-world workflows. 

The resulting extended version, supporting both cross-RMSD input handling and enhanced 
MOL2 compatibility, is referred to as DockRMSDExt in our benchmarks. This ensures that 
performance and reliability comparisons across tools reflect differences in computational design, 
rather than constraints imposed by tool interfaces or input formatting. 
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4.1 Benchmarking Environment and Tools 

To ensure fair and reproducible comparison across RMSD calculation tools, all benchmarks were 
conducted on a consistent hardware and software environment with the following specifications: 

● CPU: AMD EPYC 9654 96-Core Processor 
● RAM: 504 GB DDR4 
● Operating System: Ubuntu 22.04 LTS (64-bit) 
● Storage: NVMe SSD 
● Python Version: 3.12.9 (used for automation, validation, and timing) 

Each benchmarking task was run as a separate process to avoid system-level interference, and 
wall-clock times were measured using Python-based orchestration scripts. All tools were tested 
using their latest stable versions, compiled with default settings where applicable. 

We evaluated the following tools: 

● obrms  
● FlashRMSD (Level 3) 
● FlashRMSDNaive  

o FlashRMSD tool with naïve flag set, iterates over all possible mappings after 
layer data matching (Figure 5) 

● DockRMSD 
● DockRMSDExt 

In this benchmark, we exclude spyRMSD due to its prohibitively slow performance and prior 
evidence of inefficiency [1, 2], focusing instead on faster tools for runtime evaluation. 

5. Results 

5.1 Cross-RMSD Native Benchmark 

This benchmark focuses on evaluating each tool’s capability to compute all-to-all RMSD values 
across multiple conformations of the same molecule using their native cross-RMSD interfaces, 
where available. This use case is central to workflows that require clustering or structural 
deduplication prior to downstream analysis or simulation. 

As mentioned before, DockRMSD doesn’t provide a native interface for such calculations, 
thus, we’ll compare other tools against each other. 

For this benchmark, each tool was provided with a single MOL2 file containing multiple 
conformations of the same molecule. The expected output was a complete pairwise RMSD matrix 
of size 𝑃𝑃 × 𝑃𝑃, where 𝑃𝑃 is the number of conformations in the input. Only the upper triangular part 
(excluding the diagonal) was used for performance analysis, as RMSD matrices are symmetric. 
To assess correctness, outputs were compared against results from FlashRMSDNaive, which 
performs exhaustive symmetry correction without heuristics. Minor floating-point differences 
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were allowed within a predefined tolerance (0.001). Any discrepancies beyond this threshold were 
flagged and analyzed. 

To prevent excessive runtimes from affecting the benchmark, a per-call timeout of 60 seconds 
was set. Any individual RMSD computation that exceeded this limit was recorded as a timeout 
failure. However, for naïve calculations, the timeout was set to 180 seconds. 

Runtime was measured for successful runs only, using wall-clock time recorded externally 
via orchestration scripts. This benchmark isolates and evaluates tools specifically on their native 
ability to handle structured, multi-conformer input efficiently and correctly. 

Out of 45,706 total samples, 45,543 were completed successfully across all tools. For the 
remaining 163 samples, only timeout-related failures were encountered—no runtime crashes or 
output corruption were observed. We also verified that all outputs from the tools were numerically 
identical for the successful cases. 

 
Table 2. Runtime summary of symmetry-corrected RMSD calculation tools on cross-RMSD benchmark 

(45,543 samples) 

Tool Mean (s) Std (s) Min (s) Max (s) 
FlashRMSD 0.0137 0.0099 0.0041 0.4596 
FlashRMSDNaive 0.0736 2.3091 0.0074 169.3351 
DockRMSDExt 0.0510 0.8490 0.0043 55.0944 
obrms 0.0571 0.7833 0.0206 47.0439 

As shown in Table 2, FlashRMSD outperformed all other tools in terms of runtime, completing 
tasks approximately 4 times faster than its nearest competitor on average. 

For the 163 samples where one or more tools failed, we analyzed the output of FlashRMSD on 
the same cases. Notably, FlashRMSD failed for only 7 samples, all of which also failed in other 
tools. For the remaining cases where only other tools failed, FlashRMSD completed successfully, 
and its output matched with the succeeding tools. 

Table 3. FlashRMSD runtime on samples that failed in other tools. 

Failed Tool Number of 
failures 

FlashRMSD runtime report 
Mean (s) Min (s) Max (s) 

FlashRMSDNaive 43 1.8886 0.0064 49.7958 
DockRMSDExt 118 0.4810 0.0056 49.7958 
obrms 36 2.3881 0.0063 49.7958 

As seen in Table 3, FlashRMSD handled most of these challenging samples well, maintaining 
reasonable runtimes. However, a single outlier pushed its maximum runtime to 49.8 seconds, 
which was close to the timeout threshold. This suggests the tool is generally robust, with rare edge 
cases that may require monitoring. 
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5.2 All-to-All Pairs RMSD Benchmark 

This benchmark evaluates the behavior and performance of RMSD calculation tools when used in 
pairwise mode, computing RMSD values between all unique pairs of conformations. Unlike the 
native cross-RMSD benchmark, this approach requires invoking the tool separately for each pose 
pair, simulating the fallback strategy often required by tools that lack native cross-RMSD support. 

For a molecule with  𝑃𝑃 conformers, this results in 𝑃𝑃(𝑃𝑃 − 1)/2 individual RMSD 
computations. All tools were orchestrated via automated scripts to execute these comparisons 
sequentially, and per-call runtimes were collected. For this benchmark, a timeout of 5 seconds per 
call was set; any computation exceeding this limit was considered a timeout failure. 
The objectives of this benchmark are threefold: 

● To enable a direct comparison with the original DockRMSD, which does not support native 
cross-RMSD and must operate in this mode by design. 

● To evaluate robustness and failure rates across specific pairwise comparisons, especially 
in challenging edge cases. 

● To identify and showcase individual pose pairs for which certain tools fail, providing 
insight into tool stability and error patterns. 

 
All available tools, including those with native cross-RMSD support, were evaluated in this 
benchmark to ensure a uniform baseline for comparison. As in the cross-RMSD benchmark, 
FlashRMSDNaive was used as the reference for correctness verification. 

Out of 45,706 total samples, 42,406 were successfully processed by all tools, including the 
original implementation of DockRMSD. However, when excluding DockRMSD, the number of 
successful samples increases to 45,558. This discrepancy is due to the file parsing limitations of 
the original DockRMSD implementation, as discussed earlier. 

On all samples where any two tools produced results, their outputs were in agreement in terms 
of correctness. To evaluate whether our modified version—DockRMSDExt—can reliably replace 
DockRMSD in broader benchmarks, we compared the two implementations on the 42,406 samples 
that both completed successfully. 

Table 4. Runtime comparison of DockRMSD and DockRMSDExt on all-to-all pairs benchmark  
 (42,406 samples) 

 
Tool Mean runtime 

over all calls (s) 
Mean of per-

sample averages 
(s) 

Std over all calls 
(s) 

Std of per-
sample averages 

(s) 
DockRMSD 0.00573 0.00562 0.0439 0.0367 
DockRMSDExt 0.00571 0.00560 0.0442 0.0368 

 
As shown in Table 4, the runtime performance of DockRMSD and DockRMSDExt is nearly 
identical. In fact, the revised version is marginally faster on average. This indicates that the 
improvements to file parsing in DockRMSDExt do not introduce any runtime penalty, validating 
its use in place of the original implementation. 
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Moreover, the original DockRMSD failed on approximately 7% of the total dataset due to strict 
file parsing issues—failures that are fully resolved in DockRMSDExt. Therefore, we will use 
DockRMSDExt in all further benchmarks as a reliable and representative version of DockRMSD. 
We conducted the same benchmark as in the previous section, with one key difference: we 
evaluated both per-call runtimes across all pose pairs and per-sample average runtimes separately 
to capture different aspects of tool performance. 

Table 5. Runtime summary of symmetry-corrected RMSD calculation tools on all-to-all pairs benchmark 
(1,458,326 pairs) 

Tool Mean (s) Std (s) Min (s) Max (s) 
FlashRMSD 0.00435 0.00176 0.00150 0.06144 
FlashRMSDNaive 0.00557 0.06241 0.00164 4.93368 
DockRMSDExt 0.00607 0.04947 0.00170 4.94237 
obrms 0.02072 0.02414 0.01431 2.47477 

 
As shown in Table 5, FlashRMSD consistently outperforms other tools in terms of runtime on this 
benchmark. Notably, the minimum runtime for obrms is significantly higher than the other tools, 
reflecting the inherent overhead associated with being part of a larger, more complex codebase. 

A more comprehensive view of runtime distributions across all tools can be seen in Fig. 6, 
which presents the box-and-whisker plot of per-call runtimes for all 1,458,326 comparisons. 
 

 
Fig. 6. Box and whiskers plot of runtimes of symmetry-corrected RMSD calculation tools 

(1,458,326 pairs) 

 

 



V. Altunyan 95 

Table 6. Per-sample average runtime summary of symmetry-corrected RMSD calculation tools on all-to-
all pairs benchmark (45,558 samples) 

Tool Mean (s) Std (s) Min (s) Max (s) 
FlashRMSD 0.00435 0.00174 0.00162 0.04436 
FlashRMSDNaive 0.00544 0.05885 0.00188 4.72553 
DockRMSDExt 0.00593 0.04068 0.00191 3.50721 
obrms 0.02063 0.02335 0.01563 2.38896 

 
The results in Table 6 further support the conclusion that FlashRMSD outperforms other tools in 
terms of per-sample average runtime. This demonstrates that the complex atom featurization used 
in our algorithm, originally introduced to optimize cross-RMSD calculations, does not introduce 
any runtime overhead when applied to pairwise RMSD computations. On the contrary, 
FlashRMSD remains the most efficient across both benchmark modes. 

Finally, there were 148 samples where one or more tools failed during the all-to-all pairwise 
benchmark. FlashRMSD failed on the fewest samples — 5 in total and consistent with previous 
results, all other tools also failed on those 5 samples. 

Table 7. FlashRMSD runtime on pairs that failed in other tools. 

Failed Tool Number of 
failed samples 

Number of 
failed pairs 

FlashRMSD runtime report 
Mean (s) Min (s) Max (s) 

FlashRMSDNaive 40 1370 0.1530 0.0017 3.7507 
DockRMSDExt 106 2932 0.0656 0.0018 3.7507 
obrms 9 324 0.1101 0.0021 2.1288 

 
As shown in Table 7, FlashRMSD handled these challenging samples successfully, maintaining 
reasonable runtime performance even in cases where other tools failed. 
 

6. Case Studies 

In this section, we’ll dive into benchmark results focusing on interesting molecules discussed in 
[1, 3], and also two new challenging examples identified during our current benchmarks. 

CCD/PE3, CCD/33O 

The molecules PE3 and 33O, previously discussed in [1], are known to consistently cause failures 
in the original DockRMSD implementation. Both structures consist of chains of alternating carbon 
and oxygen atoms, creating symmetric topologies that introduce multiple valid atom mappings 
during alignment. 

These systems are particularly interesting because they expose limitations in tools that rely 
heavily on strict atom ordering or lack robust symmetry handling. In both cases, all tested tools, 
except for DockRMSD, successfully completed the RMSD calculation within the time limit. 
DockRMSD consistently exceeded the 5-second timeout, failing to return results. 



FlashRMSD: An Effective Approach for Symmetry-Corrected RMSD Calculation with Extensive Benchmark Analysis  
 

96 

Table 8. Comparison of RMSD calculation tools on DockRMSD breaking samples. Per-pair average 
runtimes are presented in seconds. 

Tool PE3 (per-pair average) (s) 33O (per-pair average) (s) 
FlashRMSD 0.00282 0.00615 
FlashRMSDNaive 0.00313 0.00563 
obrms 0.02026 0.02033 

 

As shown in Table 8, all successful tools returned results in a fraction of a second. The 
FlashRMSD and FlashRMSDNaive runtimes are nearly identical, but notably, 
FlashRMSDNaive performs slightly faster than the optimized implementation in the case of 33O. 
This rare case emphasizes that while general optimizations are effective, atom featurization and 
initial pruning strategies are critical for performance consistency. Poorly suited heuristics or 
inadequate pruning, especially in highly symmetric cases, can lead to exhaustive search behavior 
even in otherwise optimized tools. 

 CCD/60C 

 

Fig. 7. 60C (buckminsterfullerene) molecules 2D (left) and 3D (right) structures. 

The molecule 60C (Fig. 7), previously analyzed in [3] for comparison between DockRMSD and 
obrms, serves as a valuable case for evaluating tool performance under extreme symmetry. Here, 
we extend the analysis by including benchmark results from the FlashRMSD and 
FlashRMSDNaive tools. 

Structurally, 60C features 12 pentagonal and 20 hexagonal faces arranged in a fullerene-like 
topology. A critical detail is that every edge of a pentagonal face is shared with a hexagonal face. 
This edge-sharing relationship creates a unique fingerprint for certain bonds; specifically, edges 
that bridge a pentagon and a hexagon are uniquely identifiable, as they cannot be matched to bonds 
lying solely between two hexagons. 

As a result, when attempting to match two conformers of 60C, any mapping that aligns a bond 
connecting a pentagon and a hexagon in the template must align with the corresponding bond in 
the reference. This significantly constrains the mapping space and leads to 2 × 60 = 120 possible 
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mappings — a manageable number, in contrast to estimates in [3]. However, the challenge lies in 
efficiently searching and pruning this space.  

Despite this manageable mapping space, the FlashRMSDNaive tool failed to compute RMSD 
for any pose pairs, highlighting the limitations of exhaustive, non-pruned search methods in 
symmetric systems. The other tools, however, successfully completed the calculations and yielded 
the following average runtimes: 

● FlashRMSD: 5.8 ms 
● DockRMSD: 12.3 ms 
● obrms: 37.6 ms 

These results demonstrate that FlashRMSD outperforms both DockRMSD and obrms, achieving 
approximately 2 and 6.5 times better runtimes, respectively. The case of 60C underscores the 
importance of efficient pruning and symmetry-aware mapping strategies, even in search spaces 
that are theoretically tractable. Without such optimizations, tools can still struggle or fail under the 
computational weight of redundant mappings. 

 BIRD/PRDCC_900031 

.  

Fig. 8. PRDCC_900031(heparin pentasaccharide) molecules 2D structure. 

The molecule PRDCC_900031 (Fig. 8) serves as a prime example where all key design features 
of the FlashRMSD tool contribute directly to performance. At a glance, the molecule appears to 
have a symmetric scaffold due to its ring-chain architecture and repetitive SO ₄ (sulfate) or COOH 
substituents. However, a closer inspection reveals that the core scaffold is not symmetric: the rings 
contain alternating carbon and oxygen atoms in a way that breaks symmetry. 

Thanks to its advanced atom featurization, FlashRMSD is able to quickly detect this and 
identify a trivial atom mapping, effectively ruling out unnecessary branches during backtracking. 
This dramatically improves performance. 

The real complexity arises from the nine SO ₄ and two COOH groups attached to the leaf 
atoms of the backbone. Each SO ₄ group can be matched in 3! (6) different ways, and each COOH 
group can be matched in 2! (2) ways, leading to a theoretical explosion of 2269 = 40,310,784 
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possible mappings across the entire molecule. While other tools treat this as a flat, unstructured 
mapping problem, FlashRMSD’s level-3 optimization decomposes the problem: each 
symmetrical group mentioned above is treated as an independent subtree, allowing mappings to 
be computed separately and then combined. This reduces the mapping search space from 2269  to 
just 2 × 2 + 9 × 6 = 58 evaluations, a drastic and principled reduction. 

All other tools failed to compute cross-RMSD in a reasonable time. FlashRMSDNaive, 
despite correctly accounting for symmetry, was forced to iterate through the full 2269 mappings, 
completing in 46.9 seconds. In contrast, FlashRMSD completed the same calculation in just 8.9 
milliseconds, clearly demonstrating the power of intelligent symmetry decomposition. 

We also evaluated all-to-all pairwise RMSD performance. DockRMSD succeeded on only 4 
out of 36 pairs, while obrms failed on all. This case illustrates that clever partitioning of symmetric 
substructures can make the difference between exponential runtime and milliseconds. 
  
CCD/7AZ, CCD/FWQ 
 
These molecules are special because, independently, they managed to fit into a 5-second window, 
but in the cross-RMSD benchmark, the total runtime was bigger than 60 seconds. They both have 
a similar structure and represent a special case of symmetries – a big macrocycle with trailing 
similar components from macrocycle nodes. These kinds of samples are the subject of 
investigation as how they can be effectively analyzed. 

 

Fig. 9. 7AZ (left) and FWQ (right) molecules 2D structures. 

Fig. 9 shows that both molecules share a common motif: a large macrocyclic core with branching, 
symmetry-repeating fragments extending from multiple macrocycle nodes. These fragments exhibit 
local similarity, but are distributed across the molecular structure in ways that significantly increase 
the number of potential atom mappings. These examples suggest a new class of test cases that 
require new approaches in future RMSD tools. 
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7. Conclusions 

This work presents FlashRMSD, a symmetry-corrected RMSD calculation tool designed for 
accuracy, efficiency, and robustness in both standalone and large-scale automated workflows. 
Alongside FlashRMSD, we introduce a comprehensive benchmark dataset comprising thousands 
of molecular pose comparisons, specifically structured to evaluate tool performance under realistic 
and challenging scenarios. 

Through systematic benchmarks, including native cross-RMSD calculations and all-to-all 
pairwise comparisons, we demonstrate that FlashRMSD consistently outperforms existing tools 
in terms of runtime, reliability, and correctness. It exhibits superior scalability, maintaining low 
variance across diverse molecular structures, and handles failure-prone or highly symmetric cases 
with resilience. Importantly, the optimizations introduced for cross-RMSD efficiency do not 
introduce overhead in simpler pairwise use cases. 

Our benchmark suite also highlights structural motifs that pose challenges to current RMSD 
tools, such as highly symmetric systems, macrocyclic architectures, and molecules with repetitive 
substructures or symmetric side chains. These special cases, analyzed in detail, provide insight 
into where existing tools struggle and where future development should focus. 
 We make both FlashRMSD and the full benchmark dataset publicly available to facilitate 
reproducible evaluation and guide future development of RMSD tools. We hope this contribution 
will support more reliable and scalable structural comparison workflows in molecular modeling, 
docking, and related fields. 
 

Appendix 

Data and Code Availability 
 
The benchmark dataset developed for this study is publicly available via Zenodo at 
https://doi.org/10.5281/zenodo.15097621. It includes over 45,000 small molecules from the CCD 
and BIRD repositories, complete with multi-conformer and per-pose files, as well as a results.csv 
file containing ground truth cross-RMSD values. 
 The source code for the FlashRMSD tool, along with the modified tool DockRMSDExt, is 
available on GitHub at  https://github.com/altunyanv/FlashRMSD. Both the dataset and the code 
are released under open-source licenses to facilitate reproducibility and further development in 
symmetry-corrected RMSD calculations. 
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Ամփոփում 
 

Արմատ միջին քառակուսային շեղումը (RMSD) առանցքային չափում է 
մոլեկուլային կառուցվածքների նմանությունը գնահատելու համար։ Սակայն 
սիմետրիկ մոլեկուլների դեպքում առաջանում են կոմբինատոր բարդություններ, որոնք 
խանգարում են հաշվարկի գործընթացին։ Թեպետ հասանելի են մի շարք գործիքներ, 
որոնք RMSD-ի հաշվարկում հաշվի են առնում սիմետրիաները, բոլորն էլ ունեն իրենց 
սահմանափակումները՝ կապված արագության, ճշգրտության կամ կիրառելիության 
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հետ։ Այս հոդվածում մենք ներկայացնում ենք FlashRMSD գործիքը՝ նոր, արագ և 
արդյունավետ մոտեցում սիմետրիայով ճշգրտված RMSD հաշվարկի համար։ Բացի 
այդ, մենք ներկայացնում ենք մոլեկուլային կառուցվածքների բազա RMSD գործիքների 
գնահատման և գործող մեթոդների համեմատական վերլուծության համար։ 

Բանալի բառեր` սիմետրիայով ճշգրտված RMSD, FlashRMSD, մոլեկուլային 
դոկինգ։ 
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Аннотация 

RMSD является важным показателем для оценки сходства молекулярных структур. 
Однако при работе с сильно симметричными молекулами возникают комбинаторные 
сложности, которые затрудняют процесс вычислений. Хотя существует ряд инструментов с 
открытым исходным кодом для вычисления RMSD с учетом симметрии, каждый из них 
имеет ограничения по скорости, точности или удобству использования. В данной статье мы 
представляем FlashRMSD — новый, быстрый и эффективный метод вычисления RMSD с 
учетом симметрии. Также мы представляем обширный набор молекулярных структур для 
оценки инструментов вычисления RMSD и проводим сравнительный анализ существующих 
методов с нашим решением. 
 Ключевые слова: RMSD с коррекцией симметрии, FlashRMSD, молекулярный докинг. 
  
 
 



 
 
 
 
 
 
 

 Կանոններ հեղինակների համար 
 
ՀՀ ԳԱԱ ԻԱՊԻ “Կոմպյուտերային գիտության մաթեմատիկական խնդիրներ” 
պարբերականը տպագրվում է 1963 թվականից: Պարբերականում 
հրատարակվում են նշված ոլորտին առնչվող գիտական հոդվածներ, որոնք 
պարունակում են նոր` չհրատարակված արդյունքներ:  

Հոդվածները ներկայացվում են անգլերեն՝ ձևավորված համապատասխան 
“ոճով” (style):  Հոդվածի ձևավորման պահանջներին ավելի մանրամասն կարելի է 
ծանոթանալ պարբերականի կայքէջում՝  http://mpcs.sci.am/: 
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РА издается с 1963 года. В журнале публикуются научные статьи в указанной 
области, содержащие новые и ранее не опубликованные результаты.  

Статьи представляются на английском языке и оформляются в 
соответствующем стиле. Дополнительную информацию можно получить на веб-
сайте журнала:   http://mpcs.sci.am/. 
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