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Abstract

This research explores how different types of distorting algorithms impact the Full-
Reference image quality assessment, particularly when subjective quality evaluations
are incorporated. We draw upon the TID2013 database, which contains 3000 images
distorted by 24 distinct algorithms, in conjunction with Mean Opinion Scores (MOS)
for quality ratings. We compare the results of Normalized Mutual Information (NMI)
for image quality score with WW?2, based on Weibull distribution, the common PSNR
similarity measure and MOS. We advocate for integrating of NMI into the repertoire
of image quality assessment metrics.

Keywords: Image quality, Distortion types, Evaluation metrics, Normalized mutual
information.

Article info: Received 25 March 2024; sent for review 26 March 2024; accepted 16
April 2024.

1. Introduction

Assessing the quality of images is a crucial process for various applications, including pattern
recognition, classification, restoration, and others. The definition of quality, however, lacks
an unambiguous formal consensus, leading to the requirement of specific interpretations of
image quality and respective methods for its estimation. Three key methodologies exist for
evaluating image quality. Full-Reference methods are based on the comparison between a
distortion-free reference image and a test image, which is a distorted version of the original.
The level of distortion serves as an indicator of the quality of the test image. The change
in quality may either indicate a decrease or an increase, depending on the result of the
distortion process [1, 2.

On the other hand, No-Reference methods assess the quality solely based on the analysis
of the test image, taking into account its structural characteristics and other properties.
Reduced-Reference methods fall in the middle, employing partial information about the orig-
inal image in the assessment process.
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There is abundant research literature focusing on these three types of image quality
evaluation methods. These techniques can be bifurcated into two classes: objective and
subjective. Objective methods utilize formal image theory and image processing techniques,
whereas subjective methods rely on human visual system (HVS), based on expert quality
assessments. The average of these subjective assessment results is the MOS [3, 4].

Several primary factors influence the assessment of image quality. The first one is the
inherent quality of the test image and its depiction. The second are the distortions introduced
into the image content through processes like image acquisition, visualization, transmission,
etc. The third are the changes made in the image structure and parameters during image
processing using various mathematical or computational methods.

Given the diversity of these factors, universal methods for assessing the quality of any
image do not exist. Decisions on quality must consider the unique properties of the tested
images and the employed methods, in combination with the available subjective assessments.
Thus, there is continuous need for developing new quality criteria, similarity assessment
methods, and methods for analyzing and comparing different approaches.

Several image databases with MOS assessments exist that have been collected through
experimental procedures involving a large number of experts. For instance, 40 such databases
are critically examined in [4]. The literature provides extensive references to studies on
quality assessment through both objective and subjective methods [5]. In [6], the regularities
of influence of the type of distorting algorithm on the result of evaluating the image quality by
the Full-Reference method in the presence of subjective quality assessments were studied. As
an example, the TID2013 database [7] with 3000 images distorted by 24 types of algorithms
and subjective MOS quality ratings was used. An image quality score based on the Weibull
distribution model and the usual Peak Signal-to-Noise Ratio (PSNR) similarity measure was
applied. It was shown that the applied distorting algorithms are classified into two types
- normal, leading to results consistent with the HVS, and "anomalous”, the corresponding
quality estimates of which are disordered or chaotic.

In this research, we investigate another approach to image quality assessment using the
concept of NMI, which was introduced and studied in [8]. TIts theoretical grounding in
information theory [9] provides a robust and well-defined basis for measuring image simi-
larity. Additionally, NMI’s scale invariance makes it versatile and applicable to images of
diverse resolutions. Furthermore, its non-parametric nature eliminates the need for prior
assumptions about the image data, enhancing its adaptability to various image types. NMI
quantifies the amount of information shared between the reference and the distorted images.
This metric has shown potential between the reference and the distorted images [10].

As research on NMI and its applications in image quality assessment continues to evolve,
exciting possibilities emerge. The development of deep learning-based NMI variants, for
instance, holds promises for further enhancing accuracy and robustness in complex scenarios.

Within the scope of our investigation, we aim to rigorously examine and evaluate the
performance of the NMI metric across a diverse array of image distortion types and levels.
Our endeavor is directed towards discerning NMI’s nuanced impact and effectiveness in
capturing the similarities between datasets that have undergone different manifestations
and intensities of image distortion. The research article employs a structured approach,
encompassing research methodology and experimental results.

The paper is organized as follows. The next section introduces the considered measures.
In Section 3 experimental results on the TID2013 database are discussed. The paper con-
cludes in Section 4, summarizing key findings and advocating for a balanced consideration
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of both NMI and subjective evaluation methods.

2. Description of Considered Measures

First, we consider MOS, which is a subjective measure that represents the average opinion
of human observers. It is useful for the evaluation of other measures.

e [t quantifies the perceived quality of an image based on human evaluation.

e MOS scores are typically obtained through subjective experiments, where human ob-
servers rate the quality of images on a scale.

e Higher MOS scores indicate better perceived image quality.

e MOS is commonly used as a benchmark for objective image quality assessment algo-
rithms.

PSNR is a widely used metric in image quality assessment, commonly applied in image
processing and compression. It quantifies the fidelity of an image by comparing the maximum
signal power (original image) to the noise power (introduced during representation, often as
Gaussian noise). The key points are:

e (Objective Measure) PSNR provides an objective numerical assessment of image qual-
ity, enabling quantitative comparisons between different algorithms.

e (Decibel Scale) The use of decibels ensures a perceptually relevant representation of
quality ratios.

e (Higher Values, Better Quality) Higher PSNR values signify better image quality with
minimal noise interference [2, 13, 14].

While PSNR offers simplicity and objectivity in evaluating signal quality, it has limita-
tions in accurately reflecting human perception. It may not be suitable for all types of signals
or compression techniques. It is essential to consider its advantages and disadvantages care-
fully when using it for quality assessment in image and video processing applications.

W2 is an image quality metric. It measures the structural similarity between the original
image and the image with additive Gaussian noise. W? values range from 0 to 1, where 1
indicates perfect structural similarity. Higher W2 values suggest better image quality and
preservation of structural information. W? is commonly used for image restoration and
enhancement [15]. This image quality estimation is based on a Weibull distribution model
of image gradient magnitude, the density of which is given by the formula

o= 13 ol (] 20

where 1 > 0 is the shape parameter, A > 0 is the scale parameter. Distribution parameters
are estimated from the totality of all gradient magnitudes using the Sobel operator. The
similarity (proximity) of two images is estimated by the proximity of the estimates of the
parameters of the Weibull distribution by the formula
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min (N1, n2) min (A, Ag)

W? = .
max (m, n2) mazx (A1, Ag)
The research in [6] presented that this measure is sensitive to those types of distortions
that affect the structure and content of the image.

NMI is a measure of the distance between two images based on their joint probability
distribution. It quantifies the amount of information shared between two images, considering
both their individual distributions and their joint distribution. Higher NMI values indicate
greater distance, whereas lower NMI values indicate less distance.

Mutual information is a fundamental concept in information theory. Given two random
variables X and Y, the mutual information (MI) is defined as

I[(X;Y)=H(X) + HY) - H(X,Y),

where H(X) is the well-known notion of entropy [9]. MI is a non-negative quantity and can
be used as a similarity or distance measure depending on various applications.
We consider the following normalized version of MI

I(X;Y)
max H (X),H(Y)’

NMI =1-

which is a distance measure. It was proved in [11] that this measure satisfies metric
properties, in other words, it adheres to the criteria of a true metric, encompassing positive
definiteness, symmetry, and triangle inequality. At its core, the metric property aligns with
our intuitive understanding of distance, providing a foundational framework for quantifying
spatial relationships. NMI values range from 0 to 1, with 0 indicating perfect similarity and
1 indicating no similarity at all. Beside from information theory, NMI is widely used also
in image registration, image segmentation, and other applications [10], [12]. NMI is often
used to evaluate clustering algorithms or comparing different clusterings of the same data
[11]. NMI is based on the principles of information theory, which makes it theoretically
grounded and well-suited for various applications in fields such as machine learning, pattern
recognition, and data mining.

3. Experimental Results

The selected database is TID2013 [7]. This database contains 3000 images obtained from
25 originals, distorted by 24 different types of five levels each (for example, see Fig. 1).
The authors of the database conducted an extensive experiment on the visual assessment
of the quality of database images using a point system by a large number of people from
different countries. As a result of processing these data, each of the 3000 images is assigned
a numerical MOS score.

All necessary quantities are calculated using the developed software system, and the
results are entered into Excel tables. The base data are the results related to the original
and five distorted samples of a particular image.

For each such data set, three evaluation methods were employed: NMI, PSNR, W2, and
compared with MOS. These methods were utilized to assess and analyze the quality of the
images in the database.
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Fig. 1. The first, third, and fifth levels of distorted images from Image Number 10 in the TID
2013 database using the ’Sparse Sampling and Reconstruction’ method.

In numerous scenarios, NMI demonstrated similar sensitivity in comparison with alter-
native measures, for example on Fig. 2 five levels of Additive noise in color distortion are
demonstrated. The values of all measures for each level are given in Table 1.

Fig. 2. 5 Levels of Additive Noise in Color Distortion from the TID2013 Database: Image
Number 15.

Table 1. Experimental results for the 15th image from TID2013 database
(Additive noise in color)

NMI PSNR w2 MOS
0.14 42.33 0.87 6.09

0.17 39.45 0.78 5.82
0.22 36.47 0.66 5.64
0.27 33.61 0.53 4.89
0.34 31.39 0.38 4.64

In some cases, NMI demonstrates higher efficiency. For example, in the case of distortion
with the Non eccentricity pattern noise method, the W? values are close to one, which means
that it performs poorly in terms of human evaluation and human understanding, and the
NMI values are close to human evaluation (Table 2, Fig. 3).
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Fig. 3. Reference image and level 5 distorted image (Non eccentricity pattern noise)

Table 2. Experiment results for the 8th image from TID2013 database
(Non-eccentricity pattern noise).

NMI PSNR w2 MOS
0.06 43.33 1 5.65
0.10 41.30 1 5.43
0.16 39.08 0.99 4.87
0.20 37.82 0.99 4.75
0.24 36.92 0.99 4

4. Conclusion

Our experimental results revealed interesting insights into the performance of metrics across
different types of distortions. We found that NMI, being a normalized distance measure,
showed promising results for various distortion types. Particularly, it exhibited close align-
ment with human subjective evaluations in almost all cases, indicating its potential as an
effective image quality assessment metric.

Moreover, NMI’s theoretical foundation in information theory and its versatility in cap-
turing differences between images of diverse resolutions contribute to its robustness and
applicability in image quality assessment tasks. NMI consistently demonstrated its efficacy
for a wide range of distortions.

In conclusion, our findings advocate for integrating NMI into the repertoire of image
quality assessment metrics, complementing traditional measures like PSNR and W?2. By
leveraging NMI’s inherent advantages and considering its performance in conjunction with
subjective evaluations, we can enhance the accuracy and reliability of image quality as-
sessment methods, catering to diverse application scenarios in image processing, computer
vision, and beyond.
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Udthnthnid
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£3000 ywwybp, npnlp wnuyunyuo Gl 24 mwpptip wignphpuiGtinny, Jupohpltnh dhohG
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pwofudwl Jpw hhiGJuwo W2 wpnymbpGtph, hwymGh PSNR GdwlmpjuG swthh L MOS-
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AnHoTanuys

B sTOM cTaThbe METOAOM CPAaBHEHUS C 3TAAOHOM MBI MCCAEAYEM, KaK Pa3AUYHBIE
TUIIBI AATOPUTMOB MCKa>KeHUSI BAUSIOT Ha OLleHKY KaueCTBa M300pa’keHus C IIOAHOM
CCBIAKOM, OCOOEHHO IIpYM BKAIOUYEHUU CYOBEKTHUBHBIX OII€HOK KadecTBa. Mer
onupaeMca Ha 0a3y apaHHbIX TID2013, kKoTopas copep>xkut 3000 m3o0pa>keHUH,
MCKa>KeHHBIX 24 Pa3AMYHBIMU aATOPUTMAaMH, B COUYETAHUM CO CPEAHUMM OlleHKaMu
mHenurt (MOS) AAd  PEeUTHMHIOB KauyecTBa. Mgbl cpaBHUBaeM pPe3yABbTATHI
HOPMAaAW30BaHHOU B3anMHOU nHGopManuu (NMI) Aas orfeHKH KauecTBa N300pa’kKeHUs
c W?, Ha ocHOBe paclpepereHusi BeitGyanra, 0o6IIero mokasaTeAss cXOACTBa PSNR
u MOS. Ms BeicTynaeM 3a mHTerpanuto NMI B penepTyap mokaszaTeAell OIleHKH
KayecTBa N300pa’KeHus.

KaroueBrle croBa: KauecTBO n300pa’keHNs, TUIIBI NCKaKEHUW, METPUKHU OI€HKH,
HOPMAaAW30BaHHAasA B3aMMHas WH(popMaug.
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Abstract

This article presents a method for multi-parameter, simultaneous tuning of the
Monte Carlo event generator. It is validated on the Pythia8 Monte Carlo event gener-
ator widely used in High Energy Physics (HEP). The obtained results show that the
method can be used to constrain the free parameters of phenomenological models while
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1. Introduction

Historically, to constrain free parameters in multi-parameter models, a tuning procedure
is applied based on the change-check method i.e., parameters are changed ”one-by-one”
and the impact of a particular parameter on the physics observable of interest is studied.
Obviously, for any complex system with too many free parameters, this method becomes non-
optimal in a practical sense as it also suffers not taking into account the correlations existing
between parameters. The state-of-art method is to parameterize the generator behaviour
in a simultaneous change of multi-parameter set by fitting the generator response with a
polynomial for each physics observable entering the tuning list:

MCy(p) ~ f'(p) = o+ 32 5% + 371 vl (1)

i<y

In formula (1), MCj is the true response of the MC generator in a bin b, f°(p) is a set of
functions that model the true MC response for each observable bin b when changing the
parameter vector p and p’ = p - pg is the parameter vector shifted from its nominal value
po- To get the optimal, i.e., "tuned” values of the parameters, the response function is
minimized concerning the reference sample by performing the x? minimization as shown in

15
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formula (2):

X*(p) ZZwoZW, (2)

where Ry, is the reference value for bin b, A, is the total uncertainty of the bin b and wg is
the statistical weight for each observable.

Recent experimental results have inspired more modeling work in the theory community.
Simultaneously, efforts to refine the existing models and parameters are ongoing. Although
Pythia [1] has been extensively compared to LHC, Belle, and Belle II data, its constraints
from ete™ colliders haven’t been updated since 2009, relying on an undocumented tuning
effort with the Professor [2] tool. In this work, we address this issue using the Pythia8 Monte
Carlo event generator from the Belle II analysis framework.

2. 'Toolkits for Tuning

We created a tuning framework to model the continuum data [3] produced by the Pythia8
Monte Carlo event generator. This involves the utilization of a dedicated computing platform
at AANL (belle2.yerphi.am) connected to the Worldwide GRID computing system [4]. To
stay updated with the latest Belle II software releases, we established access to the CernVM
File System (CVMFS) [5] repository on our local server. Being a member of the Belle II in-
ternational collaboration, we have full access to KEK [6] and DESY [7] computing platforms
(PC Farms), enabling the simultaneous distribution of jobs across different systems.

We have designed an automated framework capable of processing different parameter sets
as input and deploying corresponding jobs to the GRID. Likewise, samples generated from
the Worldwide computing system are collected and organized into folders corresponding to
the simulation settings. On the local ”"belle2.yerphi.am” machine, the Belle IT Analysis Soft-
ware Framework (basf2) [8] environment has been configured for the author of this article. A
set of jobs is then sent to the Worldwide GRID computing platform under the periodic con-
trol and monitoring of the DIRAC [9] project. Access to this platform is facilitated through
the use of the GRID certificate.

3. Tuning Procedure

To address the challenges associated with multi-parameter optimization problems, a special-
ized package, i.e., Professor2 has been developed as an alternative to manual adjustment
methods. The approach used by the Professor2 package is known as parametrization-based
tuning. A notable advantage of this package is its capacity to handle correlations among
different parameters, enabling multivariate minimization within the parameter space.

The primary objective of this method is to determine the correspondence function or
characteristic polynomial between the generated Monte Carlo data and the reference data,
ultimately minimizing the multi-dimensional y? function. In our study, we utilize the Pythia8
model for generating physics events. We present a comparison and tuning of selected ob-
servables extracted from reference data and the Belle II off-resonance Monte Carlo event
generator.

One of the important aspects of the tuning procedure is to choose the free parameters from
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the models to which the obsevables of interest are sensitive. This is done by performing sen-
sitivity checks explained in Section 3.2. Having the list of sensitive parameters the tuning
procedure is performed by using the Professor2 toolkit. It requires samples to be generated
with different sets of sensitive parameters. The Professor2 framework provides four types of
parameter sampling: grid, uniform, sobol and latin hypercube sampling. The ”sobol” and
"latin” hypercube distributions aim at covering the space more evenly for low sample sizes.
In this work, we used "uniform” sampling with N = 1500 parameter points as shown below:

prof2-sample -o output params.dat -n 1500

which creates 1500 sets of parameters within predefined intervals for each. These sets are
used to generate Monte Carlo samples which are later used to extract the observables of
interest and the model parameters to be tuned for. The observables of interest used in this
work are described in detail in Section 2.1. The generated data sets were saved in ROOT
file format, which was later analyzed to extract the distributions of interest in the binned
(histogram) format. It is important to mention that a special care is taken to ensure that
the histograms did not contain any empty bins, otherwise, the empty bins are encountered
by setting the corresponding weights to be equal to zero.

To model the MC response, a characteristic polynomial from the generated Monte Carlo
(MC) samples is constructed as shown below:

prof2-ipol runsdir ipolfile=ipol.dat —order=5

To consider the multiple correlations of parameters, the order of the polynomial can be
changed accordingly. In this work, the order of polynomial is set to 5. Consequently, the
output of the interpolation is the file "ipol.dat” , which contains the interpolation results
essential for the tuning procedure, such as the MC response extracted for each observable in
terms of bin content variation.

ProfVersion: 2.3.3

Date: 2023

DataFormat

ParamNames: StringFlav:mesonUDvector= StringFlav:imesonSvector= StringFlav:mesonCvector= StringFlav:thetaPS= StringFlav:thetaV= TineShower:alphaSvalue=
Dimensic

MinParamva’ 0.100953 0.100085 ©.101615 -88.883280 -88.837830 0.080044

MaxParamVals: 2.897423 2.895425 2.897895 88.846920 88.925990 0.179949

DoParamscaling: 1

NumInputs: 1500

Runs: 600 6601 0862 0003 0604 085 0OB6 0087 0008 0069 0016 6011 6012 0813 6014 6015 G016 6017 6018 ©019 0620 0621 0622 0023 0024 0025 0026 0027 0028 O

Jchg_all#0 5.00000e-01 7.75000e-01

val: 6 5 1.88945e+06 383073 786565 351978 -278441 312948 1.14856e+06 -712359 -667997 267297 1.4723e+06 -1.76714e+06 846381 -1,92095¢+06 -284871 -38490!

err: 6 5 7225.64 865.445 1233.59 479.315 -364.115 464.407 1891.36 -2075.35 -665.622 64.657 2170.25 -3595.76 1650.41 -3325.12 -347.782 -507.975 1622.31
/chg_all#1 7.75000e-01 1.05000e+00

val: 6 5 1.34988e+06 -66117.1 313018 231802 -309916 -80232.1 454116 -42013.7 -2731.03 331530 834756 -1.00725¢+06 452829 -415712 -600937 41621.2 144135

err: 6 5 6081.13 312 574.624 469.696 -608.775 -135.697 913.495 -567.568 289.809 333.987 1559.67 -2677.14 1118.24 -888.616 -1121.36 181.687 967.71
/chg_all#2 1.05000e+00 1.32500e+00

val: 6 5 883415 297482 163533 16973.5 121710 -61494.1 262542 -776741 -40640.4 -369222 -29130.1 -722363 -182391 -348009 -166528 325809 56491.2 -327414

err: 6 5 4914.1 870.851 341.689 62.5816 336.586 -85.6397 686.823 -2370.79 147.909 -1270.4 -181.004 -2319.25 -384.261 -859.553 -361.64 961.304 664.622
/chg_all#3 1.32500e+00 1.60000e+00

val: 6 5 632573 47180.7 72546 223955 -7730.65 -260530 -7526.55 -234555 149493 -180100 -115792 -179769 24151.3 38544.5 -401983 -52677.2 346150 -70848.1

err: 6 5 4154.52 207.129 172.495 750.039 -6.46474 -777.621 -35.1251 -962.744 699.09 -818.025 -456.381 -916.53 176.035 142.925 -1256.72 -105.773 1497.4

Fig. 1. ”ipol.dat” file.

To ensure the full coverage of Monte Carlo samples generated with different parameter sets
on the reference data, the "envelope” plots are used that effectively visualize the access of
the generated data on the full spectra of the reference data:

prof2-envelopes mc -d refdir

The final step of the tuning procedure is performed using the prof2-tune tool. It minimizes
the MC response function given in the form of the characteristic polynomial and accumulated
in the "ipol.dat” file by comparing it with the reference data for each distribution obtained
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(a) Envelope plot of Thrust (b) Envelope plot of number of tracks in event

Fig. 2. The yellow band corresponds to the coverage of the generated MC samples by using
different Pythia8 parameter settings and black points are from the reference sample.

from various MC runs with different parameter sets. These run combinations can be gener-
ated uniquely and randomly at runtime by prof2-tune, or they can be provided through a
plain text file.

prof2-tune -d refdir ipolfiles=ipol.dat -r runsdir=refdir/../mc

3.1 Observables Used in Tuning

The variables (observables) used in the tuning procedure are tabulated in Table 1. and Table
2. The selection of a particular variable is motivated by the specifics of the tuning, namely,
for what purpose the tuning of the generator is performed, thus, what model(s) entering the
generator should be constrained. In this work, two-stage tuning was performed. First, three

variables (see Table 1) of interest were selected. In the second stage, one more variable is
added to the list (see Table 2).

Table 1. Observables used for the first stage tuning.

Thrust

Inclusive charge particle momentum spectra

Number of tracks in event

It is important to mention that adding more variables to the tuning list increases the
possible correlation between the parameters in the tuning list thus making it more difficult to
minimize multidimensional x» for the MC response function.This study used three and four
variables consequently, achieving a good agreement between the reference sample and MC
simulations. In this work, the "Event” and ”Event shape” variables are used to study the
hadron production process later modeled in Pythia8, as well as to separate the events with
different quark origins produced in the Belle IT experiment. Specifically, the Thrust and
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Table 2. Observables used for the second stage tuning.

Thrust

Inclusive charge particle momentum spectra

Number of tracks in event
visibleEnergy OfEventCMS

FoxWolframR2 [10] variables are crucial in distinguishing continuum events from BantiB
events. At the same time, the use of event variables is essential to avoid possible issues
related to Particle Identification (PID) inefficiency effects and background interference. The
Thrust axis T' is determined by the direction in which the sum of the longitudinal momenta
of particles reaches its maximum. The thrust 7" is connected to the Thrust axis by

i T
7 2P T
> |pil

where p; represents the momentum of each particle.
The Fox-Wolfram moments are defined as follows:

(3)

N
H. =3 W Py(cos Q;5), (4)
1,7=1

where W7 is a weight factor, and P;(cos(2;;) is the Legendre polynomial, and the FoxWol-

ij
framR2 is given by the ratio

foxWol framR2 = @ (5)
H,
The inclusive charged particle momentum spectrum in high-energy particle physics refers
to the distribution of momenta for all charged particles produced in a collision of beams.
This observable provides insights into the overall behavior and characteristics of particle
production within a given experiment.
Another important observable in the experiment is the ”visibleEnergyOfEventCMS”,
which is defined as a sum of the energies of all particles that leave observable signals in the
detector:

Ew= Y E. (6)

visible particles

3.2 Sensitivity Checks

To reveal the sensitive parameters for the selected list of observables, the parameter sensi-
tivity checks are perfomed using the normalized residuals extracted from two sample tests,
as shown below :

n; — Np;
VNBi/(1 = N/(N + M))(1 = (n; +m;)/(N + M)

(7)

T, =
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Table 3. The list of six different parameters that are selected from the Pythia Monte-Carlo event

generator for tuning the ”Event” and ”Event shape” variables.

Parameters Values
StringFlav:mesonUDvector | (default = 0.50; min = 0., max = 3.)
StringFlav:mesonSvector (default = 0.55; min = 0., max = 3.)
StringFlav:mesonCvector (default = 0.88; min = 0., max = 3.)
StringFlav:thetaPS (default = -15.; min = -90., max = 90.)
StringFlav:thetaV (default = 36.; min = -90., max = 90.)

TimeShower:alphaSvalue | (default = 36.; min = -90., max = 90.)

StringFlav:mesonSvector mod=10%

Residuals

060 065 070 0.75 080 0.85 090 0.95
Thrust

(a) The sensitivity plot of StringFlav:meson
Svector Pythia parameter

StringFlav:mesonUDvector mod=10%

-1
2 e — —N—————————
-3 T T T T T T

.60 0.65 0.70 0.75

0 0.80 0.85 0.90 0.95
Thrust

(c) The sensitivity plot of StringFlav:meson
UDvector Pythia parameter

Residuals
o

Fig. 3. The sensitivity check for parameters given in Table 2 based on Thrust and FoxWolfram
distributions.

When normalized residuals exceed the 2 sigma level (see Fig. 3) for certain observables, we
consider them to be sensitive to a particular parameter. Conversely, for other parameters,
there is an absence of sensitivity, as indicated by residuals within the 2 sigma window. The
most sensitive parameters concerning the "event” and "event shape” variables are listed in

Table 3.

Residuals

StringFlav:thetaV mod=10%

0.0 0.2 0.4 0.6 0.8
foxWolframR2

(b) The sensitivity plot of StringFlav:thetaV
Pythia parameter

Residuals

(d) The sensitivity plot of StringFlav:probStoUD

StringFlav:probStoUD mod=10%

0.0 0.2 0.4 0.6 0.8
foxWolframR2

Pythia parameter



H. Ghumaryan 21

3.3 Validation Scheme

For the validation of the developed scheme, the Monte Carlo (MC) simulations provided by
Belle II collaboration were used as reference samples.

4. Results

Our studies show that the validation of the Pythia8 MC tuning procedure using the Pro-
fessor2 package is highly affected by the statistics and the number of generated samples, as
well as the correlations between Pythia8 parameters. Controlling these factors is crucial for
obtaining meaningful and reliable results from simulations using Pythia8. Meanwhile, by
increasing the statistics and the number of generated MC samples for u,d,s,c quark com-
binations and using interpolation with a 5th order characteristic polynomial, we reproduce
the distributions extracted from the reference sample as it can be seen in Figures 5-6. It is
important to mention that due to correlations, the tuned values of parameters can differ from
their default values although the spectra of observables of interest from tuned and reference
samples are in a very good agreement.

s
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55 85 & 8 s
L .

Lo0

StringFlav:mesonUDvector
0.75

StringFlav:mesonSvector r0.50

r0.25
stringFlav:mesonCvector

- 0.00

stringFlav:thetaPs
r—0.25

stringFlav:thetaV F —0.50

-0.75
TimeShower:alphaSvalue

-1.00

Fig. 4. Correlations values of the parameters for the first stage tune.

For the first tune we have chosen 3 variables, they are:

Table 4. Observables used for the first stage tuning.

Thrust

Inclusive charge particle momentum spectra

Number of tracks in event
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Yield

Ratio

Pythia8 parameters Default Tuned Comment
StringFlav:mesonUDvector =0.5 =0.444457 | ! Light-flavour vector suppression
StringFlav:mesonSvector =0.55 =0.434957 ! Strange vector suppression
StringFlav:mesonCvector =2.8 =2.428458 ! Charm vector suppression
StringFlav:thetaPS =-15 =-13.500045 ! Mixing angle thetaPS
StringFlav:thetaV =36 =29.243306 ! Mixing angle thetaV
TimeShower:alphaSvalue | =0.1365 | =0.135795 ! Effective alphaS(mZ) value
P I
] I R
14 g 12 S l
12F g ! I
1 e —+ 08 F

Fig. 5.

I I
10 12
Number of tracks in event

(b)

Comparing Thrust and Number of tracks in event distributions: Default Monte Carlo

(MC) in blue vs. tuned in black.

Yield

MC (Default MC)

MC (Tuned)

Ratio

Charged-Particle Multiplicity

Fig. 6. Comparing Inclusive charge particle momentum distributions: Default Monte Carlo (MC)
in blue vs. tuned in black.

The default and tuned values for the Pythia8 parameters.
For three variables, the parameters’ default and tune values were quite similar, consid-

ering the errors.
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Pythia8 parameters MIGRAD errors H
StringFlav:mesonUDvector | =4.685612e-02
StringFlav:mesonSvector =8.267797e-02
StringFlav:mesonCvector =1.690820e-01

StringFlav:thetaPS =7.967455e+00

StringFlav:thetaV =8.819869e+-00
TimeShower:alphaSvalue =4.741711e-04

é'é o W
oF & ol
c'f"9 & o(\() £ D &@
@ef’ 6@5” @z" {S\e'}' & e}.?}
KRS 3 K
e 2 2 2 N 8}
SELLSE

: : 1.00
stringFlav:mesonUDvector
0.75
stringFlav:mesonSvector F 0.50
i F0.25
stringFlav:mesonCvector
I 0.00
StringFlav:thetaPS
r—0.25
stringFlav:thetaVv 1 I —0.50
-0.75
TimeShower:alphaSvalue -
-1.00

Fig. 7. Parameter correlation values for the second-stage tuning.

Next, we included the visibleEnergyOfEventCMS variable in our list of observables to
study the impact of correlations when tuning with an increased number of variables. This
tune was also performed with 5th-order polynomial to ensure the robustness for the mini-

mization results.
As it can be seen from Fig. 8 (b), the comparison between tuned and reference samples

for visibleEnergyOfEventsCMS observable is also a very good agreement.

Pythia8 parameters ‘ Default ‘ Tuned Comment
StringFlav:mesonUDvector =0.5 =0.454673 | ! Light-flavour vector suppression
StringFlav:mesonSvector =0.55 =0.432484 ! Strange vector suppression
StringFlav:mesonCvector =2.8 =2.388490 ! Charm vector suppression
StringFlav:thetaPS =-15 =-14.416715 ! Mixing angle thetaPS
StringFlav:thetaV =36 =32.127201 ! Mixing angle thetaV
TimeShower:alphaSvalue | =0.1365 | =0.135604 I Effective alphaS(mZ) value
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The Default and tuned values for Pythia8 parameters. For four variables, the parameters
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default and tune values were quite similar, considering the errors.

Yield

Ratio

Yield

Ratio

10°

250

Pythia8 parameters

MIGRAD errors

StringFlav:mesonUDvector

=4.270846e-02

StringFlav:mesonSvector

=7.325382e-02

StringFlav:mesonCvector

=1.705115e-01

StringFlav:thetaPS

=6.570061e+00

StringFlav:thetaV

=6.979057e+-00

TimeShower:alphaSvalue

=4.257399e-04
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Fig. 9. Comparing Inclusive charge particle momentum andvisibleEnergyOfEventCMS
distributions: Default Monte Carlo (MC) in blue vs. tuned in black.
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5. Conclusion

Validation of the tuning procedure developed to tune a certain set of parameters from the
Pythia8 Monte Carlo event generator is performed using the Professor2 package. The tuning
is done simultaneously for "event” and ”event shape” variables using six parameters from
Pythia8 MC. The obtained results show that the comparison between the reference and
tuned spectra is in a very good agreement. The developed procedure can be extended to
any model with free parameters constraining it by using real experimental data.
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AnHoTanuys

B AaHHOUM cTaTbe NPEACTAaBAEH METOA AASI MHOTOIIapaMeTPUYEeCKOM HaCTPOMKHU
reHepaTropa coOvITHM 0 MeToAy MoHTe-Kapao. MeTop anipoOMpoBaH Ha HACTPOUKE
MonTe Kapao reneparopa Pythia8, mmpoko nmcnoab3yeMoro AA PU3WKU BBICOKUX
sHepruti (OB3). IloAyueHHBIEe pPe3yAbBTAaThI ITOKA3bIBAIOT, YTO METOA MOJKET OBITh
HWCIOAB30BAH AASl OIIPEAEAEHUsS CBOOOAHBIX IIapaMeTpoB (PEHOMEHOAOTMYECKUX
MOAEAEM, OAHOBPEMEHHO II03BOALY YYECTb KOPPEAdUU CYIIECTBYIOIUE MEKAY
IlapaMeTpamMu.
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Abstract

This study involves a comparison between the application of the univariate SARIMA
model and the utilization of VAR methods (vector autoregressive models) for
multivariate time series analysis. The analysis is conducted using three-time series
variables derived from data representing the monthly average of Humidity (H), Rainfall
(R), and Temperature (T) in Ninahvah City, Irag. Both univariate and multivariate time
series approaches are employed to model these series. The paper also outlines the
implementation of vector autoregressive, structural vector autoregressive, and structural
vector error correction models using the 'vars' package. Additionally, it provides functions
for diagnostic testing, estimation of constrained models, prediction, causality analysis,
impulse response analysis, and forecast error variance decomposition. Furthermore, it
introduces three fundamental functions, VAR, SVAR, and SVEC, for estimating these
models. The comparison between the methods is based on evaluating the mean error
produced by each approach. The findings of the study indicate that univariate linear
stationary methods outperform multivariate models. The analysis of the data was carried
out using the R software platform. The primary objective is to assess the performance of
univariate and multivariate time series models in handling the given data. The research
gap lies in the need for a comparative evaluation of SARIMA and VAR methods for time
series analysis in the context of monthly environmental variables. These models were
chosen due to their effectiveness in capturing temporal dependencies and interactions
among multiple variables in time series data, providing a comprehensive analysis of
climatic patterns in Ninahvah City, Iragq. The study aims to address the research gap by
comparing these models and justifying their selection based on their capabilities to
analyze the specified time series data.
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1. Introduction

A multivariate time series (MTS) comprises numerous time-related variables, and it is crucial to
understand that each variable's dependence is not solely influenced by its previous values but also
by interactions with other variables. Future values are forecasted using this dependency. This
dependency is used for forecasting future values. The goals of multivariate time series analysis are
to investigate the complex establishing links among variables and enhancing forecast precision. In
the early 1980s, the authors in [1] critiqued vector autoregressive models (VARS) led to vector
autoregressive models becoming a standard instrument in econometrics. This strategy was
immediately improved by the incorporation of non-statistical prior information since statistical
tests are commonly utilized to identify connections and intricate associations among variables. In
contrast to deterministic repressors, VAR models describe endogenous variables entirely through
their own histories. Structured vector autoregressive models (SVARs) facilitate the explicit
modeling of contemporaneous interdependencies between the variables on the left. Consequently,
these models attempt to address the deficiencies associated with VAR models. Sims posed a
challenge to the established multiple structural equation model paradigm initially developed by
the Cowles Foundation during the 1940s and 1950s. However, Granger in [2] and later Engle and
Granger in [3] introduced a powerful tool to the field of econometrics for simulating and evaluating
economic relationships: the concept of co-integration.

In recent times, the study of these fields has witnessed a convergence through the application
of vector error correction models (VECM) and structural vector error correction models (SVEC).
A comprehensive theoretical exposition of each of these models can be found in the monographs
authored by Lutkepohl [4], Hendry [5], Johansen [6], Hamilton [7], and Banerjee et al. [8]. The
main aim of this study is to compare the effectiveness of the univariate SARIMA model with the
utilization of VAR methods for analyzing multivariate time series data. The motivation behind this
research is to understand which approach is more suitable for modeling three specific time series
variables related to Humidity, Rainfall, and Temperature in Ninahvah City, Iraq. The study
explores various modeling techniques, including vector autoregressive, structural vector
autoregressive, and structural vector error correction models, using the 'vars' package in R. It also
offers a range of functions for diagnostic testing, model estimation, prediction, causality analysis,
impulse response analysis, and forecast error variance decomposition.

2. Methodology
2.1. Stationary

A time series is classified as stationary when its statistical characteristics remain consistent
throughout its duration. These characteristics, such as the mean and variance, remain unchanged
over time [9]. Conversely, these properties fluctuate significantly, the time series is considered
non-stationary. In practical terms, one can assess the stationary of a time series by visualizing it
through a plot. A time series is termed "purely stationary"” when the joint distribution of Z(t;), -,
Z(ty), and Z(ty + 1), -, Z(t, + 1), Where z(t) represents the random variable at time ¢, remains
constant is the same for all t4, -+, t,, T. To put it another way, the joint distributions are mostly
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unaffected by changing the time origin by a specific sum; instead, they must be determined by the
intervals between t,, -+, t, [10]. The time series Z, is deemed to exhibit weak stationarity when
two conditions are met: (a) The expected value of Z; = pu, which is a constant vector with
k —dimensions, and (b) The covariance of Z; = E[(Z; — W) (Z; — n)'] = Z,, a constant k X k
positive-definite matrix. The random vector Z's expectation and covariance matrices are indicated
by the letters E(Z) and Cov(Z), respectively. To establish if the time series is stationary, the
collection of autocorrelations for the time series can also be used. The univariate time series
stationary is examined using the Unit Root Test, and a multivariate time series is examined using
the Co-integration test [11]. Consider the following two situations:

* When each univariate time series within an MTS item exhibits stationarity, the MTS item itself

is considered to be stationary.

* If any of the individual time series within a multivariate time series (MTS) exhibit non-
stationarity, a cointegration test should be conducted to verify that the MTS as a whole is also
non-stationary. We may make the Z; series stationary by differencing if it has not already been
done. Z; = Z; — Z,_, = VZ, denotes the differenced series. Below are the definitions of the
Backward Shift Operator B:

B™Z; = Z_. The backward difference operator V is defined by V=1—B. Another method for
determining whether the data is stationary or not, at lag k, the autocorrelation function is defined
as:

oy = E[(Zt — W (Zesk — H)]
T E[Z— 02(Zok — WA

where z, : stands for observation. u: Mean of observation, p: autocorrelation function.

The cross-correlation for lag k given two time series variables X; and Y; is given as ry, =
Cxy/Sx Sy Where, ¢y, = % YR — D) (Ve — V), k= 0,1,2 ...;Xand y are the sample means
of x; and y;, sy and s, are the sample standard deviations, respectively [12], Process of White

Noise. A white noise process with the formula a, = (a;, **+,ak)’ IS @ continuous random vector
that satisfies the conditions E(a;) = 0,E(a;d;) = Z,,and E(a;ag) = 0 for s # t. Unless
otherwise specified, the £, = covariance matrix is assumed to be non-singular as pointed in [11].

2.2. Vector Autoregressive (VAR) Model

One approach to representing the interplay among multiple time-varying variables is through the
utilization of the vector autoregressive (VAR) model. This model provides a streamlined
representation of dynamic interactions, wherein each internal variable is influenced by its own past
values as well as the past values of all other internal variables. The simple p-lag Vector
autoregressive VAR (p) method looks like this:

Zt =cCc+ ®1Zt—1 + ®2Zt—2 + -+ @pZt—p + at ;t = 01 ilr izl Ty (1)
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where Z; = (Z1, -+ Zyxy)' is @ (kx 1) vector of time series variable, @; are fixed (k X k)
coefficient matrices, ¢ = (cq,*--,cx)’ is a fixed (kx 1)  vector of intercept terms, a; =
(a1p -+ agy)’ is a white noise procedure with (k x 1). The procedure can be written clearly in
matrix form:

Zit %1 %2 .o Q%k\ Zit—1 %1 %2 .o Q%k\ Zit—2
Z?t = 031 93 Do D2r ZZ§—1 + 03, 03, D D31 sz—z 4ot
Zkt Q)il Q)iz C jSk Zkt—l Q)il @iz S jSk Zkt—Z
14 14 14
P11 P12 . . Q)lk th—P Ayt
P 14 14
0o 0% o o Op || Zaeop | 4 [ %2 (2)
®z1 Q)iz o Q)ik Zit-p Akt

2.3. Stable VAR (p) Processes [13]

If every root of the matrix lies within the unit circle, and the absolute values of the roots of
matrix @; are less than 1, then process 1 exhibits stability. That is, if det(I, — @,Z — --- — ZP) #
0 for |Z| < 1, then a stationary VAR (p) process Z;;t = 0,+1, %2, -+ is stable.

2.4. A Stable VAR(p) Process' Autocovariances
The result of deducting the mean from VAR (p) is
Zi—pn=01Zeer — W+ -+ 0p(Zep — W) + 2. 3)

After dividing both sides by (Z._, — n) " and calculating the expectation, having at [ = 0 by
utilizing:

(1) = L(=1),
[(0) = 01(Zesy — W)+ + Op(Ze—p — 1) + Za,
= 0,1 + -+ 0, (p) + Z,. 4)
If u>0,then

L, =¢,I,d-1) +"'+®pl—‘z(l_p)’+za' (5)
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If @4,-+,0, and I;,(p — 1) are provided, the auto covariance functions I',(1) for [ > p can be
derived from these equations.

2.5. A Stable VAR (p) Process's Autocorrelation

Obtaining the autocorrelations of a stable VAR (p) process is achieved by extracting
information from the matrix:

R,(D) = D7'L,(HD7Y, (6)

hence, D is a diagonal matrix with the Z; component's standard deviation on the main diagonal.
Consequently

1 . o ] (7)
\/Y11(0)
D™t=| o)
0 1
VYrk(0) ]

and Z; and Z;_, have the following correlation:

0::(1) = vij(D (8)
1 )
] Vvii(0) Iij (0)

which is just the ij— th element of R,(l). The model's characteristic roots are, once again, the
inverses of the solutions. As a result, stationarity necessitates that all characteristic roots have a
modulus of less than one. The ACF satisfies the difference equation(l - @¢,B—@,B*— - —

Q)po)p = 0, for p = 0 a stationary AR (p) sequence. The ACF plot of a stationary AR (p) model

will display a blend of damped sinusoidal and exponential decay patterns, influenced by the unique
source it originates from, leading to varying levels of similarity in the shapes observed.

2.6. Order Selection by VAR

The three selection criteria that will be utilized to evaluate the VAR process order p are as
follows:

(i) Employing the Akaike Information Criterion (AIC) method [14], as introduced in [15],

AIC(p) = ln|fs(p)| + % (number of estimated parameter)
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- 2
= In|T,(p)| + 2=

(ii) Given Hannan and Quinn [16], the Hannan-Quinn Criterion (HQC), follows

. 2Ink
HQC(p) = In|E ,(p)| + N (Parameters that are freely estimated)

= In|E,(p)| + ZIHE\IIHN) pkZ.

(iii) Using the Bayesian Information Criterion (BIC) [17],

-~ Ink - InN
BIC(p) = ln|Z a(p)| + N (Parameters that are freely estimated = ln|Z a(p)| + N pk?,

where the VAR order is p,

The estimated white noise covariance matrix X, is represented by X, . In a vector time series,
there are k different time series components. N is the sample size. Each estimate is selected to
minimize the criterion’s value in each of the aforementioned parameters.

2.7. Forecasting

If it is determined that the fitted model in 1 is sufficient, forecasts can be made being used. The
following estimates are used to create forecasts:

Ze=C401Zey + BpZig + -+ BpZep +ag;t = 0,41, 42, . ©)

Given the forecast origin t., the forecasts so produced are those with the smallest mean square
error [4].

Using vector moving average models for forecasting (VMA). Considering that the model is

recognized and serves as a source for prediction. The VMA forecast (q). Generally, for h-step
forward forecast with h < g, as occurs

q
Zi(h) = pu - Z 0t +n—i- (10)
i=1

Utilizing VARMA models for prediction, we are employing the criterion of minimizing mean-
squared error to delve into the future projections of a time series Z; with a VARMA(p, q) structure,
similar to the VAR models of (9). As stated below, for the VARMA (p, q) model

p
Zi(h) = Qo + z DiZesn—i- (11)
i=1
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3. Applications

Data pertaining to the monthly averages of temperature (T), rainfall (R), and humidity (H) for
Ninavah, Irag, ranging from 1976 to 2001, were examined using the R program. In this example,
we'll refer to humidity as (H, Z.), precipitation as R (R, Z,;), and temperature as (T, Z3;). The
multivariate time series can therefore be described using the random vector Z; = (Z1t, Zy¢ , Zs3t-
The time series data for these three variables are presented in Figure 1 in a variety of graphical
formats. The core scientific challenge outlined in the text revolves around the thorough analysis
and modeling of these multivariate time series data, specifically focusing on climate variables—
humidity, precipitation, and temperature. The overarching goal is to uncover intricate relationships
and discern patterns within the dataset. Additionally, the aim is to construct a robust multivariate
model capable of accurate forecasting and in-depth analysis.

Zoo o

serlas
B=H
120 4 —  mlnral

Tl

A :‘WUHMIJJUA AR Mﬁ\

1SS0 19ss 1990
Time

Fig. 1. The three raw series' time series plot (H, R,T).

The Unit Root test is used to determine whether univariate time series datasets are stationary. In
contrast, the Co-integration test (original) is used to examine stationarity in multivariate time series
datasets. The Augmented Dickey-Fuller (ADF) test can be used to determine whether a series has
a unit root. This is predicated on the assumption that a trend-lined series will display a unit root
and a significant p-value.

H,: The data is non-stationary and has a unit root.

H;: The data are static and have not yet produced the results in Table (1).
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Table 1. Original and transformed data stationary testing of Nineveh time series data sets for the
period 1976 — 2001

Stationary testing

i Phillips-
Datasets | Responses Dickey- | p- Perron Unit P- KPSS P-
Fuller | value value Level | value

Root Test
R Zi -7.339 | 0.01 -70.58 0.01 | 0.25798 | 0.1
H Z¢ -5.9331 | 0.01 -154.35 0.01 | 0.15987 | 0.1
T Zs -8.5794 | 0.01 -67.175 0.01 | 0.03855 | 0.1

The alternate proposition becomes relevant when the p-value rejects the null hypothesis and
exceeds the 0.05 threshold. In the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test, the p-value
surpasses the 0.05 threshold, signifying the absence of a unit root and, consequently, stationarity
within the series. To ascertain trend stationarity, researchers will assess the null hypothesis; a low
p-value suggests the presence of a non-trend stationary signal with a unit root. To test the Stability,
all characteristic roots should have a modulus of less than one. The results in Table (2) represent
the original data.

Table 2. Roots of the stability characteristic polynomial

The characteristic polynomial's roots
0.9018 0.9081 0.9081 0.9049 0.9049 0.8934 0.8825 0.8825
0.8803 0.8803 0.871 0.871 0.8214 0.8214 0.8148 0.8148
0.8036 0.8036 0.7866 0.7866 0.7509 0.7509 0.691  0.691
0.4724 0.2125 0.2125

Log Likelihood -1795.702

All of the roots k are inside the unit circle. We have no strenuous roots. Our system is generally
stable.

3.1. Co-Integration Test

Co-integration testing is a method used to assess the accuracy of long-term linkages between
variables because none of them now exhibit stationarity. If the variables exhibit co-integration, it
implies that they have an ongoing link, even if they are not stationary at the moment [18]. They
also offered the Maximum Eigen Value test and the Trace test as two more methods for counting
co-integrated vectors. While the Trace test looks into the potential of r+1 co-integrating vectors,
the Maximum Eigen Value test looks into the possibility of a maximum of r co-integrating vectors
[19]. They claim that the Maximum Eigen Value test is the best technique for determining the
number of co-integrating vectors. After d distinct differentiations, an integrated sequence of order
d, designated as 1(d), becomes stationary.

H,: no co-integration of variables H;: co- integration of variables
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The results in Table 3 represent the data.

Table 3. Findings from Johansen's Co-integration Examination for H, R, T

Unrestricted Co-integration Rank Test (Trace)

Co-integration rank(r) Eigenvalue Trace stat. Critical Value 5%
r=0" 8.766264e-02 35.55 34.91
r<=1" 5.444259¢-02 18.76 19.96
r<=2" 4.546822e-02 8.52 9.24
Unrestricted Co-integration Rank test (Maximum Eigenvalue)

Co-integration rank(r) Eigenvalue Trace stat  Critical Value 5%
r=0" 8.766264e-02 16.79 22.00
r<=1" 5.444259e-02 10.24 15.67
r<=2" 4.546822e-02 8.52 9.24

The Trace test reveals the presence of three co-integrating equations with a significance level
of 0.05. The asterisk (*) signifies the rejection of the hypothesis at the same 0.05 significance level.

The column of r in Table (3) represents the rank and we know that this is some indication of the
number of co-integrating relationships. When r = 0, the test statistic is 35.55 > 34.91. This implies
that we do not accept the null hypothesis, which proposes that r > 0. As such, there is some co-
integration present. When r < 1, we do not find enough evidence to reject the null hypothesis
because 18.76 < 19.9. When r < 2, this again means that we do not find enough evidence to reject
the null hypothesis because 8.52 < 9.24. Therefore, we conclude that there is at most 1 co-
integrating relationship that presents the Johansson test when we choose the maximal eigenvalue
statistic. We are unable to dismiss the null hypothesis. None of the statistical values falls below
the 5 percent threshold. It means no co-integrating relationships present the Johansson test.

3.2. The Raw Data Correlation Matrix

The three variables are highly connected, as shown by the correlation matrix (Zcorr)) below. As
a result, the multivariate technique will take into account the interrelation between the variables

H 1 0.636 —0.868
Corr (HR,T)=R| 0.636 1 —0.461 |,
T \-0.868 —-0.461 1

Cov (H,R,T) =R 403.2 1764 —117.4

H<229.1 403.2 —79.9)
T\-799 -1174 36.9
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3.3. The Cross Correlations
Table 4 shows the cross-correlation matrices at various lags (lags 1-12).

High values demonstrate that the variables are interdependent and a multivariate model can be
successfully fitted to the data. A simple matrix s, = [sg,ij] is constructed for each sample CCM
P as follows:

+if peyy 2 2/4T,
Seij =3~ if Prij < —2/T,
if |Beij| < 2/T,

where: p, is a consistent estimate of p,, T is a total number.
The results in Table (4) represent the original data.

Table 4. displays example Cross-Correlation Matrices depicting the Monthly Simple Returns of
three different Indexes in their raw form (H, R, T).

Lag 1l lag 2 lag3 lag 4 lag 5 lag 6
+ + —1r - - - A1 - 1 [ Hr
+ . - - l e s T R - [
s R & s + + - + + :

Lag7 lag 8 lag 9 lag 10 lagll lag 12
+ + QM+ + -1 [+ + r 1M - F1[— - +
+ + |+ + - [+ - - [ l - - +|l- - +
- — +ll= - 41 - - +]b J4+ + -+ + -

Table (4) illustrates the simplified CCM for monthly data of (H, R, T). Notable cross-
correlations, which are statistically significant at the estimated 5% level, are mainly observable at
the lags of 8 and 9.

3.4. Selecting a Model

AIC, BIC, and HQC at various lags are shown in both Table (5), which represents the original
data, and Figure (2), which depicts the data. At lag 9, a three- selection process reaches the minimal
values (the bolded values). VAR (9) is, therefore, the model of choice in Table (5): Empirical Lag
Selection.
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Fig. 2. lllustrates the information criteria applied to (H, R, T) data. The lines, depicted as solid, dashed,
and dotted, correspond to AIC, BIC, and HQ, respectively.

Table 5. Empirical Lag Selection

AIC(n) HQ(n) SC(n) FPE(n)

selection 9 8 8 9

1 14.28293 14.34716 14.44137 15.95881

2 13.20192 13.33038 13.51880 541441.48394

3 13.04705 13.23973 13.52237 463836.94951

4 12.84215 13.09906 13.47591 378027.24396

5 12.73620 13.05735 13.52840 340211.74568

6 12.63510 13.02047 13.58574 307749.95214

7 12.24344 12.69305 13.35252 208259.68283

8 12.04285 12.55669 13.31037 170670.10872

9 11.97888 12.55694 13.40484 160410.83869
10 12.00919 12.65148 13.59359 165760.36272

3.5. Model Presentation

The VAR (9) model with significant parameters is represented in matrix form as seen in Table (6),
which represents the original data, utilizing equation (2) in the approach. The optimal lag value is
p =9 according to AIC and FPE, p = 8 based on the HQ criterion, and p = 7 according to the SC
criterion. They performed diagnostic analyses on the residuals after calculating a VAR with both
a constant and a trend as deterministic predictors for each of the nine different lag orders.
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21t 0.341 0.019 —0.187\ /Z1t-1 —0.126 0.023 0.672 Zit—>
Z,x | =1 0567 —0.056 0.393 Zoi—1 |+1—-0.887 0.106 —0.964 || Zy— |+

Z3t —0.011 -0.009 0.466 Z3i_q 0.027 —0.004 —0.149/ \Z3_,
0.084 0.036 0.236 Z1t-3 0.007 0.0139 0.315 Zit-a
<—0.267 0.123 —0.724) <22t-3> + <—0.059 0.089 1.083 ) (Zzt—4) +
—0.039 0.002 —0.008/ \Z3_3 0.016 0.005 —0.082/ \Z3_4
0.101 0.035 0.121 Zit—s —0.084 0.0001 0.632\ [Z1t-s
<—0.483 0.147 —-1.02 ) Zyi—s |+ —0.523 0.153 2.891) (ZZt—6) +
—0.008 —0.004 —0.131/ \Z3;_s 0.068 —0.003 0.148/ \Z3;_¢
0.202 —0.001 —0.232\ [/Z1t-7 0.277 —0.039 —0.497\ [Zit-s
< 0.381 0.208 —2.207) Zot—7 |+| 1.002 -0.118 2.337 )(ZZt_g) +
—0.034 -0.000 0.177 L3i_7 —0.069 0.011 0.291 Z3t—g
—0.083 0.006 —0.109\ /Z1it-9 dit
< 0.196 —0.075 —0.087) Zat—o |+ aZt)- (12)
0.112 -0.010 0.053 Z3i—o Azt

The information is presented in Table (6) along with the summarized results and the graphical
representation of equation (12).

Table 6. Results for the Endogenous variables: H, R, T

Statistic H R T
Multiple R-Squared 0.991 0.6873 0.9906
F-statistic 635 12.7 608.7
Adjusted R-squared 0.9894 0.6332 0.989
Residual standard error 6.893 38.87 1.643
p-value <2.2e-16 <2.2e-16 <2.2e-16

H/ 47.514 169.310 —-2.705
Covofresiduals=R| 169.310 1510.815 —3.646 |,

T \ —=2.705 —3.646 2.699

H 1 0.6319 —0.2388
Corr of residuals = R{ 0.6319 1 —0.0571 |.

T \—-0.2388 —-0.0571 1

4. Diagnostic Testing

Once the multivariate model 12 has been acquired, the next step is to verify the correctness of
the model fit. The following diagnostic techniques are used to this end.

4.1. Residual Autocorrelation Function

The following hypothesis is used, as described in Section (1.1.3) of the methodology:
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Hy: puv i =0 versus Hy: puwv i #0
We had a total of n= 192 series.

As a result, the residual autocorrelation function's boundary state has the form \/% = 0.144, and

. . . . 2
H, is rejected if |ry,,i| > NS =0.144.

When examining the values of autocorrelations in the residual correlation matrices at various
lags (lags 12), it was found that none of the residual autocorrelations exceeds 0.144. Figure (1)
represents the original data with|r,,,i|. This suggests that the residuals conform to a pattern
consistent with white noise. To put it another way, the fitted model is sufficient.

1) Test auto correlation for serial correlation (PT) [20]

The graphs, one for each equation, demonstrate the ACF and PACF of the discrepancies, along
with a discrepancy plot and a practical distribution chart. Additional justifications are provided by
the plot approach for changing its design. Figures (3-5) represent the original data.

Residuals of H Histogram and EDF
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Fig. 3. Explains the Time Series Plots of Residuals (a;) for H.
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Residuals of R Histogram and EDF
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Fig. 4. Explains the Time Series Plots of Residuals (a,;) for R.
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Fig. 5. Explains the Time Series Plots of Residuals (a3;) for T.

Explain the Time Series Plots of Residuals (a3;) for T. Heteroscedasticity: ARCH test ([21], [22]

A statistical model called autoregressive conditional heteroscedasticity (ARCH) is used to
assess and forecast volatility in time series. The following regression is the foundation for the
multivariate ARCH-LM test. (The univariate test is considered a specific case of the exhibit below
and will be omitted):

vech(fly Uf) = Bo+ Byvech(fly_1G{_; )+ ...+ Byvech(f_q0ii_4 ) + vt
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E(u.) = 0 and positive time invariant unambiguous covariance matrix E (u, ul) = ¥, (white
noise) define u; as a K-dimensional process [23]. In this context, v, represents a spherical error
process, and the operator 'vech' is used to stack the columns of symmetric matrices, starting from

the main diagonal and moving downward. The dimension of S, is%K(K+ 1), and for the

coefficient matrices B; where i = 1,...,q, %K(K +1) % %K(K + 1). The null hypothesis is:
Hy:= By = B, =...= B, = 0 and the alternative is: H;: By # 0 N B, # 0 N...N B, # 0. The test

statistic is explained as: VARCHy(q) = %TK(K + 1)R2, with R% =1-— K(K2+1) tr(202yY),

and {2 assigns the above-mentioned regression model's covariance matrix. y%(qK?(K + 1)?/4)
is the distribution of this test statistic.

3) Normality: Jarque & Bera (JB), Skewness, Kurtosis

The Jarque-Bera tests for univariate and multivariate series, as well as separate tests for
multivariate skewness and kurtosis (p), are performed on the VAR residuals. By performing the
Jarque-Bera test on the residuals following standardization via the Choleski decomposition of the
variance-covariance matrix for the centered residuals, one can create a multivariate version of this
test. For the multivariate scenario, the test statistics are as follows:

82 (K@) -3)°
- 6/T 24/T '

JB

where T is the sample size, $?(r), K (r) are skewness and kurtosis determined the from sample
data, and K (r) — 3 is the excess kurtosis. More specifically, if {r, , ... ,r;} is a variable with T
observations. Beloware the definitions for sample skewness and kurtosis.

T T
\ 1 ] 1 _
S(T) zm;(rt—r)3,and K(T) —m;(rt—r)4'

when 62 considering the statistics related to sample variance, 7 is the sample mean of S(r), itis
important to note that both S(r) and K(r) follow a normal distribution with zero mean and
variances of 6 /T and 24 /T, respectively. This is based on the assumption of normality in the data.
As a result of this assumption, the JB statistic conforms to a Chi-square distribution with two
degrees of freedom in the asymptotic sense.

To evaluate whether the data conforms to a normal distribution, we can use the JB statistic. If
JB exceeds the critical value JB > x3,_,, where a represents the significance level, then we have
grounds to reject the null hypothesis (H,), which posits that the data follows a normal distribution.
These findings are in line with the research conducted in [24], as presented in Table 7, which
showcases the original data results.
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Table 7. Diagnostic tests of VAR (9) forH, R, T

Null Hypothesis Test Statistic p-value
no autocorrelation PT 92.059 0.00991
no suffer from heteroscedasticity ARCH 143.25 0.9799
not normality JB 69.979 4.13e-13
Kurtosis 37.419 3.751e-08
Skewness 32.56 3.988e-07

The p-value of 0.00991 is less than the significance level of 0.05, disproving the null hypothesis
that there is no autocorrelation. On the other hand, the p-value of the heteroscedasticity (ARCH)
test is greater than the 0.05 level of significance, which encourages us to keep the null hypothesis
in place. Practically speaking, this means that as the fitted values of the response variable increase,
the variance of the residuals should not increase as well. Regarding the Portmanteau Test (PT),
the p-value of the normalcy test is below the 0.05 significance level, which allows us to reject the
null hypothesis.

4) Structural Stability (SVC) [25]

The stability test is used to determine if there are any structural breaks. If we are unable to test
for structural breaks and one occurs, the entire estimate may be thrown off. To avoid this, we use
a simple inspection technique that involves plotting the cumulative total of subsequent residuals.
A structural change has occurred at that particular junction if the total sum of the data points on
the chart exceeds certain essential criteria. Fig. 6, which shows the unedited dataset, serves as an
illustration of this occurrence.

OLS-CUSUM of equation H

Empirical fluctuati

10 05
|

Time

Empirical fluctuati

10 05

Empirical fluctuati

-0 05
|

Fig. 6. CUSUM Test for H, R, T
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There are no points on this graph beyond the two red lines, so the system is stable.

4.2. Granger Causality

43

The interdependence structure of the underlying systems of multi-variate time series was
investigated. Utilizing Granger causality analysis, we can rephrase the content related to the
outcomes presented in Table (8), which encapsulates the unaltered dataset.

Table 8. Causality tests for H, R, T

Null Hypothesis Statistic(F-test) p-value
H does not Granger-cause R , T 3.3014 6.448e-06
R does not Granger-cause H ,T 1.9389 0.01179

No instantaneous causality between: Hand R, T 55.968 7.028e-13
T does not Granger-cause H ,R 3.6086 1.0 24e-06
No instantaneous causality between: R and H , T 53.091 2.962e-12
No instantaneous causality between: T and H,R 12.242 0.002196

We reject the null hypothesis (Ho) due to the p-value being below the significance level of 0.05.

4.3. Forecasting

The built model can be used to generate forecasts since it meets the basic assumption of the model
adequacy. The MSE values produced using the program R, are shown in Table (9), which
represents the data along with the multivariate model's forecasts for the period (Oct.2000 -
May.2001). Table (9) represents the optimal parameters of the multivariate, univariate and MSE

for the fitted ARIMA model.

Table 9. Multivariate VAR (9) model's and univariate and MSE for the fitted ARIMA (H, R,T)

time series
Time VAR(9) SARIMA (1,0,0)(1,1,1)s
Series MSE MSE
H 49.2073 15.6396
R 497.190 366.388
T 3.2624 2.2405
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Fig. 7. Forecasts of the Multivariate Model VAR (9)
4.4. Forecast Error Variance Decomposition (FEVD)

A Forecast Error Variance Decomposition assesses the mutual influence of variables through the
utilization of the VAR model. To determine the FEVD, we analyze the forecast errors from each
equation within the fitted VAR model. Subsequently, the prepared VAR model quantifies the
proportion of each error manifestation attributed to unanticipated fluctuations in the counterpart
variable (forecast errors). The variance decomposition method aids in the interpretation of the
VAR model. The amount of variance in the dependent variable described by each independent
variable can be determined. FEVD describes how a potential shock in a one-time series affects the
future uncertainty in the other time series of the system. Since this process progresses over time, a
shock to a time series can be insignificant in the short run but critical in the long run. When a
vector autoregression (VAR) model is used, FEVD, a crucial technique in econometrics and many
multivariate time series analytic contexts, helps to comprehend its consequences. The degree to
which one variable in the autoregression influences the others is revealed by this decomposition
of variance. It evaluates the percentage of forecast error variation for each variable that may be
attributable to external shocks affecting the other variables in the context of the data shown in
Fig.7.
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Fig. 8. Forecast Error Variance Decomposition from VAR (9) model fit.

These Fig. 8 graphs show percentages of the shook. The first plot depicts the FEVD for RH
starts. It appears that although we were borderline on whether to conclude that Granger causes RH
starts, the FEVD reveals that the magnitude of the causality is tiny anyway, while that of RH is
greater on rainfall and Tm starts. The second plot shows the FEVD for rainfall. It appears that
although we were borderline on whether to conclude that RH starts rate Granger cause rainfall and
Tm.

5. Conclusion

The evolution of numerous vars package functions and strategies is described in this article. These
improvements give researchers an easy-to-use setting for conducting VAR, SVAR, and SVEC
analyses. This is primarily accomplished by putting impulse response function implementation
approaches into practice, breaking down forecast error variance, making forecasts, and offering
diagnostic testing tools. It also provides tools for determining the model's ideal lag duration,
evaluating stability and causation, and performing further diagnostic tests. The article also covers
how to determine the co-integrating rank using VECM, which can easily be changed into its level-
VAR equivalent. The data was not stationary, as we observed. However, an effective method of
transforming a non-stationary series is stationary. To ascertain the model's order, compute the
differences and build a correlogram. SARIMA (1,0,0)(1,1,1)8 was chosen for univariate, and the
VAR model was then used. Then, using MSE, we assess the forecasting precision. After examining
each forecasting accuracy, we concluded that SARIMA would produce better results than VAR in
the presence of low-correlated variables and the absence of numerous co-integrations among
variables because of its higher forecasting accuracy. They should be aware that there is a
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correlation. When variables exhibit a strong correlation, the VAR model can be utilized to yield
highly favorable outcomes. Limitations of this study include the focus on monthly environmental
variables in Ninahvah City, Iraq. Future research could explore other regions, incorporate
additional variables, and assess model performance under diverse climatic conditions.
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Uhwswth SARIMA 1 puquuisuth VAR Unpbjutph hwdbdwwnwuljub
JEpnidnipinih dudwbwluyhtt pwppbph Juthrmunbudwi hwdwp.

J1ihduwyh hnthnjowlwuutph nhuyph niundbwuhpnipynit bpuph
‘Uhtwhyw punupnid

Uwdhpu U. Opdw, Zuuwt 2. Quuphy b Uugpkp @. Upnnijuqhq

TInithnjh hwdwjuwpwl, Zhdtwjut Yppnipjut pniky, Inithnly, bpup
e-mail: Sameera.Othman@uod.ac, hasan.hazim@uod.ac, sadiqg.taha@uod.ac

Udthnthnid

Uju nuumdttwuhpnipyniup tkpwenid £ hwdbdwwnnipynit SARIMA dhwswth dnnbih
Jhpwndwi b VAR dbpnnutph (JEyunnpuhtt wwnnnkqpbiuhy dngbjubp) ogunugnpsdwt
dholi puquuswth dwdwbwluyhtt owpptph Jbpnidnipjutt hwdwp: dhpnidnipiniuh
hpujubwgynid £ knwdwdwtwljjw owpph thnthnjuwlwutph dhongny, npnup unnwgyky ku
Ppwph Uhtwhyw punupnmid junttwynipjutt (H), mbnnidubph (R) b okpdwunhgwh (T)
wduwlut vhohtp ubpyuywugunn wjujutphg: Uju swppbpp dnpbjwynpbint hwdwp
oquuugnpdynid ki b dhwswth, b puquuswth dwdwbwlught puppbph dnnbkgnidubpp:
Znipjudp nipjugénid E bwb JEuninpughtt wunnntkgptuhwgh, junnigjuspuwjhtt Jejunnnph
wywnnnkgpbuhugh b Juemgdwépuwjhtt Jijuinph uppuh niqndwbt dnpbjubph
hpwwbtwgnudp vars thwpkph udheongny: Fugh wyn, wjut wwwhnynid E wpownnpnohy
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phunwynpdul, uwhdwbwthuly Unnpkjubph guwhwwndw, juthunbudwl,
wuwndwnwhtnbwipughtt Ybpnisnipjut, hdwyniuwihtt wpdwquuph YEpnisnipjut b
jutjpugnipwljdwt uppwih otnnidubph mwppunisdwt gnpdwnnyputp: Fugh wyg, wju
Unpbjitpp qiwhwinkim hwdwp tkpypdnud o bpp hhuwpup gnpsunnypikp VAR,
SVAR L SVEC: Utpnnubph hwdbdwwnnipmniup hhdudwsé b jnipwpwignip dnnbkgdwb
wnpntupnid wpwowgws Uhohtt uppwih gquwhwndwt ypu: Zknmwgnuinnipjuts wpyniuputpp
gng Lt tnwhu, np dhwswth gdwyhtt unwughntiwp dkpnnutpp gipuquignid bu puquuswth
Unpbjukpht: SYjwjukph Jbpnisnipiniup juunwpytl) £ R spugpuyhtt hwppwljh dhengny:
Zhdtwljut btywwnwlp myjujutph dywldwt dke dhwswth b puquusmth dudwbwljuyht
owippliph Unpkutiph juunwpnnuljuh quwhwwnnud b ZEnwgnunntpjut pugp uywinud £
wduwlut puywhywiwluwt thothnjpwlwiuiubph  hwdwnbpunnd  dudwbtwljught
owpptph Ybpnusmipjut SARIMA L VAR dbpnpubph hwdbdwwnwlut quuhuwndwub
wihpwdbonmput dke: Uju dUnphjukpt punpdl] Bu dwdwbwlughtt  ukphwubph
nyjuubph dke puquuphy thnthnpuwjuutbph dhol dudwbwluwyhtt juppjuénipiniuubph
I hnjuwqnbgnipyniukph gpuiigdwi wpyniba]knnpyut pinphp] wuyywhndkym] Ppuph
Uhtuwhyuw punuwph jjpdwjuljut ophttwswihnipniutbph hwdwwywpthwly JEpnidnipinii:
NMuunidtwuhpnipjut tyuwnulju | jpugul] hbnwgnunipjut pugp” hwdbdwnting wju
Uunpbjutpp b hhdtwynplnd pputg punpmipnitp’ hhdudbing todws dudwbwljught
owipph nyjuubpp yEpniskint bpwig jupnnnipyniuttph Jpus:

Puiiunh punkp’ Uhwsuh dwdwiwljughtt puppbp, Auquusuth gnpsplipug, Muswdl
hwpwpbpulgnmipmit & VAR, Qwbjuwmwnbunid, ARCH-LM phuwn, Ywnnigjwuspuwjhl
Juyniunipiniu (SVC)

CpaBnutensnslil ananu3 ogaoMepHsx SARIMA u mEOoromepusix VAR
Moziesieii [jia MPOTHO3MPOBAaHNA BPEMEHHBIX PAZIOB: TEMaTHYECKOE

HCCIeflOBaHMe KIMMaTUIYEeCKHX mepeMeHHbIX B ropoge Huraxsa, Upak

Cammpa A. Otman, Acad A. xammr u Canek T. A6myma3u3

Yuusepcuret Jlyxoka, Komremk 6azoBoro oopazosanus, Jlyxok, Upak
e-mail: Sameera.Othman@uod.ac, hasan.hazim@uod.ac, sadigq.taha@uod.ac

AHHOTaANuA

[lanHOe uccienoBaHMe BKIIIOYAeT CPaBHeHUe IIpUMeHeHuA ogHoMepHo# Mozenu SARIMA u
KCII0/Ib30BaHMA MeTOZ0B VAR (BEKTOPHBIX aBTOpPerpeCcCHOHHBIX MOieIei ) 1711 MHOTOMEPHOTO
aHajIM3a BpPeMEHHBIX PANOB. AHAJIu3 IPOBOZUTCA C KCIIOJNb30BAaHUEM IIEpEMEHHBIX TpeX

BPEMEHHBIX PAAOB, IIOJIYYE€HHBIX Ha OCHOBE€ JAaHHBIX, IIPEACTABIAIOMIHNX CpeAHEMECIIHBIE
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sHaveHus BiaaxHocTu (H), xomnuectBa ocazkoB (R) u temmneparyps: (T) B ropome Hunaxsa,
Wpax. /lng MofeTMpoBaHUA STUX PAJOB UCIIOIB3YIOTCA KaK OJJHOMEepPHEIe, TAK 1 MHOTOMEepHEIe
IIOIXOZBI K BpeMEeHHBIM psAzaM. B cTaThe Takke OIIMCHIBAETCS PeaTu3aluisi Mofelel BEKTOPHOU
aBTOPErpecCUy, CTPYKTyPHOH BEKTOPHOHM aBTOPerpecCMH M CTPYKTyPHOH BEKTOPHOM
KOPPEeKIINY OUIMOOK C MCIIOIb30BaHMEM ITaKeTa vars. Kpome Toro, oH npegocrasiser QyHKIUN
IJIS ~ OUAarHOCTUYeCKOTO  TeCTUPOBAaHUA, OLIEHKM Mojeleili C  OrpaHHYeHHIMH,
IPOTHO3UPOBAHMA, AaHAJIW3Aa INPUYNHHO-CIEJCTBEHHBIX CBfS3€l, aHaIW3a WMITYJIbCHBIX
XapaKTEePUCTUK U Pa3IOKeHUs JUCIePCHU OmMOOK Iporuo3a. Kpome toro, Aja oLeHKU 3TUX
Mozeneir BBomaATca Tpu (yHmameHtambHble ¢yHknuu: VAR, SVAR u SVEC. CpaBHenme
METOZOB OCHOBAaHO Ha OIleHKe CpefHeH OmMOKY, CO37aBaeMOH KaKIbIM IIOAXOIOM.
PesynpTaTsl HCCIemOBAaHUA IIOKA3BIBAIOT, YTO OJHOMEpHBIE JIMHEeITHbIe CTallHIOHAPHbIE METO/IbI
IIPeBOCXOJAT MHOTOMepHBle Mojenu. AHamu3 [AaHHBIX IIPOBOIUJICA C HCIOJB30BaHHEM
nporpaMMmHO# nnardopmer R. OcHoBHaA 1ers — oueHNUTh 3PPeKTUBHOCTh OZHOMEPHBIX U
MHOTOMEPHBIX MOJieJIeil BpeMeHHBIX PAIOB Ipu 06paboTke JaHHEIX. [Ipobes B ucciemoBaHUAX
3aKJIIOYaeTCs B HEOOXOZMMOCTH CpaBHUTeNbHOI oueHKu MeTonoB SARIMA u VAR mna
aHa/JIN3a BpeMEHHBIX PAJOB B KOHTEKCTe eXeMeCAYHBIX IIepeMeHHbIX OKpYXKalollei cpefbl.
Ot Mopenu ObUIM BbIOpaHBI U3-32 KX D5(P(PEKTUBHOCTH B OIpeNeeHHU BPEeMEHHBIX
3aBHCUMOCTEN U B3aMMOJEHCTBUI MeXTy MHOXECTBOM IIepeMEeHHBIX B JAHHBIX BPeMEHHBIX
pAmOB, obecreyrBas BCECTOPOHHUI aHAINW3 KJIMMAaTHYeCKUX Mojeseil B ropome Humaxsa,
Hpak. MccrnemoBaHue HaIpaBleHO Ha YCTpaHeHHe IIPOOEIOB B MCCIENOBAaHUAX ITyTEM
CpaBHEHMS DOSTUX Mojelelli M OOOCHOBaHUA HUX BBIOOpAa Ha OCHOBE HUX BO3MOXKHOCTEH
aHAJIN3UPOBATh YKa3aHHbIE JaHHbIe BpeMEeHHBIX PALOB.

Kiiogessie cmoBa: OpHoMepHEIH BpeMeHHOH psaz, MHoromepHsrii mporecc, B3anmuas

koppesanus u VAR, Ilporuos, Tect ARCH-LM, CtpyxkrypHas ycroitausocts (SVC)
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Abstract

Let {0,1}" be the set of all finite strings of elements from {0,1}, and let P be the
class of problems recognized by deterministic Turing machines, which run in polynomial
time (a problem is simply a subset of {0,1}*). This article defines the class P and shows
that P is isomorphic to the class P.

Based on the notions of 7-mitoticity and T-autoreducibility, K.Ambos-Spies introduced
the notions of P-m-mitoticity and P-m-autoreducibility. The notions of P -m-mitoticity
and P-m-autoreducibility are introduced by analogy with the mentioned notions.

The article proves that the index sets {z | W, is P-m-mitotic} and {z|W, is P-m-
autoreducible} are Z;-complete.
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1. Introduction

Information about the basic concepts of computability theory used in this article, in particular the
Turing machine (TM), the numbering of computably enumerable sets {WW;};¢,, and the arithmetical
hierarchy, can be found in Rogers [1], Soare [2].

The two definitions of polynomial time reducibility given by Karp [3] and Cook [4] are just
time-bounded versions of many-one reducibility (<,,) and Turing reducibility (<r).

Among other works devoted to the research of time-bounded computations and used in this
article, we note the works of Ladner [5], Ambos-Spies [6], Hopcroft, Ullman [7](1979), Sipser [8],
Arora, Barak [9], Terwijn [10].
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Notation. We fix the alphabet A = {0,1}.

Given a set Y, the set of all finite strings of elements from Y is denoted by Y*.

A Turing machine 7" (deterministic or nondeterministic) runs in polynomial time if there is
a polynomial function q such that for every input of length n, any computation sequence of 7
halts in q(n) or fewer moves.

It is an intuitively appealing notion that P is the class of problems that can be solved
efficiently.

In this article, we consider the class P (see Definition 2). Proposition 1 (below Definition 3)
shows that the classes P and P are isomorphic (i.e., there is an isomorphic mapping from P to P
and vice versa, there is an isomorphic mapping from P to P; with respect to the relations in
question) (see the definition of isomorphic mapping in Definition 1).

An oracle Turing machine runs in polynomial time if there exists a polynomial function g
such that for every input of length n and any oracle set X, the machine halts within g(n) steps
(see Ladner [5], p.156).

Note that the definitions of R. Ladner [11] and other authors are based on the concept of a
multitape Turing machine.

Based on the notions of 7-mitoticity and 7-autoreducibility, Ambos-Spies [6] introduced the
notions of P-m-mitoticity and P-m-autoreducibility. By analogy with the mentioned notions we
introduce the notions of P-m-mitoticity and P-m-autoreducibility (see Definitions 15,16) and also
give the definitions of index sets M(P-m)={z | W, is P-m-mitotic} and A(P-m) = {z |W, is
P-T-autoreducible}.

This article studies the location of index sets {z | W, is P-m-mitotic} and {z |W is
P-m-autoreducible} in the arithmetical hierarchy.

2. Preliminaries

Notation. Let w be the set of all nonnegative integers.
We will denote the A* elements by lowercase Greek letters o, 7, ...
Let us denote that o7 denote the concatenation of string o followed by .
Let < be the natural orderon A*(1 <0< 1< 00 < 01 < ---), where A represents the empty
string.
We will denote the subsets of A" by uppercase Greek letters Z,0,---, as well as by the
Latin letter P with subscripts (P;).
If o € A", then |a| denote the length of o.
If £ € A", then
- 1, ifo €
E(o) = { 0, ifo ¢
If AC w, then A(x) = y4(x)(where y, isa characteristic function of a set A).
Define the mappings hg, h; as follows:
Let hy be a 1-1 mapping from w onto A*, hy(0) = A, hy(n + 1) = (n + 2)-nd string according
to the order of strings on A*.

[1] [1]

Let hy be a 1-1 mapping from A*onto w.
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hi (1) = 0;

hy(n +1 string according to the order of strings on A*)=n (In fact, h; = hy?).

Definition 1. (i) Let two sets M and IM be given. Let there be defined any sort of relations
between the elements of each of these sets.

If it is possible to place the two sets into one-to-one correspondence so that the mapping
preserves the relations; that is, if with every element a of Mt there can be associated an element
b of M in a biunique manner so that the relations existing between any elements a, b, --- of It
also exist between the associated elements @, b, --- and vice versa, then the two sets are called
isomorphic (with respect to the relations in question), and we write 9t = 9. The mapping itself
is called an isomorphism (see Waerden [11], pp. 25-26).

(i) If in two sets M and N certain relations are defined (such as a < b or ab = ¢) and if to
each element a of MM an image a = @a is assigned in such a manner that all relations between
the elements of Mt also hold for the images (so that, for example, a < b implies @ < b in the
cases of the relation <), then ¢ is called a homomorphic mapping or homomorphism from M to
N (see Waerden [11], p. 28).

Remark. 1t can be proved that the mapping h,: A* — w is an isomorphism.

It is known that there exist effective enumerations of the sets P, P;, ... and oracle Turing
machines My, M4, ... , where P; denotes the set recognized by the Turing machine (also denoted
by P;), which runs in polynomial time, and M; denotes the oracle Turing machine, which runs in
polynomial time. M;(A) denotes the set recognized by M; with oracle 4 (see Ladner [5], p.157).
Notation. For a given function f, fT x denotes the restriction of f to arguments y<x, and Al x
denotes y,l x.

(Note that any string o € A*can be considered as a partial function from w into A.)

Let hy(A) = {7]@3x) [ho(x) =T & x € A]}LLh(BE) = {x]|3D)[h(r) = x & T € E]}.

Let 0 € A" .By ¢’ we denote a string y such that hy(y) = hy(o) + 1.

Let h be a computable function from w onto w?.

Let Q. be the Turing program with code number e (also called index e) in the standard listing
(of programs), and let ¢, be the partial function computed by Q, (see Soare [2], p.14).

We write @, (x) =y if x,y,e < s and y is the output of ¢,(x) in < s steps of the Turing
program Q.. If such a y exists, we say @, ((x) converges, which we write as ¢, s(x) |, and
@es(x) T otherwise. Similarly, we write @,(x) l if ¢@,s(x) | for some s, and we write
@Yo (x) I=yif @.(x) l=y and ¢.(x) = y and similarly for ¢, (x) {=y (see Soare [2], pp.16-
17).

W, = dom ¢,.

Based on the available numbering of computably enumerable (c.e.) sets {W; };¢,,, the available
numbering of computable operators {®;};c,,, and the available enumeration of polynomials

{4:} icw,» We define for an arbitrary i (proceeding from the fact that h(i) = (io,i;))
1) the set P; as follows: (Vx)(Vs > g; () [Pi,s x)=Ww; 0.1, (¥) (x)],
it is obvious that (Vx) (Vs = g;, (x)) [pi,cul(x) (x) = P (x) =gpn P; (x)];
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2) the oracle Turing machine M; as follows:
) (Vs = q;,(x)) (V0) [ M15(0) () = @y 0, (1) (@) ()],

it is obvious that (Vx) (VS > qil(x)) (Vo) [Mi,qil(x) (0)(x) =
M, ;(0)() =apn Mi(0)(x)|.
Definition 2. P = {P;| i € w} (note, that P = {P; | i € w}).

Based on the above and similar statements , which are also presented, for example, by
Hopcroft, Ullman [7], Sipser [8], Arora, Barak [9],Terwijn [10], the following conclusion is
presented in [9]:

All low-level choices (number of tapes, alphabet size, etc..) in the definition of Turing
machines are immaterial, as they will not change the definition of P (see Arora, Barak [9], p. 30).

Thus, since neither the number of tapes nor the way the inputs and outputs are presented
(binary coding or natural numbers) significantly affect, we can assert that

(Vi)EN V) [P, (x) = P;(he(x))] & (¥))(FD (V) [P, (0) = Pi(h1(0))]
and (VD)3 (V) (VA) [M(4) (x) = M;(ho(4)) (ho(x)))] &
(V@D (Vo) (VE ) [M;(E)(0) = M;(hy(E))(hy (0))].
In [12], the existence of a homomorphic mapping from P to P and, vice versa, the existence
of a homomorphic mapping from P to P (with respect to the relations in question) were proved.

Now we will prove that P and P are isomorphic (with respect to the relations in question).
Define the relations in P and P.

Definition 3. (i) Let P, P; € P . P; is to the lefi of Pj(Pi < Pj) if@AyeA)VT<y)
[P(1) = (@) &Pi(y) < B(y)] (e () = 0 &P(y) = 1);
(i) Let P, P, € P. P; isto the lefi of P;(P; <, B;) if (3x)(Vy < x)
[2:(y) = B(y) & Pi(x + 1) < Pi(x + 1](i.e., P;(x + 1) =0 & Pi(x + 1) = 1).
It is shown in [12] that there is a homomorphic mapping from P to P and vice versa, there
is a homomorphic mapping from P to P (with respect to the relations in question).

Proposition 1. The classes P and P are isomorphic.
Let's define the mapping 0: w - w.

Let j, be such that (Vo) [PO (o) = P} . (h1 (O'))].
(As noted above, for P, there exists such P; )
1) Define 0(0) = j,.

n+1) Suppose that (Vko < n)(Vky)(o(ko # k1))

Let m, be such that (Vo) [Pn (o) = Pmo (h1 (a))].

If my € {0(0),0(1), - o(n — 1)}, then define p(n) = m,.

If m, € {0(0),0(1), o(n— 1), then let m, be such that (Vo)[P,(c0) = B, (h,(0))] &
my € {0(0),0(1),:--o(n — 1)}. Such m exists because according to the Padding Lemma (see
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Soare [2], p.15, Rogers [1], p. 22), (Vvy)(3v = v;) [v is the index of c.e. set (i.e. the domain of
the p.c. function ¢,) such that (Vx)(W,(x) = B,(x)) and for all x W,(x) is computed in the
same time as B, (x)].

Then define o(n) = my. (Thus the definition of mapping o is completed.)

Let P;,P; are such that P;<P; .

Then 3y € A)(V T < Y)[Pi(D) = Pi(2) & Pi(7) = Pyiy (Il () & Pi(y") = 0 & P (¥") =
1]. Since P;(y") = P,iy(hy(¥")) =0 and Pi(y") = Pyjy(hy(¥)) =1 then P,;y(hy(¥)) <
Po(i ().

As (VT <vy) [Pg(i) (h1 (‘[)) = Pg(j)(hl (T))] then PQ(i) < Pg(j) (according to Definition 3).

So, if P; < P;, then Pg(i) < PQ(J-).
Thus, there is a mapping P—P such that it preserves the order, i.e., there is an isomorphic mapping
from P to P.

Similarly, one can prove the existence of an isomorphic mapping from P to P. So, we can say
that the classes P and P are isomorphic (with respect to the relations in question).

2.1. Premliminaries about P-T-mitoticity

Definition 4. Define ® <% Z, if there exists an i such that B = M;(A) (see Ladner [5], Ambos-
Spies [6]).

Definition 5. Define B <2 4 if there is an i such that B = M;(4).

Definition 6. A splitting of A is a pair A4, A, of c.e. sets such that A;NA, = @. We sometimes
will write A=A, 1A, if Ay, A, is a splitting of A (see Downey, Stob [13], p. 4).

Definition 7. A c.e. setA is T-mitotic if there is a splittingA,, A, of A suchthat A, =; A, = A
(see Downey, Stob [13], p. 83, Lachlan [14], pp. 9-10).

Let us recall some information about 7-autoreducibility.

Definition 8. We say that a partial recursive functional W is an autoreduction if, for all X and n,
the computation of W(X,n) includes no question of the form “n € X?”. A set A is T-
autoreducible if there exists an autoreduction ¥ such that A = W(A) (see Trakhtenbrot [15],
Ladner [16], p. 199).
From the definition of 7-autoreducibility it follows:
A is T-autoreducible & (Fe)(Vx)(®.(AU{x}(x)) = A(x)) &
(Fe) (Vo) (P (A — {x}) (x)) = A(x)).
Ambos-Spies introduced the following notions:
a) A computable set E is P-T-mitotic if there is a set ® € P such that £ =f 2N6 =L 2N6.
Otherwise, Z is non-P-T-mitotic (see Ambos-Spies [6], p. 4).
b) A computable set Z is P-T-autoreducible if for some n € w and every o € A", E (0) =
M, (2 —{o})(o) (see Ambos-Spies [6], p.19).

(Ambos-Spice prefers the expression “E (0) = M,,(E — {0})(0)” instead of the equivalent
expression “E (6) = M,,(E U {a})(0)”. For the sets of nonnegative numbers, the expression
“A(x) = M, (AU{x})(x)” is used in the definition of T-autoreducibility, for example, in Downey,
Slaman [17], p. 121.)
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Ambos-Spies has proved that

(i) if E is P-T-mitotic, then Z is P-T-autoreducible(see Ambos-Spies [6], p.19),

(if) there is a computable set Z, which is P-T-autoreducible, but not P-T-mitotic (see Ambos-
Spies [6], p. 21).

We represent the definitions of P-T-mitoticity and P-T-autoreducibility according to Ambos-

Spies with slight modifications (see Ambos-Spies [6]).
Definition 9. A computable set A is P-T-autoreducible if for some n € w and every x €
w, A(x) = M, (AU{x}) (x).
Definition 10. A computable set A is P-T-mitotic if there is a set B € P such that
A =P ANB =P ANB. Otherwise, 4 is non-P-T-mitotic.

Let us give the definitions of index sets T(P)M , AT(P).
Definition 11. T(P)M={z | W, is P-T-mitotic},
AT(P) ={z|W, is P-T- autoreducible}={z |(3i)(Vx)[M;(W, UxD(x) = W,(x)] & (W, is
computable)}.

2. 2. Premliminaries about P-m- mitoticity

Definition 12. (Computing a function and running time)
Let f:A* > A" and let T: w — w be some functions, and let M be a Turing machine (TM). We
say that M computes f in T (n)-time (we write T (n)-time instead of T-time, for emphasis that
T is applied to the input length), if for every o € A", if M is initialized to the start
configuration on input o, then after at most 7(|o|) steps it halts with f{o) written on its output
tape.

We say that M computes f if it computes f in 7(n) time for some function f: w — w. (see
Arora, Barak [9], p. 17)

Definition 13. {f,,:new} is the effective enumeration of PF (the class of deterministically
polynomial time computable functions from A* to A*).
Z is polynomial time many-one (P-m) reducible to © (E <F ), if for some n, (Vo € A*)
(5(0) = G)(fn(a))) (see Ambos-Spies [6], p.2).

By analogy, for arbitrary n we will define the function f,,: w = w.

Let {¢; }ic., be the enumeration of the partial computable (p.c.) functions of one variable and
T; be the Turing machine which computes the p.c. function ¢; (see Soare [2], p.12, Rogers [1],

p. 12). Remind, that & is a computable function from w onto w?. Then we define (proceeding
from the fact that 2 (i) = (i, i;)) the function f; (for all i) as follows:
Definition 14. @) For arbitrary i let T;, be initialized to the start configuration on input x. Then

define the function f; as follows:
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the total number of 1’s, appearing anywhere on the
£(x) = tape, after u-th step, if (Elu < q; 1) ( T;, stops at u-th step) ;
(%) =

the total number of 1’s, appearing anywhere on the
tape, just after q; -th step,  otherwise .

b) Ais P-m-reducible to B (A <b, B), if (i)(Vx)(¥s; = q;,(x)) (35, = 1)

Definition 15. A computable set = is P-m-mitotic if E is finite or cofinite if there is a set
@eP such that Z = 2N 0O =P Z N 6O (see Ambos-Spies [6], p. 4).

Definition 16. A computable set = is P-m-autoreducible if Z is finite, or cofinite, or if for
some fePF,Z <, Z via f and (Vo € A") (f (0) # o) (see Ambos-Spies [6], p.19).

Definition 17. A computable set A is P-m-mitotic if A is finite or cofinite if there is a set
BeP such that 4 E,F; ANB Efn A N B (see Ambos-Spies [6], p. 4).

Definition 18. A computable set A is P-m-autoreducible if A is finite, or cofinite, or if
A)[A <,, A via F, and (Vx) (fi(x) # x)).

Definition 19. For any given class € of computably enumerable sets, let IND; = {z|W, € £} .
If A =IND; for some &, A is called an index set (see Rogers [1], p. 324).

Let us give the definitions of index sets M(P-m), A(P-m).
Definition 20. M(P-m) = {z | W, is P-m-mitotic},
A(P-m) = {z |W, is P-m- autoreducible}.

3. Results

To formulate the main results, we remind the following definitions:
Definition 21. A set A is X,,-complete (II,,-complete) if A € X,(II,,)) and B <; A for every
B € £,,(I1,) (it makes no difference whether we use “B <,, A” or “B <; A” in the definition
of X, -complete and IT,,-complete) (see Soare [2], p. 64).
Definition 22.  Rec = {z| W, is computable (recursive)}, Fin = {z| W, is finite}, Cof =
{z|W, is finite} (see Soare [2], p. 21).

It is known that Fin is X,-complete, Cof and Rec are X;-complete (see Soare [2], pp.
65-67, Rogers [1], pp. 327-328).

One of the approaches to the problem of lower bounds (called a reducibility approach in [1])
is to take certain distinguished sets as standard “reference points” and to obtain bounds on the
level (and degree) of any other given set by establishing reducibility relationships between it and
one or more of the reference sets. In most cases, we shall use sets complete in X, or [, (n > 0)
as reference sets, and we shall use m-reducibility. The reducibility approach is particularly useful
for getting lower bounds on level (and degree). In conjunction with the Tarski-Kuratowski
algorithm (and the strong hierarchy theorem), it sometimes enables us to identify not only the level
but, indeed, the recursive-isomorphism type of a given set (see Rogers [1], p. 325).
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Lemma 1. Let € be the class of computably enumerable sets, such that INDg 2 Cof, INDg 2
Rec and IND; € X5. Then IND; is X3-complete (note that Rec = {z |W, is non-computable}).

Proof. To prove Lemma 1, we use Rogers' proof of index set Rec’s Xz-completeness (see Rogers
[1], pp. 327-328). To do this, the X;-complete reference set B is used (where B = {x |(y)
[y € W, & W, is infinite]}) and it is proved that B <,, Cof (namely, such a general computable
function g is constructed that [z € B < g(z)€Rec]. Moreover, the construction is such that
eventually [z € B = g(z)€Cof] and [z € B = g(z)ERec].

Thus, if the class € satisfies the requirements of Lemma 1, the abovementioned function g
will m-reduce B to IND¢ (i.e., z € B < g(z) €EIND¢). And since INDgs € X5, then INDg is
X;-complete. [

In the article [12] it is proved that AT(P) and T(P)M are Xz-complete.

Theorem 1. A(P-m) is X3-complete.

Proof. Let's first prove that A(P-m) € Zs.

z € A(P-m) < [W, is computable]& [[(3)[W, <P W, via f; & (x) # x] V (W,is finite) v
(W, is cofinite)] < (3z,)(Vn)(Vuy) Quq = ug)[((nEW,,,, & nEW, ,, )V

(1 & Wy, &1 € Wy, ) & [[(D)(W) (V51 24;, () (Es225:1)

Wy, () = Wi, (fis, (1)) & fis, () # 2]V @to)(VED[ts S 8 V
Wae, =Wye, V A1) (Vo) (3t)[v1 Svp) Vv EW, . ]] &
(3z1) (@D (3to)(Fvy)

(V) (Yuo) (Vx) (Vs124;, (%)) (V1) (Vv,)

Quy = ug)(3sz2s1)(3t2)

[(neW,, &neéW, ,)Vv(neW,, &neW,, )&

([ Wy, () = Wy, (Fis, () & fos, () # 2] V
[ty <to V Wy, =W, ] VIvi Svo V vy €W 1]
Thus, T(P)Me 2.
Since A(P-m) 2 Cof, A(P-m) 2 Rec and A(P-m)€ 25 it follows from Lemma 1 that
A(P-m) is E3-complete. [

Theorem 2. M (P-m) is X3-complete.

Proof. Let's first prove that M(P-m) € Z5.

z € M(P-m) & [W, is computable] & [[(3io)[W, =5 (W,NP,) =h, (W,NP,,)]

v (W, is finite) V (W, is cofinite)] <

(Elzl)(vn)(vuo) (Elul = uO)[(n € VVz,u1 &n e VVZ1:U1) \% (Tl % Vl/z,ul &ne szl,ul) &
[[QD(@E))(Vx)(Vsy = max(q;, (%1),q;, (x1))) (3s2=51)

[VVZ,SZ (xl) = (VVZ,SZ nﬁi,sz) (/‘;,sz (xl))] &

3k)(Vx3)(Vs3 = max(q;, (x2),qk, (x2))) (354=53)
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[(Wps, NP ) (2) = Wi, (fios, (62))] &

AD(Vx3)(Vss = max(qy, (x3),q1,(x3))) (Is6=5s5)

W5 () = Wy5,NBis)) (fis, ()] &

@m)(Vx,)(Vs; = max(q;, (x4),qm, (x4)))(3sg=57)

[(WasyNPrsg) () = Wi, (Fonsy 6 )]

@At)(VE)[ty <tg VW5, =W, 1 V Q) (V) At)[vs S v V v EW,]] &
(3z,)AD(EFNEFR)ED(EM)(3t)(3vy)

(V) (Vuo) (Vx1) (Vsy = max(q;, (x1),9;, (%1))) (Vx2) (V3= max(q;, (X2),qx, (X2)))
(Vx3)(Vss = max(qy, (x3),q1, (x3))) (Vx4) (V7 2 max(qy, (X4),qm, (x4))) (VE1) (Vv1)
(Quy = ug)(3s2251) (3s4=53)(Is6=55) (Fsg=57) (3t,)

(neW,, &neéW,, ) v(neW,, &neW, , ) &

[ W5, (01) = Wys,NPys) (fis, (X1))] &.

[(Wys, Py (2) = W, (fios, () )] &

Wpsg(63) = Wy5,NBis) (fis, ()] &

[(VVZ,Sg npi,58)(x4) = VVZ,SS (fm,ss(xtl))] v
[ty <to VW, =W, 1V [vi <vo Vv €Wy,

Thus, M(P-m)€ 2;.
Since M(P-m) 2 Cof, M(P-m) 2 Rec and M(P-m)€ %, it follows from Lemma 1 that
M(P-m)is Zz-complete.]

4. Conclusion

It is known that an effective enumeration of the sets of the class P (namely, Py, P; , -+, P;, *-+) exists
and, thus, P = {P;|i € w}. Based on the available numbering of computably enumerable sets
{W;}icw, a sequence of sets of non-negative numbers P; is constructed such that their effective
enumeration exists and P = {P; | i € w} by definition.

It is shown that the class P is isomorphic to the class P. Using traditional methods, it is shown
that the index sets 4(P -m) and M(P-m) are Z3-sets. Applying the method used by H.Rogers in
proving the X;-completeness of the index set {z | W, is computable}, it is proved that the index
sets AP-m) ={z|W, is P-m-autoreducible} and M(P-m)={z|W, is P-m-mitotic} are
X;-complete.



A. Mokatsian and Kh. Barseghyan 59

References

[1]
[2]

[3]

[4]
[5]
[6]

[7]

[8]
[9]

[10]
[11]

[12]
[13]
[14]
[15]
[16]

[17]

H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, 1967.

R.I. Soare, Recursively Enumerable Sets and Degree: A study of computable functions and
computably generated sets, Perspectives in Mathematical Logic, Springer-Verlag, 1987.

R.M. Karp, “Reducibility among combinatorial problems” , in Complexity of Computer
Computations, R.E. Miller and J. M. Thatcher, Eds, Plenum, New York, pp. 85-103, 1972

S. A. Cook, “The complexity of theorem proving procedures,” Proceedings of the Third
Annual ACM Symposium on Theory of Computing, pp. 151-158, 1971.

R.E. Ladner, “On the Structure of Polynomial Time Reducibility,” Journal of the
Association for Computing Machinery, vol. 22, no. 1, pp. 155-171, 1975.

K. Ambos-Spies, Part of the book series: Lecture Notes in Computer Science.: P-mitotic sets,
Logic and Machines: Decision Problems and Complexity Proceedings of the Symposium on
Recursive Combinatorics, vol. 171, pp. 1-23, 1983.

J. E. Hopcroft, J. D. Ullman, Introduction to Automata theory, Languages and Computation,
Addison-Wesley Publishing Company, 1979.

M. Sipser, Introduction to the Theory of Computation, PWS, Boston, MA, 1996.

S. Arora and B. Barak, Computational Complexity, A Modern Approach, Cambridge
University Press, 2009.

S. A. Terwijn, Complexity Theory, Nijmegen, the Netherlands, 2010.

B.L. van der Waerden, 4lgebra, Springer, vol. 1, 2003 (vol. 1 is translated from the German
Algebra I, seventh edition, Springer-Verlag Berlin, 1966).

A.H. Mokatsian, “Polynomial Time Turing Mitoticity and Arithmetical Hierarchy”, Pattern
Recognition and Image Analysis, Pleiades Publishing , vol. 34, no. 1, pp. 9-19. 2024.

R.G. Downey and M. Stob, “Splitting Theorems In Recursion Theory,” Ann. Pure Appl.
Logic, vol. 65, pp. 1-106, 1993.

A.H. Lachlan, “The priority method. 1,” Zeitschrift fiir mathematische Logik und
Grundlagen der Mathematik, vol. 13, pp. 1-10, 1967.

B. Trakhtenbrot, “On autoreducibility,” Dokl. Akad. Nauk SSSR, vol. 192, pp. 1224-1227,
1970 (in Russian).

R.E. Ladner, “Mitotic recursively enumerable sets,” J. Symb. Log., vol. 38, pp. 199-211,
1973.

R.G. Downey and T.A. Slaman, “Completely mitotic r.e. degrees,” Ann. Pure Appl. Logic,
vol. 41, no.2, pp. 119-152, 1989.



60 P-m-Mitotic Sets and Arithmetical Hierarchy

P-m-dhpnunhl] puqunipniutbp b pyuputtuljut
wunhdwbwljupg

Upukt 2. Unjugyu! b vwgwnnip U. Pupubinjui?

122 QUU Pudnplunpljuyh b wjnndunwugdwi wpnpikdubph htunhunnin, Gplwb, Zujwunwut
2 Uhdkuu Punuuwnph Undpytp, Gphwl, Zujuunwi

e-mail: arsenmokatsian@gmail.com, khachatur.barseghyan@outlook.com

Udthnthnd

“hgmip {0,1}"-p {0,1} puqunipjult mwpptiphg Yuqujws pnpnp Jtpgwnp pnpubph
puquUnipimit £ b P-u wjuwhuh  Apdbwfuiinhpbibph nuwu k, npnup dwbwskh b
phnbpdhtthunwjutt  @mphtquit dbpktwubtph dJhgongny, npntg woluwwnwiph
dudwbwlp pmquinudnpbi E jupudws dntnpughtt wmyuitph swihhg (Apdbwpuiimhpp
thwuwnnpki {0,1} puqunipjut tupwupwuqunipiniu B):

Un1jt hnnjwsnmid vwhdwtyws P nuup b gnyg Ewnpjws, np P-u hgqnunpd & P
nuuht:

Blubiny 7-dhpnunnhlnipnit b 7-hupttwhwigbignid hwuljugnipyniutiphg 4. Udpnu-
Uwhup ubpunisky £ P-m-dhpnunhlnippit b P-m-huptwhwqbgnid hwuljugni-
pnLubbpp:

Zudwidwinpkl akpdmét] i P-m-dhpnunhynipmit & P-m-huiptiwhwighgnid
hwuljugnipniuubpn:

Syju hnpJusmid wyugnigyws k, np {z | W,-tt  P-m-dhpnunhy £} b {z | W,-u
P-m-huptiwhwiqkgynn t} hipkpuwhtt puqunipibiitkpp £5-1phy L.

Putiwh punkp’ Puputulut wunhfwtwlupg, P-m-dhpnnhl puqunipntd,
P-m- huptwhwigkgynn puqunipnil, hunkpuwht puqunipni:


mailto:arsenmokatsian@gmail.com
mailto:khachatur.barseghyan@outlook.com

A. Mokatsian and Kh. Barseghyan 61

P-m-MutoTHYECKHE MHOKECTBA U apu(PMETHIECKAsI HepapXus

Apcen A. Moxkausu! u Xauaryp A. Bapcersn?

' MucturyT npobnem uapopmaruku u apromatusaiuu HAH PA, Epesan, Apmenus
2 Cumenc Uunactpu Codraep, Epepan, Apmenus

e-mail: arsenmokatsian@gmail.com, khachatur.barseghyan@outlook.com

AnHoranus

[Tycts {0,1}" sBOsIETCS MHOKECTBOM BCEX KOHEYHBIX 1IEMTOYEK, COCTABIICHHBIX M3 3JIEMEHTOB
mHoxkectBa {0,1} u P sBisercs kimaccoM npobiem, pacrno3HABAEMBIX JETEPMHUHHPOBAHHBIMU
MamuHaMu ThIOpHHTA, BpeMsi pabOThl KOTOPBIX MOJMHOMHUATBHO 3aBUCUT OT pa3Mepa BXOIHBIX
TaHHBIX (npobiema GaKTUIECKH SIBISIETCS MTOJAMHOXKecTBOM MHOKecTBa {0,1}%).

B nanHo# cTaThe onpeneneH Kiacc P u nokasano, uto P nzomopden knaccy P.

Hcxons 3 nouaruii 7- MUTOTUYHOCTA U T-aBTocBoguMocTH K. AMOoc-Criuc BBEI MOHATUS
P-m- mutoTHYHOCTHU U P-m- aBTOCBOJAUMOCTH.

1o aHANOTHH C YIOMSAHYTHIMU HOHATHAMH BBEJICHBI OHATHSA P-m-MUTOTHYHOCTH U P-m-
ABTOCBOJIMMOCTH.

B nanHOi#1 cTaThe qOKa3aHO, YTO UHIEKCHBIE MHOXKECTBA, {Z | W, — P-m-mutoTnyHO} 1
{z | W, — P-m-aBTOCBOMMO} SBJISIOTCS X3-TIOJHBIMHU.

KnroueBpie cnoBa™ Apudmernueckas uepapxus, P-m-MUTOTHYECKOE MHOXKECTBO, P-m-
aBTOCBOJMMOE MHOKECTBO, HHEKCHOE MHOXECTBO.


mailto:arsenmokatsian@gmail.com
mailto:khachatur.barseghyan@outlook.com

Mathematical Problems of Computer Science 61, 62—-69, 2024.

doi: 10.51408/1963-0115

UDC 004.4

Performance of Linear Algebra Factorization in Multi-
Accelerator Architectures

Edita E. Gichunts

Institute for Informatics and Automation Problems of NAS RA, Yerevan, Armenia
e-mail: editagich@iiap.sci.am

Abstract

Hardware and software are required to effectively solve problems in many domains.
The idea of creating a hybrid architecture based on graphics processors arose to meet the
increasing demands of modern scientific problems. Most of these problems are reduced
to solving linear algebra problems. A set of efficient linear solutions has been
successfully used to solve important scientific problems for many years. Factorizations
play a crucial role in solving linear algebra problems.

This work presents implementations of LU, QR and Cholesky factorizations on two
graphics processors using the MAGMA 2.6.0 library. Their performances are given for
matrices with real and complex numbers in single and double precision.

Keywords: MAGMA, multiple GPU, Linear Algebra, Factorizations.
Avrticle info: Received 29 February 2024; sent for review 19 March 2024; accepted 16
May 2024.

1. Introduction

Many of the most important scientific programs rely on high-performance algorithms and linear
algebra technologies, highlighting their importance and widespread impact from national security
to medical breakthroughs. In the current high-performance computing (HPC) environment,
parallelization is crucial. With the increasing utilization of video cards worldwide, the
development of GPU parallel computing is expected to greatly affect the field of high-performance
computing. These possibilities have already generated a great deal of interest in scientific as well
as non-scientific circles. After all, the acceleration potential of good parallelization of algorithms
is not always tens of times faster. The trend in multi-computing is clearly moving towards parallel
algorithms, with most new solutions and initiatives focused in this direction. The current
generation of GPUs has a fairly flexible architecture, which, along with high-level programming
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languages and hardware-software architectures, reveals these capabilities and makes them more
accessible. In the field of high-performance computing, the hottest topic is GPU-based hybrid
systems. Hybrid architecture combines the advantages of shared and distributed memory systems.
In such architectures, the GPU device is used as a coprocessor or accelerator to handle multi-
computation applications. Calculations on GPU are known for being developed and processed very
quickly. One of the leading video chip manufacturers, Nvidia, has introduced the CUDA [1]
(Compute Unified Device Architecture) platform. CUDA is both a software and hardware
technology available to every developer. It is an extension of the C programming language. The
only requirement is the use of different programming paradigms typical for parallel computing.

Linear algebra faces a significant challenge in terms of computational efficiency, which

has led to the development of software libraries following advancements in computer architecture.
In the mid-1960s, IBM released the Scientific Subroutine Package [2], a collection of FORTRAN
subroutines optimized for the IBM System/360 machine. In 1974, Harwood released EISPACK
[3], a package of FORTRAN routines that compute the eigenvalues and eigenvectors of a matrix.
BLAS's basic linear algebra routines were the first product of a joint project with ACMSIGNUM
during 1973-1977 [4], which was based on a proposal made in 1973 [5].The LINPACK library
was introduced in 1979 as a collection of routines for solving linear equations and linear least
squares problems on supercomputers of the 1970s and 1980s, mostly based on vector processors
[6].
LINPACK used the partial rotation engine of LU analysis to solve 100-dimensional problems,
allowing the user to evaluate the performance of their memory and processors. The first version
of BLAS (BLAS Level 1) implemented scalar-vector and vector-vector operations. BLAS2 (BLAS
Level 2) was developed in 1988 as an extension of BLAS1 to exploit the capabilities of vector
processors [7, 8]. BLAS2 offers the ability to perform matrix-vector operations. LAPACK [9],
released in 1992, replaces LINPACK and EISPACK and provides better performance. LAPACK
specializes in solving systems of linear equations, linear least squares problems, eigenvalue
problems, and singularity problems. To perform these operations, related calculations are also
performed, such as matrix analysis: LU, QR (Q-matrix is unitary or Hermitian, and R is upper
trapezoidal), Cholesky, etc.

For GPUs, NVIDIA offers CuBLAS [10], an implementation of BLAS in the NVIDIA
CUDA and EM Photonics environments, as well as their CULA solutions [11] as implementations
of LAPACK CUDA.

MAGMA [12] is an extension of LAPACK in a hybrid framework. It includes an amazing
variety of subroutines for solving linear algebra problems.

MAGMA's research is based on the idea that optimal software solutions for solving
complex problems in a hybrid environment should be self-hybridizing, combining the strengths of
various algorithms within a single framework. Based on this idea, efforts are being made to
develop algorithms for hybrid multi-core and graphics systems. Designed with LAPACK
functionality, data storage and interface capabilities, the MAGMA library makes it easy for
scientists to port their software components from LAPACK to MAGMA and take advantage of
the new hybrid architecture.

LU, QR and Cholesky factorizations play an important role in linear algebra. LU
factorization is applied to the problem of finding solutions to a system of linear equations. The
first step is to perform the LU factorization of the matrix, and then solutions can be obtained. It is
worth mentioning that the paper referenced as [13] presents solutions to a system of linear
equations using the types of LU factorization and random butterfly transformation implemented
with the MAGMA library on a single graphics processor.

QR factorization is often used to solve the linear least squares (LLS) problem. It is also the
basis of the QR algorithm [14,15] for finding the eigenvalue problem.
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Cholesky factorization is useful for efficient numerical solutions such as Monte Carlo
simulations.
This paper presents implementations of LU, QR, and Cholesky factorizations of widely used linear
algebra problems on multiple graphics processor architectures, using the MAGMA 2.6.0 library.
Performances of the specified factorizations for matrices with real and complex numbers in both
single and double precision are presented.

2. Stages of Implementing Factorizations with Multiple Accelerators

It was observed that when dealing with multiple accelerators, LU, QR, and Cholesky factorizations
were implemented by using the MAGMA 2.6.0 library. We have provided descriptions of these
factorization subroutines. It should be noted that instead of using types, the letter x was used, which
in the case of real numbers is s, and it is d for single and double precision, respectively, while in
the case of complex numbers, ¢ and z are used.
magma_xgetrf_mgpu(ngpu, M, N, d_A, Idda, ipiv, &info )computes an LU factorization of a
general M-by-N matrix A using partial pivoting with row interchanges.
The factorization has the form

A=P*L*U,
where P is a permutation matrix, L is a lower triangular with unit diagonal elements (lower
trapezoidal if M>N), and U is an upper triangular (upper trapezoidal if M<N).

magma_xgeqrf2_mgpu(ngpu, M, N, d_A, ldda, tau, &info )computes a QR factorization of an M-
by-N matrix A.
The factorization has the form

A=Q*R.

magma_xpotrf_mgpu(ngpu, uplo, N, d_A, Idda, &info )computes the Cholesky factorization of a
real symmetric and complex Hermitian positive definite matrix A.
The factorization has the form

A=U**H*U, if UPLO = MagmaUpper, or

A=L *L**H, if UPLO = MagmaLower,

where U is an upper triangular matrix and L is a lower triangular.
uplo= MagmaUpper: Upper triangle of A is stored,
uplo= MagmaLower: Lower triangle of A is stored.

Here are the stages of implementing Cholesky factorization when using multiple accelerators:

1. First, the MAGMA library is initialized using the magma_init() function.

2. Memory is allocated for the matrix on the CPU using the function
magma_xmalloc_cpu(&h_A, lIda*N). Memory is also allocated for the matrix copy on
the CPU using magma_xmalloc_pinned(&h_R, lda*N).

3. To allocate memory for the matrix on GPUs, we cycle from GPU to GPU, and in each
of them, the function magma_setdevice(dev) is first called, then the memory is
allocated using the function magma_xmalloc(&d_A[dev], max_size), where max_size
= (1 +N/(nb*ngpu))*nb * magma_roundup( N, nb) and nb=magma_get_dpotrf_nb(N).

4. The matrix is generated using the function magma_generate_matrix(opts, N, N, h_A,
lda).
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We copy the matrix using the lapackf77_xlacpy(MagmaFullStr, &N, &N, h_A, &lda,
h_R, &Ida) function, which will be sent to the GPU memory.

The function magma_xsetmatrix_1D_col_bcycle(N, N, h_R, Ida, d_A, Idda, ngpu, nb)
transfers the matrix to the GPU memory.

We fix the time using the function gpu_time = magma_wtime().

The function magma_xpotrf_mgpu(ngpu, uplo, N, d_A, ldda, &info) is called, which
performs Cholesky factorization in parallel on GPUs.

Using the difference gpu_time=magma_wtime()-gpu_time, we obtain the calculation
execution time.

After the calculations are completed, the function magma_xgetmatrix_1D_col_bcycl
(N, N, d_A, Idda, h_R, Ida, ngpu, nb) transfers the results from the GPUs to the CPU
memory.

We clear the allocated memories on the CPU wusing the functions
magma_free_cpu(h_A) and magma_free_pinned(h_R), and clear the allocated
memories on the GPUs by performing a cycle transfer from GPU to GPU, first calling
magma_setdevice(dev) and then magma_free(d_A[dev]) functions.

At the end of the program, we use magma_finalize() to terminate MAGMA.

mental Results

conducted on two NVIDIA Tesla V100-PCIE graphics processors. The cuda-10.2

platform was utilized for parallel computing. To install the MAGMA 2.6.0 library, the BLAS,
LaPack, cLaPack and ATLAS libraries were installed. To install the MAGMA library, the gcc,

g++, nvc,

and gfortran compilers were used. To compile MAGMA, the following static (.a) and

dynamic (.so) libraries are also required: libgfortran.a, libf77blas.a, libcblas.a, libf2c.a, libm.a,
libstdc++.a, libpthread.a, libdl. .a, libcublas.so, libcudart.so, libcusparse.so, libcudadevrt.a.

Let us present the results of experiments in the form of graphs.

Figures 1 and 2 display graphs of LU factorization for matrices with real and complex numbers
in single and double precision, respectively.
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Figures 3 and 4 display graphs of QR factorization for matrices with real and complex numbers
in single and double precision, respectively.
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Figures 5 and 6 display Cholesky factorization graphs for matrices with real and complex
numbers in single and double precision, respectively.
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4. Conclusion

We have reached the following conclusions based on the results of our experiments:

For matrices with real numbers, single precision performance in the case of LU factorization
is 2 times lower than double precision. For matrices with complex numbers, single precision
performance is 1.5 times lower than double precision.

In the case of QR factorization, single-precision performance for matrices with real numbers
is 1.5 times higher than binary precision, and for complex numbers, single precision performance
is 2 times lower than double precision.

In the case of Cholesky factorization and for matrices with real and complex numbers, single
precision performance is 2 times lower than double precision performance.
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BA)KHBIX Hay4YHBIX 3a7a4. PakTOopU3alMy UTPAIOT PEIIAOIIYIO POJIb B PELICHUH 3a]a4 JIMHEHHON
anreOpsl.

B stoii pabGote npencraBnensl peanusaruu hakropuzanuu LU, QR u Xomenkoro Ha aByx
rpaduUecKkux mpoleccopax ¢ UcHojib3oBaHueM O6ubmmoreku MAGMA 2.6.0. IlpuBenens ux
MPOU3BOAUTENBHOCTH JJI1 MATPUL] C ACUCTBUTEIBHBIMU U KOMIIJIEKCHBIMU YHCIIAMUA OJIMHAPHOM U
JIBOUYHOM TOYHOCTH.
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