ISSN 2579-2784 (Print)
ISSN 2538-2788 (Online)

MATHEMATICAL
PROBLEMS
OF COMPUTER

SCIENCE

LIX

Yerevan
2023

Zujuunnwith Zutpuybnnipjut Shnnipjnibitbph wqquhtt wjuntdhwih
bPubnpuunhljuyh b wunndwwnwugdwt ypnpjkdubph htunhwnnin

WNuctutyT npobiem uHpopMaTUKU U aBTOMaTU3aluu HalmoHanbHOM akajeMuu HayK
Pecniybnuku Apmenus

Institute for Informatics and Automation Problems of the National Academy of
Sciences of the Republic of Armenia

Undyjninkpwjhtt ghnnipjut
dwpbdwnhljuljub pughptbp

MaremaTudyeckue npoodJieMsl
KOMIBIOTEPHbIX HAYK

Mathematical Problems of Computer
Science

LIX

ZLUSUNUYYUO E 22 QUU PudNrUusShuUshk 6Y, UdSNUUSUSU UL

NCNELBULESP PLUSPSNIESh UNURS
OITYBJINMKOBAHO MHCTUTYTOM ITPOBJIEM NTHOOPMATUKHU U
ABTOMATU3ALIMN HAH PA
PUBLISHED BY THE INSTITUTE FOR INFORMATICS AND AUTOMATION
PROBLEMS OF NAS RA

GrE4d UL 2023 YEREVAN

Undyymunbtpuhtt ghnnipjut fwptdwnhluljwt punghptbp, LIX

Undwymuntpughtt ¢humput dwpbdwnhfuut juunghptbp wwppbpulwip
hpwunwpuwlynud E wnwpbljut Epynt wihqud 22 QUU Pudnpdunhljugh b wdunndwnugdut
wpnpikdubph httunhunninh (PUMNP) Ynnuhg: Uju pungpynd E wbuwub b fhpunwljui

dwpbtdwnhluyh, hubnpdunhfuyh b hwoynpuiub wbkjpuhijuyh dudwbwlulhg
ninnnipnLaubpp:

Uju pungpyws E Pupdpugnyt npujuynpdwt hwtdtwdnnngh pugniubih wduwgpbph
guynud:

Sywgpynid £ vdpugpuljutt junphpnh 2023p. dwyhuh 25-h N 23-05/1
thuwnh npnpdwt hhdwt Jpu

nURUGMUYUL OCzZ0R Y

Qqprunjnp pdpighp

8nt. Cnipnipul Qhwuinipintibbph wggquyhl whunbdhw, Zuywuwnul
Y juuwjnp fpodpwigph nknuwluy

U. Zwpmpniywt 22 @UU PUNP, Zuywuunul

Tvdpwgpuliumb junphpnh whnudiakp

U. Unujut Uint Snpph punuipuyhl hwduyuwpul, UL

Z. Udtknhujut QU Zudwlupquyhl Spugpuinpdwl piunpwnnin, (niuwamnwb
L. UGujuiyub 22 QUU PUMNP, Zuyuuwnul

Z. Uuguinpyut 22 QUU pPUNP, Zujuwuunul

U. Tuynk Pn1nigh hwdwlwupgsuyhl ghnnipinibibph hknwgnunului

hwduyuwpul, dpwbupu
U.. Hquyupny Uwiln MEnbppnipgh whnwlwi hwduyuwpul, (kniuwuwnul
G. Qnpjut Uhtnihupu, Qubiwnu
8nt. Zwulnpjul Eplwih whnwluwl huduyuwpwl, Zuyuuumub
Q. Uupqupny Zuywuwnwih wgguyhl wynhnkubhiulul hudujuwpwl, Zuyuunwl

Z. Ukjudk Ypnwunwbh nbbhuluh huduwyuupwi, Ypuunwb
Z. Cuhnmdjut tnipphbh huduyuwpuiinnuwl pnyke, Pojuinhuw

U. Cnipnipjut Eplwih whnwlwh huduyuwpul, Zuywumul

E. Mnnnujub 22 QUU PUMNP, Zuyuuwnul

9. Uwhwljub 22 QUU PUMNP, Zuyuuwnul

Nunnwuprwbunnnt pupuningun

®. Zulnpjut 22 QUU PUNP, Zuyunuinul

ISSN 2579-2784 (Print)

ISSN 2738-2788 (Online)

© zpumunwpwluws k 22 QUU Pudnpdunhluyh b wjnndwnwugdwt ypopkdubph
httunhwnninh Ynnuhg, 2023

MartemMaTH4ecKue MpodieMbl KOMIbIOTEPHBIX Hayk, LIX

Kypuan MaremaTuueckue mnpod/jeMbl KOMIBIOTEPHBIX HAYK M3/aeTCA JBa pasa B TOZ,
Wucturyrom npobrem wunHdpopmatuku wu aBromartusanuum HAH PA. On oxsareiBaer
COBpeMeHHBbIe HAaIIpaBJIeHUSI TeOpPeTUYeCKOH W IPUKIAJSHOM MaTeMaTHKH, WHQOPMATUKU U

BEIYHCJIUTEIBHON TEXHUKHU.

OH BKJIIOYEH B CIIMCOK JOITyCTUMBIX XypPHa/IOB Bricieit kBaaudUKaIMOHHON KOMUCCHH.

[Ieuaraercs Ha ocHOBaHuu pemenus N 25-05/1 3acenanus
Penmakumonuoro cosera ot 25 mass 2023r.

PEJIAKIIMOHHBIA COBET

I'nasnwtit peoaxkmop

1O. llykypsiH

HauunonanbsHas akagemMust HayK, ApMEeHUs

3am. 2naenozo pedakmopa

M. ApyTIOHSIH

HuctuTyT npobiem nHPOpMaTUKU U aBTOMATU3aLUN, APMEHUS

Ynennl pedammomweo coseema

A. ABeTucsH

NucTtutyt cuctemuoro nporpammupoBanusi PAH, Poccus

C. Arasn Topoxckoii yrusepcuter Horo-Mopka, CIIIA

JI. Acnansin HNuctutyT npo6iieM nHPOPMATUKH U aBTOMATU3AIMK, APMEHHS

I'. Acuatpsx Wucturyt npobiaem nHOpMATUKH U aBTOMATH3aUN, ApMEHHS

1O. Akonsin EpeBaHckuil rocyapCTBEHHBIN YHUBEPCUTET, ApMEHUS

M. aiine Tyy3cKuil Hay4HO-UCCIIEN0BATEIbCKUI HHCTUTYT KOMIIBIOTEPHBIX HAYK,
®paHuus

A. Jlertsipes Cankr-IlerepOyprckuii rocyapcTBEeHHbIH YHUBEPCHUTET, Poccus

E. 3opsn Cunorncuc, Kanaga

I'. Maprapos HanmonanbHbIi NONUTEXHUYECKUNA YHUBEPCUTET ApMeHUU, ApMeHus

I'. Menanze ['py3uHCKUI TEXHUYECKUN YHUBEPCUTET, [py3us

3. IlorocsH Wucturyt npobiaem nHOpMATUKH U aBTOMATH3aUN, ApMEHHS

B. Caaksan HNuctutyT npo6iieM nHPOPMATUKH U aBTOMATU3AINK, APMEHHS

A. Capyxansa MuctutyT npo6iieM HHQOPMAaTHKU ¥ aBTOMATU3AINH, ApMEHUS

A. Illayman Jy6auHCcKuUi YHUBepCUTETCKUI KoJutex, Vipranaus

C. lykypsi EpeBanckuil rocyapCTBEHHBIN YHUBEPCUTET, ApMEHUS

Omeemcmeennwlil ceKkpemaps

I1. AxonsiH Wucturyt npobiaem nHOpMATUKH U aBTOMATH3aUN, ApMEHHS

ISSN 2579-2784 (Print)
ISSN 2738-2788 (Online)
© Ony6aukoBano MHcTuTyTOM Mpobsiem nnpopmatuku u apromatuzanun HAH PA, 2023

Mathematical Problems of Computer Science, LIX

The periodical Mathematical Problems of Computer Science is published twice per year by
the Institute for Informatics and Automation Problems of NAS RA. It covers modern

directions of theoretical and applied mathematics, informatics and computer science.

It is included in the list of acceptable journals of the Higher Qualification Committee.

Printed on the basis of decision N 25-05/1 of the session of the
Editorial Council dated May 25, 2023.

EDITORIAL COUNCIL

Editor-in—Chief
Yu. Shoukourian National Academy of Sciences, Armenia
Deputy Editor

M. Haroutunian Institute for Informatics and Automation Problems, Armenia
Members of Editorial Council

S. Agaian City University of New York, USA

A. Avetisyan Institute for System Programming of the RAS, Russia

L. Aslanyan Institute for Informatics and Automation Problems, Armenia
H. Astsatryan Institute for Informatics and Automation Problems, Armenia
M. Dayde Institute for research in Computer Science from Toulouse, France
A. Degtyarev St. Petersburg University, Russia

Yu. Hakopian Yerevan State University, Armenia

G. Margarov National Polytechnic University of Armenia, Armenia

H. Meladze Georgian Technical University, Georgia

E. Pogossian Institute for Informatics and Automation Problems, Armenia
V. Sahakyan Institute for Informatics and Automation Problems, Armenia
A. Shahumyan University College Dublin, Ireland

S. Shoukourian Yerevan State University, Armenia

E. Zoryan Synopsys, Canada

Responsible Secretary
P. Hakobyan Institute for Informatics and Automation Problems, Armenia

ISSN 2579-2784 (Print)
ISSN 2738-2788 (Online)
© Published by the Institute for Informatics and Automation Problems of NAS RA, 2023

CONTENTS

Zh. Nikoghosyan
A Note on Large Cycles in Graphs Around Conjectures of Bondy and Jung

L. Aslanyan, 1. Arsenyan, V. Karakhanyan and H. Sahakyan
RDNF Oriented Analytics to Random Boolean Functions

H. Tamazyan
The Relationship Between the Proof Complexities of Linear Proofs in Quantified
Sequent Calculus and Substitution Frege Systems

A. Lalayan
Data Compression-Aware Performance Analysis of Dask and Spark for Earth
Observation Data Processing

M. Buniatyan, S. Grigoryan and E. Danielyan
Expert Knowledge-Based RGT Solvers for Software Testing

D. Karamyan, G. Kirakosyanand S. Harutyunyan
Making Speaker Diarization System Noise Tolerant

T. Jamgharyan
Research of Model Increasing Reliability Intrusion Detection Systems

16

27

35

45

57

69

Mathematical Problems of Computer Science 59, 7-15, 2023.
doi:10.51408/1963-0097

UDC 519.1

A Note on Large Cycles in Graphs
Around Conjectures of Bondy and Jung

Zhora G. Nikoghosyan

Institute for Informatics and Automation Problems of NAS RA, Yerevan, Armenia
e-mail: zhora@iiap.sci.am

Abstract

New sufficient conditions are derived for generalized cycles (including Hamilton and
dominating cycles as special cases) in an arbitrary k-connected (k = 1,2,...) graph,
which prove the truth of Bondy’s (1980) famous conjecture for some variants signif-
icantly improving the result expected by the given hypothesis. Similarly, new lower
bounds for the circumference (the length of a longest cycle) are established for the
reverse hypothesis proposed by Jung (2001) combined inspiring new improved versions
of the original conjectures of Bondy and Jung.

Keywords: Hamilton cycle, Dominating cycle, Longest cycle, Large cycle.
Article info: Received 27 January 2021; sent for review 14 February 2022; received
in revised form 11 January 2023; accepted 7 March 2023.

1. Introduction

We consider only finite undirected graphs without loops or multiple edges. The set of vertices
of a graph G is denoted by V(G); the set of edges by E(G). For a subset S of V(G), we
denote by G — S the maximum subgraph of G with the vertex set V' (G)—S. For a subgraph
H of G, we use G — H, short for G —V(H). A good reference for any undefined terms is [3].

Let o and 6 be the independence number and the minimum degree of a graph G, respec-
tively. We define oy by the minimum degree sum of any k£ independent vertices if a > k; if
a < k, we set 0, = +00. In particular, we have oy = 4.

A simple cycle (or just a cycle) @ of order ¢ (the number of vertices) is a sequence
v1ve...vpvy of distinet vertices vy, ..., vy with vu,y € E(G) for each i € {1,...,t}, where
Vi1 = v1. When t = 1, the cycle v; coincides with the vertex v;. So, by this standard
definition, all vertices and edges in a graph can be considered as cycles of orders 1 and 2,
respectively. Such an extension of the cycle definition allows to avoid unnecessary repetition
"let G be a graph of order n > 3” in a large number of results. Further, a simple path (or
just a path) of order t is a sequence v,vs...v; of distinct vertices vy, ..., vy with v;v,41 € E(G)
for each i € {1,...,t — 1}.

A graph G is Hamiltonian if G contains a Hamilton cycle, i.e., a cycle of order |V(G)|.

7

8 A Note on Large Cycles in Graphs Around Conjectures of Bondy and Jung

Now let) be an arbitrary cycle in G. We say that () is a dominating cycle in G if
V(G — Q) is an independent set of vertices.

The first type of generalized cycles, including Hamilton and dominating cycles as special
cases, was introduced by Bondy [4]. For a positive integer A, @ is said to be a Dy-cycle if
|H| < A —1 for every component H of G — Q). Alternatively, @ is a Dy-cycle of G if and
only if every connected subgraph of order A of G has at least one vertex with () in common.
Thus, a Dy-cycle dominates all connected subgraphs of order A\. By this definition, () is a
Hamilton cycle if and only if @) is a D;-cycle. Analogously, @ is a dominating cycle if and
only if @) is a Dy-cycle.

We now present another two types of more interesting generalized cycles that form the
main topic of this paper. For a positive integer A, the cycle @ is called a PDj-cycle (PD
- Path Dominating) if each path of order at least A in G has at least one vertex with @ in
common. Similarly, we call the cycle @) a C'Dy-cycle (CD - Cycle Dominating; introduced
in [13]) if each cycle of order at least A has at least one vertex with () in common. In fact,
a PD,-cycle dominates all paths of order A in GG; and a C'Dy-cycle dominates all cycles of
order A in G. In terms of PD, and C'Dy-cycles,) is a Hamilton cycle if and only if either
Q@ is a PD;-cycle or a C'D;-cycle. Further, () is a dominating cycle if and only if either @) is
a PDy-cycle or a C'Dsy-cycle.

Throughout the paper, we consider a graph G on n vertices with minimum degree 6 and
connectivity . Further, let C' be a longest cycle in G with ¢ = |C|, and let p and ¢ denote
the orders of a longest path and a longest cycle in G — C, respectively. In particular, C' is a
Hamilton cycle if and only if p < 0 or ¢ < 0. Similarly, C' is a dominating cycle if and only
ifp<lore<l1.

In 1980, Bondy [4] conjectured a common generalization of some well-known degree-sum
conditions for PDy-cycles (called (o, p)-version) including Hamilton cycles (P D;-cycles) and
dominating cycles (P Ds-cycles) as special cases.

Conjecture 1. (Bondy [4],1980): (o,p)-version.
Let C be a longest cycle in a A-connected (1 < X\ < 0) graph G of order n. If oxy1 >
n+AA—1), thenp < X —1.

Parts of Conjecture 1 were proved for A = 1,2, 3.

(@) kK>1, o9 >n — p<0 (Ore[l5],1960),
(b) k>2, o3>n+2 — p<1 (Bondy[4],1980),
(c) k>3, 04>n+6 = p<2 (Zou[lT7],1987).

For the general case, Conjecture 1 is still open.
The long cycles analogue (the so called reverse version) of Bondy’s conjecture (Conjecture
1) can be formulated as follows.

Conjecture 2. (reverse, o, p)-version.
Let C' be a longest cycle in a A-connected (1 < X <) graph G. If p > X — 1, then
c>oy—AA—2).

Parts of Conjecture 2 were proved for A = 1,2, 3, 4.

(d k>1,p>0 = c>o1+1 (Dirac[6],1952),

Zh. Nikoghosyan 9

K>2,p>1 = c>o0, (Bondy[2],1971; Bermond|[1],1976; Linial[11],1976),
k>3, p>2 = c>o03—3 (Fraisse, Jung|8],1989),
k>4, p>3 = c>o0,—8 (Chiba,Tsugaki,Y amashita[5],2014).
Note that the initial motivations of Conjecture 1 and Conjecture 2 come from their
minimal degree versions - the most popular and much studied versions, which also remain
unsolved.

Conjecture 3. (Bondy [4],1980): (0,p)-version.
Let C be a longest cycle in a A\-connected (1 < X\ < §) graph G of ordern. If § > Z\‘—ﬁ—l—)\—l
thenp < A —1.

Conjecture 4. (Jung [10], 2001): (reverse, §, p)-version.
Let C be a longest cycle in a A-connected (1 < X\ < §) graph G. Ifp > X — 1, then
c>A0—A+2).

Parts of Conjecture 3 were proved for A = 1,2, 3.

(h) k>1, §>3% =
(1)) k=2, 6> —
(j) K>3, 6> —

<0 (Dirac[6],1952),
<1 (Nash— Williams[12],1971),
<2 (Fanl[7],1987).

S S

Parts of Conjecture 4 were proved for A = 1,2, 3, 4.

(k) k>1, p>0
() k>2, p>1
(m) K>3, p>2
(n) k>4, p>3

c>d+1 (Diracl6],1952),
c>2 (Diracl6],1952),
c>30—3 (Voss, Zuluagal16],1977),
c>46 -8 (Jungl9],1990).

Lred

Note that C'Dy-cycles are more suitable for research than PD),-cycles since cycles in
G — C' are more symmetrical than paths in view of the connections between G — C' and
C D)y-cycles. This is the main reason why some minimum degree versions of Conjectures 1
and 2 have been solved just for C'Dy-cycles.

According to the above arguments, it is natural to consider the exact analogues of Bondy’s
generalized conjecture (Conjecture 1) and its reverse version (Conjecture 2) for C'Dy-cycles,
which we call (¢,¢) and (reverse, o, ¢)-versions, respectively.

Conjecture 5. (o,¢)-version.
Let C' be a longest cycle in a A-connected (1 < X < §) graph G of order n. If oy >
n+AA—1), thene < X —1.

Conjecture 6. (reverse, o, ¢)-version.
Let C be a longest cycle in a A-connected (1 < X\ < §) graph. If¢ > X\ — 1, then ¢ >
Oy —)\(/\ - 2)

In 2009, the author proved [14] the validity of minimum degree versions of Conjectures
5 and 6.

10 A Note on Large Cycles in Graphs Around Conjectures of Bondy and Jung

Theorem 1. ([14], 2009): (6,¢)-version.
Let C be a longest cycle in a A\-connected (1 < X < 6 graph G of order n. If 6 > z—ﬁ +A—-2,
thene < A — 1.

Theorem 2. ([14], 2009): (reverse, 0, ¢)-version.
Let C be a longest cycle in a A\-connected (1 < X\ <) graph. If¢c > A\—1, then ¢ > AM(d—A+2).

Actually, in [14], a significantly stronger result than Theorem 1 was proved showing that
the conclusion ¢ < A — 1 in Theorem 1 can be strengthened to ¢ < min{A — 1,0 — A}, called
c-improvement.

Theorem 3. ([14], 2009): (6,¢)-version, c-improvement.
Let C be a longest cycle in a A-connected (1 < X\ < §) graph G of ordern. If § > z—ﬁ—i—)\—Q,
then ¢ < min{\ — 1,5 — A\}.

Analogously, the condition ¢ > A — 1 in Theorem 2 was weakened [14] to ¢ > min{\ —
1,6 — A+ 1}

Theorem 4. ([14], 2009): (reverse, ¢, €)-version, ¢-improvement.
Let C be a longest cycle in a M\-connected (1 < X\ < 6) graph G. If¢ > min{\A\— 1,6 — A+ 1},
then ¢ > A0 — A+ 2).

In this paper, we present new analogous further improvements of Theorems 1, 2, 3, 4
inspiring new conjectures in forms of improvements of the initial generalized conjectures of
Bondy and Jung.

2. Results

First, we prove that the connectivity condition x > A in Theorem 1 can be weakened to
k> min{\,§ — A+ 1}.

Theorem 5. (0,¢)-version, k-improvement.
Let C' be a longest cycle in a graph G of order n and A a positive integer with 1 < X\ < 9. If

k> min{\,d — A+ 1} andézz—ﬁvL)\—Q, thene < \ — 1.

Analogously, we prove that the connectivity condition x > A in Theorem 2 can be
weakened to k > min{\,d — A + 2}.

Theorem 6. (reverse, §, ¢)-version, k-improvement.
Let C be a longest cycle in a graph G and X\ a positive integer with 1 < X < 9§, If k >
min{\, 06 = A+ 2} ande >\ —1, then ¢ > X0 — A+ 2).

Next, we prove that the conclusion ¢ < A — 1 in Theorem 5 can be strengthened to
¢ <min{\—1,§ — \}.

Theorem 7. (9,¢)-version, (¢, k)-improvement.
Let C be a longest cycle in a graph G of order n and \ a positive integer with 1 < X\ < §. If

k> min{\, 6 — A+ 1} andézt\‘—ﬁ+)\—2, then ¢ < min{\ — 1,0 — A}.

Finally, we prove that the condition ¢ > A — 1 in Theorem 6 can be weakened to ¢ >
min{\ — 1,0 — A+ 1}.
Theorem 8. (reverse, §, ¢)-version, (¢, k)-improvement.

Let C be a longest cycle in a graph G and X\ a positive integer with 1 < A\ < 6. If Kk >
min{\,0 — A+ 2} ande > min{\ — 1,6 — A+ 1}, then ¢ > A(6 — X + 2).

Zh. Nikoghosyan 11

3. Generalized Improvements of Conjectures of Bondy and Jung

Motivated by Theorems 5, 6, 7, 8 (minimum degree versions) with Conjectures 1 and 2, in this
section we propose their exact analogs in terms of degree sums as generalized improvements
of Bondy and Jung Conjectures.

Conjecture 7. (o0,¢)-version, (¢, k)-improvement.
Let C be a longest cycle in a graph G of order n and A a positive integer. If k > min{\,J —
A+ 1} and oypr > n+ AA—1), then ¢ < min{\ — 1,5 — A\}.

Conjecture 8. (reverse, o, ¢)-version, (¢, k)-improvement.
Let C' be a longest cycle in a graph G and X\ a positive integer. If K > min{\,0 — A+ 2} and
c>min{\ — 1,0 = A+ 1}, then ¢ > o) — A\(A — 2).

Conjecture 9. (o,p)-version, (P, k)-improvement.
Let C' be a longest cycle in a graph G of order n and A a positive integer. If k > min{\,§ —
A+ 1} and oyp1 > n+ ANA—1), then p < min{\ — 1,6 — \}.

Conjecture 10. (reverse, o, p)-version, (P, k)-improvement.
Let C be a longest cycle in a graph G and X a positive integer. If k > min{\,d — A+ 2} and
p>min{\— 1,06 — A+ 1}, then ¢ > oy — A\ — 2).

4. Proofs

Proof of Theorem 7. We shall prove that ¢ < min{\ — 1,5 — A} under the conditions

n+2
>min{\,d —A+1}, 0> ——+A\—2
K > min{\, + 1}, _>\+1—|—
for each 1 < A < 6. If min{\,§ — A+ 1} = X, that is A < [*$1], then we shall prove that
¢ < X\ — 1 under the conditions

k> 6> 0o
A+1

But the latter follows from Theorem 1 for all A =1,2, ..., L‘S’LTlJ immediately.

Now let min{\,6 — A+ 1} = 6 — A+ 1, that is A > |%2|. To conclude the proof, it
remains to show that

n+2
>6—-A+1, 60>
= 4 —A+1

FA—2 = E<-—A <)\:6,5—1,...,V;2J>. (1)

Put 6 — A+ 1 = p. Acording to this notation, (1) is equivalent to

n+ 2

0+1

In (2), the inequality
n—+ 2

> +0—pu—1
_6—u+2+ a

12 A Note on Large Cycles in Graphs Around Conjectures of Bondy and Jung

is equivalent to

implying that (2) is equivalent to

n+ 2 o+1
>p, 6> —— -2 = ¢e<pu-—1 =12, |—||- 3
K =2 W, _,LL—|—]_+M cCx U <M y &y 7\‘ 9 J) ()
Observing that (3) follows from Theorem 1 immediately, we obtain

(1)

Theorem 7 is proved. N

(2) = (3) <« "Theorem 1.

Proof of Theorem 5. Let GG be a graph with

2
k> min{)\, 6 — A+ 1}, 52;lj:1+>\—2

for each 1 < A < §. We shall prove that ¢ < A—1. Observing that min{A—1,0 —A\} < A—1,
we can weaken the conclusion ¢ < min{A — 1,0 — A} in Theorem 7 to ¢ < A — 1 and the
result follows immediatly. [|

Proof of Theorem 8. Let GG be a graph with
k>min{\, 0 —A+2}, ¢>min{A\ -1, — A+ 1}

for each 1 < XA < 4. We shall prove that ¢ > A(§ — A+ 2). If A = 1, then the result follows
from the fact that each graph has a cycle of length at least 6 + 1 [6]. Let A > 2. Further, if
min{\,d —A+2} = A, then we are done by Theorem 2. Now let min{\,§ —A+2} = —A+2,
that is A > [2E3|. Then it remains to prove that

J+3
K>0—A+2, c26—A+1 = c>ANd—-X1+2) ()\:5,5—1,..., {—;J) (4)
Put 6 — A 4+ 2 = p. By this notation, the statement (4) is equivalent to

d0+2
which follows from Theorem 2 immediately. So, (4) = (5) <= "Theorem 2”. Theorem 8 is
proved. H

Proof of Theorem 6. Let GG be a graph with
k>min{\,d —A+2}, ¢>A—-1

foreach 1 < A <. Weshall prove that ¢ > A(—A+2). Observing that min{A—1,—A+1} <
A — 1, we can strengthen the condition ¢ > min{\ —1,§ — A+ 1} in Theorem 8 to¢ > A — 1
and the result follows immediately. Theorem 6 is proved. N

5.

Zh. Nikoghosyan 13

Conclusion

In 2009 [14], a minimum degree sufficient condition for large cycles in graphs is established
showing that the famous conjecture of Bondy principally is improvable. In the same paper,
a lower bound for the length of a longest cycle (the circumference) is derived showing that
the conjecture of Jung (reverse version of Bondys conjecture) principally is improvable as
well. In this note, two new analogous sufficient conditions for large cycles and two new lower
bounds for the circumference are derived inspiring four new improved versions of Bondys
and Jungs conjectures.

References

[1] J.C. Bermond, “On Hamiltonian walks”, Congressus Numerantium, vol.15, pp. 41-50,
1976.

[2] J.A. Bondy, “Large cycles in graphs”, Discrete Mathematics, vol. 1, pp. 121-131, 1971.

(3] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan, London
and Elsevier, New York, 1976.

[4] J.A. Bondy, Longest paths and cycles in graphs of high degree, Research Report CORR
80-16, Department of Combinatorics and Optimization, Faculty of Mathematics, Uni-
versity of Waterloo, Ontario, Canada, 14 pages, 1980.

[5] S. Chiba, M. Tsugaki and T. Yamashita, “Degree sum conditions for the circumference
of 4-connected graphs”, Discrete Math., vol. 333, pp. 66-83, 2014.

[6] G.A. Dirac, “Some theorems on abstract graphs”, Proc. London Math. Soc., vol. 2, pp.
69-81, 1952.

[7] G. Fan, Extremal theorems on paths and cycles in graphs and weighted graphs, PhD
thesis, University of Waterloo, 1987.

[8] P. Fraisse and H.A. Jung, “Longest cycles and independent sets in k-connected graphs”,
Recent Studies in Graph Theory, Vischwa Internat. Publ., Gulbarga, India, pp. 114-139,
1989.

9] H.A. Jung and H.A. Jung, “Longest cycles in graphs with moderate connectivity”, Top-

[10]

[11]

[12]

[13]

ics in Combinatorics and Graph Theory, FEssays in Honour of Gerhard Ringel, Physica-
Verlag, Heidelberg, pp. 765778, 1990.

H.A. Jung, “Degree bounds for long paths and cycles in k-connected graphs”, Com-
putational Discrete Mathematics, Lecture Notes in Comput. Sci., Springer, Berlin, vol.
2122, pp. 56-60, 2001.

N. Linial, “A lower bound on the circumference of a graph”, Discrete Math., vol. 15,
pp- 297-300, 1976.

C.St.J.A. Nash-Williams, “Edge-disjoint hamiltonian cycles in graphs with vertices of
large valency”, Studies in Pure Mathematics, Academic Press, San Diego, London, pp.
157-183, 1971.

Zh. G. Nikoghosyan, “Cycle-Extensions and long cycles in graphs”, Transactions of the
Institute for Informatics and Automation Problems (IIAP) of NAS of RA, Mathematical
Problems of Computer Science, vol. 21, pp. 121-128, 2000.

14 A Note on Large Cycles in Graphs Around Conjectures of Bondy and Jung

[14] Zh.G. Nikoghosyan, “Dirac-type generalizations concerning large cycles in graphs”, Dis-
crete Mathematics, vol. 309, pp. 1925-1930, 2009.

[15] O. Ore, “A note on Hamiltonian circuits”, Amer. Math. Monthly, vol. 67, p. 55, 1960.

[16] H.-J. Voss and C. Zuluaga, “Maximale gerade und ungerade Kreise in Graphen”, I,
Wiss. Z. Techn. Hochschule Ilmenau, vol. 4, pp. 57-70, 1977.

[17] Y. Zou, “A generalization of a theorem of Jung”, J. Nanjing Normal Univ. Nat. Sci.,
vol. 2, pp. 8-11, 1987.

UYGwpy qpudblbpmd dto ghyitiph dwuhG Anlnhh L 3nlgh
Juplwoltph pnipg

dnpw G- Lhynnnujwh

<< QUU hGpnpiwmhyuwjh b wjnniwnmwgiwG ypnpitdiGiph hGunpnnon, Gplawl, <wujwuunwb
e-mail: zhora@iiap.sci.am

Udthnthnid

Uunwgyty GG Gnp pwjwpuwp wywjdwGGin gpudbh plnhwlpuwgwo ghytph hwdwn
(nGngpytny Lwdhipnlyub L gnihGulum ghytpp nputu Ywulwynp nhyptn) judwjwlwi
E-quuyuygquo (£ = 1,2,...) gpupmd, npnlp wuyugnigmd GG RnGnhh (1980) hwjwnGh
Junplwoh dydwpumwghmpjnilp npny wnmwppbpwlyitph nhypmd, hGsh 2Gnphhy qquihnptG
(wjugynud t ufjuy Jqupyuwony wyGyuiynn wpyniGpp: <wdwidwlnptl, wdtGubpyup
ghyith Gpyupnipjul hwdwp unwgyty GG Gnp uvnnphl qGwhwnwlwGGip hwljwnupd
Junplwoh hwdwp, npl wnwy E pwptiy 3niligp 2001-h6: Unwgyuo wpnyniGpGbpp pujupun
hhiptin t6 wwhu wnw9 pwpbtint Gnp jwjwgwd wmwppbpwylbp Pnlnhh L 3nilgh
(whlGwlwb Jupywobtph hnfuwnptl:

PwGwih puntp® {wihpnlh ghy, nnihGwbwum ghy), witGwtpywnp ghy, dto ghyg:

3aMeTKa O OOABIIMX IIMKAAX B rpadpax BOKPYT
runote3 bouau u IOHra

sKopa I'. Hukorocan

WHucturyT npodbaeM nHpopMaTuku u aproMatrzanuu HAH PA, EpeBan, ApmeHusa
e-mail: zhora@iiap.sci.am

AnHoTanuys

[ToAyyeHBI HOBBIE AOCTATOYHBIE YCAOBHUSI AAS OOOOIIEHHBIX ITMKAOB (BKAIOYAs
TaMUABTOHOBBEIE ¥ AOMWHAHTHBIE ITMKABI KaK YaCTHBIE CAydYau) B IIPOM3BOABHOM k-

Zh. Nikoghosyan 15

cBsizHOM rpade (k = 1,2,...), AOKa3bIBaIOI[e CIIPAaBEAAMBOCTh M3BECTHOW THUIIOTE3bI
Boupu (1980) AAST HEKOTOPBIX BApPUAHTOB, 3HAYUTEABHO YAYUIIWB OKHUAAEMBIM 110
AQHHOU TUIIOTEe3€ pe3yAbTaT. AHAAOTWYHO, NMOAYYEHBI HOBBIE HUJKHHUE OLEHKU AAT
MAMHBI AA\MHHEUIIEro MuKkAa rpada AL OOpaTHOM TUIIOTE3hI, IPEAAOKeHHOU FOHTOM
(2001). I'TonyueHHBIE PE3YABTATHI B COUETAHUM AQIOT OCHOBAHUS BBIABUIKEHUS HOBBIX
VAYUIII€HHBIX BAPUAHTOB AAS UCXOAHBIX runoTte3 bouau u FOwra.

KaroueBrie caoBa: 'aMHUABTOHOB ITMKA, AOMHUHAHTHBIM IIUKA, AMUHHEUIINN ITHKA,
OOABIIION ITHUKA.

Mathematical Problems of Computer Science 59, 16-26, 2023.
doi: 10.51408/1963-0098

UDC 519.714

RDNF Oriented Analytics to Random Boolean
Functions

Levon H. Aslanyan, Irina A. Arsenyan, Vilik M. Karakhanyan and Hasmik A. Sahakyan

Institute for Informatics and Automation Problems of NAS RA,Yerevan, Armenia
e-mail: kavilik@gmail.com

Abstract

Dominant areas of computer science and computation systems are intensively linked
to the hypercube-related studies and interpretations. This article presents some trans-
formations and analytics for some example algorithms and Boolean domain problems.
Our focus is on the methodology of complexity evaluation and integration of several
types of postulations concerning special hypercube structures. Our primary goal is
to demonstrate the usual formulas and analytics in this area, giving the necessary set
of common formulas often used for complexity estimations and approximations. The
basic example under considered is the Boolean minimization problem, in terms of the
average complexity of the so-called reduced disjunctive normal form (also referred to
as complete, prime irredundant, or Blake canonical form). In fact, combinatorial coun-
terparts of the disjunctive normal form complexities are investigated in terms of sets of
their maximal intervals. The results obtained compose the basis of logical separation
classification algorithmic technology of pattern recognition. In fact, these considera-
tions are not only general tools of minimization investigations of Boolean functions, but
they also prove useful structures, models, and analytics for constraint logic program-
ming, machine learning, decision policy optimization and other domains of computer
science.

Keywords: Boolean function, Hypercube, Complexity, Asymptotic, Reduced disjunc-
tive normal form.

Article info: Received 14 February 2023; sent for review 10 March 2023; accepted 11
April 2023.

1. Hypercube and Related Structures

The metric theory of Boolean functions (BF) [1], [2] arose in the 70’s, in parallel with the
emergence of broader design and implementation ideas for mechanical and electronic com-
putation devices. It was then that it turned out that the system of binary representation of
numbers is the most optimal, both from the point of view of the algorithmic implementation
of arithmetic calculations and also from the point of view of developing physical carriers
of performing these calculations [3]. BF — functions with only binary variables, and also

16

L. Aslanyan, I. Arsenyan, V. Karakhanyan and H. Sahakyan 17

with values in the domain {0, 1}, although simple among the other similar mathematical
concepts, they are quite complex in solving problems associated with their transformations
and optimization. The metric theory of Boolean functions provides the necessary knowledge
for coding, transforming and implementing binary functions. Although the way to minimal
BF representations are and remains difficult, a rather complete picture of the main forms
of function representation of functions has been obtained, and the basic role here takes the
concept of disjunctive normal forms. Successive steps of several transformations of functions
are found to achieve minimal forms as a chain from the table or formula representation to
the reduced d.n.f., then to the deadlock forms and finally — the minimal structures. The ac-
companying structures and bottlenecks of achieving acceptable optimization are investigated
intensively [1], [4]-[7]. Here we will not cover the whole theory but will pay attention to one
fundamental construction, — to the concept of reduced disjunctive normal forms (r.d.n.f.) of
Boolean functions. R.d.n.f. is the collection of all minimal conjunctions and geometrically
- the system of all maximum intervals/sub-cubes of functions. These forms are a universal
concept, and they also arise in problems such as circuit design from set of functional ele-
ments (logical part of chip design), in the theory of pattern recognition (logic separation
algorithm, and generation of logical regularities) [8]-[11], in biological models of heredity
and mutations (phylogeny, parsimony) [12, 13], etc. Turning to the complexity characteriza-
tion of structures associated with the reduced disjunctive normal form, where two types are
usually considered: the largest and most typical characteristics, we will focus on the second
component. In a concise survey of the domain, the initial studies of [5], [14], and [15], should
be mentioned, that give the formulas of average numbers of maximal intervals in Boolean
functions. [16], [17] extended these results to the case of partially defined Boolean functions.
An alternative track of papers in these topics includes the articles [18], [19], [20]. Current
research on the topics of BF and complexities might be demonstrated through the papers
[21]-]26]. Methodologically, in studies in the area of BF, it should be taken into account that
the function determination domain, as well as the number of functions itself, are finite, de-
pending on the number of the variables — the dimensionality. So, considering the parameter
7(f) over the functions, we get the split of these functions into finite classes by the values
of this parameter. These are the rates and intensity of the accepted values of the parameter
7(f). In some cases, it is convenient to refer to these valuations as probabilistic distributions,
which is not obligatorily but is convenient in some contexts. In this concern, there appears
a link to the model of Random Boolean functions and the combinatorial theories initiated
by A. Renyi and P. Erdos [27], [28].

1.1 Concepts and Definitions in the Binary Domain

Elementary conjunction, Direction. Let & and 3 — be arbitrary vertices of the n-
dimensional unite cube. And let j;,¢ = 1,2,---,r be all coordinates, those where o, = 3;,.
Consider the formula

r

K(z1, x9, -+ x0) =)\ x?ji,
i=1
with 0, = a;,, 1 = 1,2,---,r. We say that K is an elementary conjunction stretched on
the pair of vertices & and B of the n-dimensional unit cube FE,,. The number of literals in K
is the rank of . The geometrical counterpart of K is a sub-cube defined as follows. Assign
0 values to all but ji, jo,- -+, J, coordinates and denote this vertex by vg. Similarly, assign

18 RDNF Oriented Analytics to Random Boolean Functions

these coordinates by the value 1, obtaining the vertex v;. These are the minimal and maximal
vertices that belong to K, and they determine a unique sub-cube of all truth vertices of .
n — r, the number of variable coordinates of K is the size of its sub-cube.

Let A = {j1,72, -+, jr} be a collection of r indices drawn up of variables x1,xo, -, x,,
and let A\ be the complementary to the A set of indices. Conjunctions of the form AJ_, :1:;7]
and the corresponding intervals will be called conjunctions and intervals of the direction
A. For a fixed r there are C] different directions, and each of them is determined by the
appropriate selection of an r subset {ji,ja, -, .} of the set {1,2,...,n}. The individual
interval in the direction {ji, jo, - -, j- } appears in result of assigning the values o1, 09, -, 0,
to the variables x;,, x;,, -, zj,.

This also means that

there are 2"7" conjunc-

(1:1'1'1:1:1) tions and intervals in one

/ of the r-directions. The

collection \ of indices de-

fines another set of direc-
tions.

Let F be an arbitrary
logical formula and M C
B". We say that F ab-
sorbs or covers M if on
each tuple @ € M the for-
mula F accepts the unite
(true) value.

Let & € E™ be an ar-
bitrary vertex. Call the
/ value | & |= Y1,
°(0,0,0,0,0,0) the module or the weight
of a. The set of all ver-
tices B e E", with
pla,) =| & & B |=k,
call the k—the layer of £
in relation to the vertex &
(@ — mentions mod2 sum-
mation).

Fig. 1. Geometry of hypercube.

Intervals Nx1 and Nz,

T 1 T 2

o (e
K'(z1, 29, ,1,) = /\{E] and K*(xy, 29, -, 2,) = /\ x;

Ji i
=1 =1

of the same size and the same direction we call neighbors if p(6',5?) = 1, where p — be the
Hamming distance, p(6',6%) = Xi_, | 0j, — 02, | . Let then j;, is the number of that unique

coordinate for which 0]1-1_0 + a?-io. Then we say that the conjunctions K and K? (or the pair
of neighbor intervals corresponding to them) joined by the coordinate zj, , and, as a result,

L. Aslanyan, I. Arsenyan, V. Karakhanyan and H. Sahakyan 19

a new conjunction (interval) appears:

T
Uji
/\ Lj; -

itig,i=1
Partition the variable set xq,xs,---,x, in an arbitrary manner into two nonempty
groups: I, Ty, -, Tk as the first group, and z;,_ ., 24, ,, -+, 2;, as the second. Then,

the n-dimensional unit cube FE,, may be represented as the Cartesian multiplication
B x B of two sub-cubes: B* and B"* generated correspondingly by the sets of variables
Tiy, Tiy, o, gy, and Ty, Ty oy 00, Ty, - Let us enumerate the vertices of B"* by the layers
relative to the vertex 0 of B"*. Enumeration among the vertices of a particular layer is
arbitrary, but the first group that is enumerated by low numbers is layer zero, then the
first layer, and so on. Additional ordering among layer vertices may use lexicographic order,
binary value based order, etc.

Consider an arbitrary k-dimensional sub-cube B* of E™, the first k-dimensional inter-
val BY in the direction of B*. List the neighbor intervals to the considered one, BY, -
By, B%, .- BF_, ... Let f be an arbitrary (partially defined) Boolean function that satisfies
the following conditions:

a) BY doesn’t contain zero value vertices of f: (Va € BF, f(a) # 0),

B) Each of the neighbor with Bf interval contains at least one ‘unit’ value vertex f :
(Vj, .]:27377n_k+1 H&EB;C7 f(&)zl)a

v) BF contains at least one ‘unit’ vertex of f: (3a € BY, f(a) =1).

In conditions «), £), 7), we say that BY is a maximal interval of the function f. d.n.f.,
composed of all elementary conjunctions, corresponding to maximal intervals of function f
is named the reduced disjunctive normal form of f. The number of disjunctive members of
this formula is considered as its complexity. Denoting by 74(f) the number of all maximal
k—intervals of the function f we get the formula of complexity of the reduced disjunctive
normal form of f:

2. On the Maximum Number of k-Dimensional Maximal Intervals of RBF

Consider the class P,(n) of all Boolean functions of n variables xy, 9, -, x,. Let
p, 0 <p <1 beafixed number, and F, — the probability distribution on P»(n), generated
in the following way. The function f € Py(n) is induced as a result of a randomized
experiment, where the values of the function on vertices of E™ are derived randomly. The
value 1 appears with a probability p and the 0 value — with a complementary probability
1 —p. The vertices of E™ take part in this experiment independently of each other, and the
probabilistic distribution F), over the set of Boolean functions is generated in this way. The
probability of an individual Boolean function f under the distribution F,, depends on the
balance between the 0 and 1 values of the function f (the volumes of the sets N and E"—Nj).
For f € Py(n), this probability is equal to p™t!(1 — p)>" =M1l When p = 1/2 this probability
is simply 1/2%"and the corresponding distribution becomes the uniform distribution over

20 RDNF Oriented Analytics to Random Boolean Functions

the Py(n). We introduce the notation 74 (f) for the number of k-dimensional maximal
intervals of the function f € Py(n). And let ri(n,p) be the average value of the number of
k-dimensional maximal intervals of functions f € P»(n) under the distribution F,. It is
easy to make sure, that

r(n,p) = 3 Fp(f)*re(f) (1)

fEP2(n)
The number 7 (n, p) in the expression (1) is given by its definition as a sum over all functions
of f € P»(n), counting all their k-dimensional maximal intervals and taking into account the
probabilities of f in the distribution F,.
Further evidence of these constructions is provided by the following scheme:

- 2n-1
F,(): ¢ pg*t pra p¥
— _
SN W f—
f152 f2ri1 fom_ane [y fom
I N 7\ -1 - ,A \ 1
1 Ny e y”~ - 1 .= - Ml \ |
\ 7 - - \
| v - \ N~ - v1 1
\, - z- - \ \
| .~ \ . F | -~ v |
7\ pA - \ \
b 2w _=2= A- L %
e S y -7 A 3
XK1 KiK. Kok Ky Kkon-k

Fig. 2. This figure presents the bipartite graph of functions and k-dimensional maximal intervals.
Upper line functions are placed in order of the number of their ”true” values, from 0 to 2. Different
functions include different numbers of k-dimensional maximal intervals and have different proba-
bilities under the distribution Fj,. Instead, each interval presented in the bottom line is connected
to the same number of functions. This is because the sizes of intervals is the same. The order
of intervals is by groups of intervals, that belong to the same direction. Numeration inside the
functions with the same number of "ones” and inside the groups of intervals of the same direction
is arbitrary.

Following [5], we change the order of counting in 1, first considering all k-dimensional
intervals in E™. We relay two events to these intervals: the one, about their maximality, and
then the second, about the set of functions that accept the first event about maximality. In
this regard, it is also convenient to split the E™ in parts: the current k-dimensional interval /C
and its all n — k neighboring k-dimensional intervals Ky, KCq, - - -, K, _x. This part, the current
interval and its neighbors, covers an area &; of 2*(n — k + 1) vertices of E™. And the second
part that we consider, consists of the complementary area & to £ up to E™. The probability
of maximality of K for the function f becomes the product of probability of maximality of
IC together with the conditional probability of f when K is given to be maximal. The first
probability equals pzk(l — ka)”*k. The first and second parts consist of events, and their
sums of probabilities are equal to 1 as a probabilistic distribution. Now, when we sum up
the mentioned conditional probabilities with all f, we get the probability 1, and the final
probability of maximality of X, under the conditions of F),, becomes ka(l — ka)”_k. It
reminds us to take this probability for all k-dimensional intervals, obtaining the following
equivalent form for (1),

L. Aslanyan, I. Arsenyan, V. Karakhanyan and H. Sahakyan 21
_ k L .n—k
ri(n,p) = CR2"p* (1—p*) . (2)
Theorem 1. 74(n,p) is a concave function of the parameter k in the interval [0, n].

It is important to know the behavior of the function ry(n, p defined on the interval [1,n].
Initially, it is useful to calculate the values of the function at the boundary points of the
domain of definition: £ =0,1,...,n — 1,n. We give these values both for the arbitrary p and
the value 1/2.

Table 1: Values of ri(n,p) on boundary points, such as k =0,1,...,n — 1, n.

Boundary point values of r(n, p)
Dimension k of || ri(n,p) ri(n,1/2)
maximal interval
k=0 2"p(1 —p)" 1/2
F=1 R R 2yt | (/)32
k=n—1 n2" g (1 —p¥) | n2n (1= 1/22) 2
k=n p*" 1/2%"

As we can see, both the left and right boundary point values of the interval (0,n) are
small, but there is a noticeable increase from left to right at the left end, and a decrease
from left to right at the right end. To get a complete picture of the behavior, consider a
number of special intermediate point values of the function at:

1)
, ko =log ogn , and ki1 = log n
—logp —logp —logp

ki1 = log

The technical element of choosing of these values is in simple evaluation of sub-formula
E, = 22k, which is an important functional part of the 1. Substituting k;, ko, and ky into
Ey we get:

Ex, =1/2, Ex, =1/n, Ey, =1/2". (3)

Let us start the proof of postulations 1-3. For this, conduct a preliminary analysis of the
expression (2) for rg(n,p). Consider an arbitrary integer value function k(n) that obeys
the restriction 0 < k(n) < n, and substitute it into the expression 2. We are interested in
the behaviour of the received function 74, (n,p) depending on the parameter k(n) as
n — oo.

First let’s make sure that with the increase of k the expression 74 (n,p) increases mono-
tonically by the k < [ko], and then it decreases, when |ko[< k. By doing this we compose
the relation

_ ren(np) _ (n=k)p (L4 p?)
Ry, = rk(n,p) o 2(k+1>(1_p2k+1> . (4)

This expression can be considered for an arbitrary (not only for the integer) assignment
to the parameter k. We will follow by checking if this function is concave in the interval
0 < k < n for large n. The direct way of this is to derive the expression of the fraction

22 RDNF Oriented Analytics to Random Boolean Functions

Ry and treat it for a possible constant/zero value of it. In such consideration, the most
important role takes the part Ay = (n — k)pzk of the base expression 4. Substituting ko

logn —log
l

into A; we obtain that (n — ko)p* = (n — ko)p' o) = (n — ko)2'%% Toar) = 2= which
is converging to 1 as n — oco. With the help of formulas in Section 3. we see that the part
By = (14 p*")" % of (4) is limited at the point ko: (6) gives (1 + p*°)" — e as n — 00, S0
that (1 + p2k°)”_k0 also tends to e. Compose the fraction By,1/Bjy in the following form:

n—k—1 1+ ok ok \ M H
(1 +p2kp2k) (1ip21;“)
Bk+1/Bk - R n—k = 1 + ok ok (5)
(1 + p?) pp

k ok
Note that the fraction 12° ’,’f
1+p2?

is less than 1, so its n — k de-
gree is also less than 1. And
the denominator of (5) is greater
than 1 so that, finally, the ex-
pression (5) is less than 1 for
all k, which means a monotonic
decrease of the expression Ry in
(5). In general, as k in-
creases, all the factors of (4), other
than By, decrease monotonically
and, besides this, as n — oo ,
this expression tends to zero at
the point ky and grows in-
finitely when k£ = ko — 1. Fi-
nally, we receive that with in-
creasing k, for the beginning,
ir(n,p) increases, achieving its
maximal value at the point [ko]
Fig. 3. Differential of growing r¢(n,p). or ko[, and, then, it de-
creases.

3. On the Dependency of Number of k-Dimensional Maximal Intervals on

k

Consider the parameter ko = logfzgp. Since 0 < p <1, we have ky =logn + ¢, where c¢

represents an absolute constant determined by the fixed value of p. We intend to obtain an
asymptotic formula for ix(n,p) by the n — oo for the values of k of the form ks + const.
We make use of the following expressions C* ~ "k—’;, (1— p2k) ~ 1, and n!~n"e /210
as n — 00, which are based on the formulas

1.If 0<x<1 and 0 <y, then

exp(a(l—3)y) < (1+2)" < eap(ey). (6)

L. Aslanyan, I. Arsenyan, V. Karakhanyan and H. Sahakyan 23

2. If 0<2x <1 and 0 <y, then
(1 - =) < exp(—zy); and (7)
exp(—z(1 — z)y) < (1 — 2)¥, when additionally 0 < x < 1/2.
3. If x and y be natural numbers, and z < y, then

T

1j1— < (1— =)= h (8)

2y

Q@\E%

and are valid for the mentioned values of the parameter k, and for this reason

k
kek2n—kp2

ir(n,p) ~ N = ix(n, p). 9)

Theorem 2. The probability, that functions of the class Pa(n) under the distribution F,
have mazimal intervals of sizes k, k < [ki] or k > [ko], where ki = log—-— and
ko = tends to zero with n — oo.

On the right side of (9) we have expression, that depends on the continuous argument
k, and which is equivalent to the expression ix(n,p) for the integer values of the parameter
k, of the form ky 4 const. In the mentioned area, ix(n,p) decreases monotonically with
the increase of k, iy, (n,p) tends to infinity, and ix,41(n, p) tends to zero, when n — oo,
so that ix(n,p) — 0, for values k >]ko[and ix(n,p) — oo for values ko < k < [ko], by
n — 0o. Let us also denote, that we do not insist that i,(n,p) as n — oo converges to
any appropriate value.

In what follows, we will use the first Chebyshev inequality (1). The first inequality lets
formulate an extension of a postulation from [29] for the case of the probability distribution
F,. Actually, if to consider the expression ix(f), as a parameter of m(f) then for the
values k >]ko[ix(n,p) =0 by n — oo, and taking into the force the first inequality for
the arbitrary €(n) >0 P(ix(f) > €(n)) - 0 when n — co.

A similar situation takes place in the region of small values of the parameter k. For the
value k = k; and p = 1/2 by the (3) p*"* = 1/2 and ry, (n, p) — 0o as n — oo. For p > 1/2,
already for the value k; — 1, we observe that ry, _1(n,p) — 0 as n — oo. This is just because

%is a decreasing exponent, which together with C* tends to 0.
-p

4. Conclusion

This article has two goals: first, it considers the set of formulas needed to analyze the com-
plexity of structures associated with a multidimensional unit cube, providing the necessary
transformations and approximations for these formulas. Further, the paper considers a typ-
ical study for this field using these formulas. The problem under consideration estimates
the complexity of the reduced disjunctive normal form of Boolean functions on average, or,
what is the same, for almost the entire class of functions.

24

RDNF Oriented Analytics to Random Boolean Functions

References

1]

2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Yu. I. Zhuravlev, “Set-Theoretical methods of algebra of logic, Problem: Kibernetiki,
vol. 8, pp. 544, 1962.

O. Lupanov and S. Yablonsky, Discrete Mathematics and Mathematical Problems of
Cybernetics, Moscow, Nauka, 1974.

A. 1. Kitov and N. A. Krinitsky, FElectronic Computers, Moscow: USSR Academy of
Sciences, 1958.

Yu. L. Vasiliev, “Difficulties of minimization of Boolean functions based on universal
approaches”, Soviet Math. Dokl., vol. 171, no. 1, pp. 1316, 1966.

V. Glagolev, “Some estimates of disjunctive normal forms in the algebra of logic, Prob-
lems of Cybernetics, Nauka, Moscow, vol. 19 pp. 7594, 1967.

A. A. Sapozhenko, “Mathematical properties of almost all functions of alge©bra of
logic”, Discrete analysis, vol. 10, pp. 91119, 1967.

O. B. Lupanov, “Ob odnom metode sinteza skhem, In: Izv. VUZ (Radiofizika), vol. 1,
no.1, pp. 120140, 1958.

L. H. Aslanyan, “On a recognition method, based on partitioning of classes by the
disjunctive normal forms”, Kibernetika, vol. 5 pp. 103110, 1975.

L. H. Aslanyan, “Recognition algorithm with logical separators”, Collection of Works
on Mathematical Cybernetics, Computer Center, AS USSR, Moscow, pp. 116131, 1976.

L. Aslanyan and J. Castellanos, “Logic based Pattern Recognition - Ontology content
(1)”, Inf. Tech. and Applicat. (IJ ITA), vol. 1, pp. 206210, 2007.

L. Aslanyan and V. Ryazanov, “Logic based Pattern Recognition - Ontology content
(2)”, Inf. Theories and Applicat, vol. 15, no. 4, pp. 314318, 2008.

L. Aslanyan, H.Sahakyan, H.-D. Gronau and P. Wagner, Constraint satisfaction prob-
lems on specific subsets of the n-dimensional unit cube”, Proc. IEEE 10th Int. Comp.
Sci. and Infor. Technol. (CSIT), Yerevan, Armenia, pp. 4752, 2015.

L. Aslanyan and H. Sahakyan, “The splitting technique in monotone recognition”, Dis-
crete Applied Mathematics, vol. 216, pp. 502512, 2017.

G. Putzolu and F. Mileto, “Average values of quantaties appearing in Boolean function
minimization”, IEEE FC-13, vol. 2, pp. 8792, 1964.

G. Putzolu and F. Mileto, “Average values of quantaties appearing in multiple output
Boolean minimization”, IEEE EC-14, vol. 4, pp. 542552, 1965.

L. H. Aslanyan, “On complexity of reduced disjunctive normal form of partial Boolean
functions. 1.”, Proceedings, Natural Sciences, Yerevan State University, vol. 1, pp. 1118,
1974.

[17]

[23]

[24]

[25]

[20]

[27]
[28]
[29]

L. Aslanyan, I. Arsenyan, V. Karakhanyan and H. Sahakyan 25

L. H. Aslanyan, “On complexity of reduced disjunctive normal form of partial Boolean
functions. I1”, Proceedings, Natural Sciences, Yerevan State University, vol. 3, pp. 1623,
1974.

M. Skoviera. “Average values of quantities appearing in multiple output Boolean mini-
mization”, Computers € Artificial Intelligence, vol. 5, pp. 321334, 1986.

E. Toman, “An upper bound for the average length of a dizjunktive normal form of a
random Boolean function”, Computers & Artificial Intelligence, vol. 2, pp. 1317, 1983.

K. Weber, “Prime Implicants of Random Boolean Functions”, Journal of Information
Processes and Cybernetics, vol. 19, pp. 449458, 1983.

D. Gardy, “Random Boolean expressions”, Computational Logic and Applications, vol.
5, pp. 136, 2005.

J. Boyar, R. Peralta and D. Pochuev, “On the multiplicative complexity of Boolean
functions over the basis (and,mod2,1)”, Theoretical Computer Science, vol. 235, no. 1,
pp. 43-57, 2000.

X. Gong and J. Socolar, “Quantifying the complexity of random Boolean networks”,
In: arXiv:1202.1540v3 [nlin.CG] 26 May 2012.

P. Hrubes”, On the complexity of computing a random Boolean funtion over the reals”,
Electronic Colloquium on Computational Complexity Report, no. 36, pp. 111, 2000.

G. Sosa-Gomez, O. Paez-Osuna, O. Rojas, P. Lui del Angel Rodriguez, H. Kanarek
and E. J. Madarro-Capo, ” Con-struction of Boolean Functions from Hermitian Codes”,
Mathematics, MDPI 10.899, pp. 116, 2022.

Chaubal Siddhesh Prashant, Complezity Measures of Boolean Functions and their Ap-
plications, Faculty of the Graduate School of The University of Texas at Austin 2020.

P. Erdos, “Graph theory and probability”, Canad. J. Math, vol. 11, pp. 3438, 1959.
J. Spencer and P. Erdos, Probabilistic Methods in Combinatorics, Moscow: Mir, 1963.

L. H. Aslanyan, “On implementation of reduced disjunctive normal form in the problem
of extension of partial Boolean functions”, Junior Researcher, Natural Sciences, Yerevan
State University, vol. 20, no. 2, pp. 6575, 1974.

26 RDNF Oriented Analytics to Random Boolean Functions

NMuuwhwlwl pnpjwb $mbGyghwbtph WELI
nnuGnpn)uo ybpnionip niQ

LunG <. UupuGyuG, bppGw U. UputGyuG, dphihy U. Gupwfuwbjwd,
{wuthy U. Uwhwljjwd

<< QUU hGpnpiwmhyuwjh b wynniwnmwgiwG ypnpitdiGiph hpGunpnnon, Gplawl, <ujwuunwb
e-mail: kavilik@gmail.com

Udthnthnid

Uju hnnwoG nbGh tpynt Guuwunwly, Gwh wjl pGGwpynd L pwlGwalbtph dh pwpp,
npnlp wlhpwdtyn L6 pwqiwywih dhwynp unpuwlGwpnh hin juuyywo junnigwopltinh
pwpnnipjnilp ybtpnotnt hwdwp' wwwhnyting whpwdtpm thnfuwbpyniGin L
unnwpynuiGip wju pwlwdlbph hwdwp: UythG, hnpjwop pGGwpynd £ wju nnpunp
hwdiwp npnp plnpny nuumdGuuhpnipymG’ oquugnpotiny wju pwlwalbtipp: LGGwplyyYnn
plpwgwluwpgp qwhwwmnd E pnyjwl pnilyghwbtiph Ypdwnmywo nhqniGlumhy Gnpdwg
Guh pwpnnipynilp dhohGnid Jwy, np GnyyGa6 E, nuup gptipt pnnp $niGyghwltph hwdwp:

Pwlwih pwntp” Cnpjwl $miGyghw, puqiwsup Shwynp funpuwGupn, pwpnnipmnG,
wuhdyumnumhliuw, Ypdwnywo nhqniGlyumpy Gnpdwy dl:

AnanuTuka opueHTtrpoBaHHas Ha CAHO® caydaiiHBIX
OyAeBBIX (DYHKILIUU
AeBoH A. AcransaH, Mpuna A. ApcensH, Buank M. Kapaxaasaa, AcMuk A. CaaksaH

WucturyT npodbaeM nHpopMaTuku u aproMatrzanuu HAH PA, EpeBan, ApMeHusa
e-mail: kavilik@gmail.com

AnHoTanuys

AaHHAsA CTaTbsl [pPECAEAyeT ABe IIeAU: BO-IIEPBBIX, B HEW pacCMaTpUBAETCH
Habop (POpMyA, HEOOXOAUMBIX AASl @HAAW3Aa CAOKHOCTU CTPYKTYpP, CBSI3@HHBIX C
MHOTOMEPHBIM E€AMHUYHBIM KyOOM, IIPEAOCTaBASII HEOOXOAMMBIE IpeoOpa3zoBaHUA
U AaNIpOKCUMAUU AN OTHUX (POpPMYA. Aaree, B cTaTbe pacCMaTpPUBAETCH
TUIINYHOE HCCAEAOBAaHUE AAS AQHHOM OOAAQCTH C MCIOAB30BAaHUEM 3THUX (POPMYA.
PaccmaTpuBaemas mpoOaeMa OIleHMBAET CAOJKHOCTb COKPAIleHHOU AU3BIOHKTHUBHOM
HOPMAaABHOM (OPMBI OYA€BBIX (DYHKIIVUM B CPEAHEM, UAH, YTO TO JKE€ CaMoe, IIOUTH AN
BCero Kaacca (PyHKIIUNU.

KaroueBrle caoBa: OyaeBa (DYHKIWSA, MHOI'OMEPHBIU €AMHUYHBIN KyO, CAOJKHOCTB,
ACHUMIITOTUKAE, COKpAllleHHAad AU3BIOHKTUBHAA HOPMaAbHAsA popMa.

Mathematical Problems of Computer Science 59, 27-34, 2023.
doi: 10.51408/1963-0099

UDC 510.64

The Relationship Between the Proof Complexities of
Linear Proofs in Quantified Sequent Calculus and

Substitution Frege Systems

Hakob A. Tamazyan

Yerevan State University, Yerevan, Armenia
e-mail: hakob.tamazyan@ysu.am

Abstract

It has formerly been proved that there is an exponential speed-up in the number of
lines of the quantified propositional sequent calculus over substitution Frege systems
when considering proofs as trees. This paper shows that a linear proof of any quantifier-
free tautology in quantified propositional sequent calculus can be transformed into a
linear proof of the same tautology in a substitution Frege systems with no more than
polynomially increasing proof lines and size.

Keywords: Sequent systems, Frege systems, Proof size, Number of proof lines, Ex-
ponential speed-up.

Article info: Received 23 March 2023; sent for review 2 April 2023; accepted 19 May
2023.

1. Introduction

The existence of a propositional proof system that has proofs of polynomial size for all
tautologies is equivalent to the equation NP = co-NP [1]. This observation has gained
attention in recent years, leading to the examination of new proof systems. Through the
discovery of new systems, the computational power of existing ones is gaining a greater
understanding. A hierarchy of proof systems has been established based on two complexity
measures (size and lines), and the relationships between these systems are being explored.
Alessandra Carbone in [2] compared the number of derivation lines in the form of a tree
in some propositional calculus systems and revealed a distinctive property of the quantified
propositional sequent calculus (QPK system). Namely, for some sequences of formulas,
the QPK system has an exponential speed-up by lines with respect to the substitution
sequent calculus (SPK system) and substitution Frege systems (SF' systems) when proofs
are considered as trees. It was shown in [3] that the lines of linear proofs of the same formulae
families in all three systems are the same by order. Later, in [4], the same result was achieved
if one considers the sizes of linear proofs of the same formulae families for comparison.

27

28 The Relationship Between the Proof Complexities of Linear Proofs in QPK and Substitution SF

In this paper, the relationship between the proof complexities of linear proofs in Q PK and
SF has been investigated for all quantifier-free tautologies: it turns out that QPK system
has no significant advantage over SF when only linear proofs are considered. Specifically,
after the transformation of linear () P K-proof of a quantifier-free tautology into a linear SF-
proof of the same tautology by some algorithm, both complexities (the number of lines and
sizes) of linear proofs in SF' can increase polynomially at most.

2. Preliminaries

First and foremost, lets define several proof systems according to [1, 5, 6].

The Frege system F' uses a denumerable set of propositional variables, a finite, complete
set of propositional connectives. It has a finite set of inference rules defined by a figure of
the form %(the rules of inference with zero hypotheses are the schemes of axioms).
F must be sound and complete, i.e., for each rule of inference % every truth-value
assignment, satisfying A;A,...A,,, also satisfies B, and F must prove every tautology.

The Substitution Frege system SF is defined by adding to F' the substitution rule

where simultaneous substitution of the formula B is allowed for the variable p.
The LK Sequent calculus was introduced by Gentzen [7] for first-order logic. Each line
in LK-proof is a sequent: a sequent is written in the form:

Al,...,An%Bl,...,Bm

where Ay,..., A, and By, ..., B,, are formulas. We denote these sequences of formulas by
capital Greek letters I', A, etc. As a quantifier symbol in LK, we will include only the
universal quantification V. The existential quantification symbol 3 will be added by the

following definition:
(Fz)A(z) = ~(Vr)-A(z).

The inference rules of the sequent calculus LK are as follows:

e Initial sequents are sequents of the following form:

A—A
where A is any formula.
e Structural rules:
. r—A . . r—A
Weakening : left m Weakening : right m
FlaA7BaF2_>A . F—>A17A7BaA2
FExch sleft FExch s right
xchange : lef [B AT, 5 A xchange : rig I ALB AR,
Fl,A7A,F2—>A F—>A17A,A,A2

Contraction : right

Contraction : left

F17A7P2—>A F—>A1,A,A2

H. Tamazyan 29

e Logical rules:

left I —-AA riaht AT — A
TN TAT SA TRt TN DA

A left A BT — A A riaht r- AJ/A r-AB
Y AABT S A - T A AAB
v left Al'—-A BT —=A \V : right '—+44B

sle AVBT = A ' - A AVEB

S left - AA BT —A D: right AT—=A4B

e The cut rule:

r—-AA AT - A
r—A

Let us denote by PK the sequent calculus LK, where the rules are restricted to propo-
sitional logic.

The substitution system SPK is defined as the propositional sequent calculus PK with
an additional substitution rule:
SB L’A(m
P T — AJA(B)
where simultaneous substitution of the formula B is allowed for the variable p, and p does

not appear in I', A.

The quantifier system QP K is defined as the propositional sequent calculus PK, where
new quantification rules are added:

AB),I' - A , I' = A, A(p)
V :right
(Vg)A(q), I = A I'— A, (Vq)A(q)
where B is any formula such that no free variable occurrence in B becomes bounded in

A(B), and with the restriction that the atom p does not occur freely in the lower sequents
of V : right.

Notice that the the following two inferences can be derived in QPK system using the
definition of the quantifier 3:

A(p), I — A I' - A, A(B)

vV left

d:left G)A(Q) T = A d:right I A, (G9)A(Q)
A(p), T — A ' - A, A(B)
T A —A(p) ~A(B), I = A
TS A, (Y9)(q) (Vg)(9),T = A

=(Vg)=A(q),I' — A ' — A, =(Vg)=A(q)

30 The Relationship Between the Proof Complexities of Linear Proofs in QPK and Substitution SF

3. Main Results

For a given linear proof in QPK with n number of lines and proof size s, one can always
find a linear proof in SPK of the same tautology having O(n?) lines and O(s®) proof size.

First of all, notice that for any linear proof in SPK, there exists a linear proof in QPK
of the same tautology with the same number of lines. The sequent (Vp)A(p),I' = A, A(B)
is provable for all A, B, and the sequent I' — A, (Vp)A(p) is derivable from A — A, A(p).
Hence, after combining them through a cut rule, one derives I' — A, A(B). Here we examine
the relationship between these systems in the opposite scenario.

Lemma. Forn,m >0 and p not appeared in I'; A, the following inference

Fa Al(p)7 s 7An(p) — A7An+1(p)7 cee 7An+m<p)
[VA(B),...,An(B) > A Api1(B), ..., Apym(B)

can be achieved in SPK system with O(n + m) lines using the substitution rule only once.

Proof. First, let’s prove these additional inferences:

—A-A 5 r—-AAVEB
AT = A - ' AAB
r-A-A A— A
I 5 A A —AA— r-AJAvB A—-A B—B
AT = A ' -AAvB A— A B B—B

r - AAvVB A— A B B—ARB

r A AvVB AVB— AB
' - AAB

AANB — A
INA,B— A

NNANB—-A A— A B—B
NAnB—-A AB—A B—B
NANB—-A A B—-A A B—B

INAnB—A A B—AAB

I'A,B — A

H. Tamazyan 31

The final proof will look like this:

Fa Al(p)7 s 7An(p) — A7An+1(p)7 .. aAn-i-m(p)
Fv Al(p) A AQ(p)> cee 7An(p) '_> A? An+1(p), cee ,An+m(p)

LA (p) Ao A Ap(p) — A, Apni1(p)y oy Antm(p)

Ly Ai(p) A AA()—>AAH+1() VA, m(p)
I'= A Apia(p) V...V Anin(p), (A (p)/\ A An(p))

I'— A Apa(p) Vv "-\/An-&-m()V =(Ar(p) A A An(p))
' > AA(B)V...VAn(B)V-(A(B)A...NA,(B))
= A A, 1(B)V...VA, . .(B), (B)A...NA,B)

—(A
T 4B A A ALB) = A A (B)V. VA,n(B)

[A(B),...,An(B) — A,An+1(B), ooy A (B)
Note that in this proof the substitution rule is applied only once. H

Theorem 1. For a given linear proof in QPK of some quantifier-free tautology with n
number of lines, there exists a linear proof in SPK of the same tautology having O(n?)
number of lines.

Proof. Suppose P is a given linear proof in QPK. Since P is the proof of a quantifier-
free tautology, if a formula with a quantifier appears in the proof, then it must disappear at
some point in the next lines. These formulas can appear either by quantification rules or by
weakening rules, and the cut rule is the only inference rule capable of removing a formula
from the sequent. Notice that if we apply the cut rule to two sequents and some formula
A with a quantifier is removed, then it is impossible that both of these sequents got this
quantifier by the V : left rule.

First of all, we will remove all applications of the V : left rule in the proof of P. Let
(Vq)A(q) be some formula or subformula in the proof. Suppose it appeared by V : right
rule that infers I' = A, (Vq)A(q) from I' = A, A(p). Since p does not occur free in sequent
I' - A,(Vq)A(q), instead of the V : right rule, we can apply the substitution rule to
' - A, A(p) and substitute p with some new variable k that did not appear throughout the
proof. If (Vq)A(q) appeared by weakening rules, we will replace it with the formula A(k),
where k is again some new variable that did not appear throughout the proof. According
to the previously mentioned claim, the formula (Vq)A(q) should have been removed at some
point via the cut rule. Therefore, just before the application of cut rule, we will substitute
the variable k with the corresponding matching formula to be able to apply the cut rule
successfully. This substitution is allowed since k does not appear in the remaining formulas
of the sequent.

This removal of formulas with quantifiers from the proof can have the following effects.

Firstly, since these formulas have been replaced with different ones, the contraction rule
can not be applied to these replacements anymore, as they can differ from each other.
Therefore, instead of applying the contraction rule to them, in the next lines we will apply
the same inference rules to both of them. As these formulas should disappear in one of the
next lines by the cut rule, we will apply the cut-elimination rule twice so that both of them

32 The Relationship Between the Proof Complexities of Linear Proofs in QPK and Substitution SF

will be removed. There are O(n) applications of the contraction rule, then after this change,
the number of lines will become O(n?). However, according to the lemma, the number of
applications of the substitution rule will not change and will remain O(n).

Secondly, the V : left rule that transformed some sequent A(B),[' — A into
(Vq)A(q),I' = A, will not be applied to the proof, and the formula B will appear in the next
lines. Hence, there might be an application of the substitution rule in these next lines that
substitutes some variable z into some formula C' so that x also appears in the formula B.
This means that besides the formula C, there can also be other formulas with the variable
x in the sequent. Therefore, to fix this, we will apply the substitution to these formulas too.
Considering that the number of applications of the V : left rule was O(n) and removing
each application of the contraction rule adds just one formula to the sequent, the number
of such formulas in the sequent will be O(n). Therefore, according to the lemma, each such
substitution will require O(n) additional lines. Since there are O(n) applications of the sub-
stitution rule, this change will add O(n?) number of lines to our proof. This will conclude
the transformation process, and the transformed SPK proof will have O(n?) lines. B

Theorem 2. For a given linear proof in QP K of some quantifier-free tautology with a proof
size s, there exists a linear proof in SPK of the same tautology having O(s°) proof size.

Proof. Suppose P is a given linear proof in Q PK with n number of lines and proof size
s. Let P’ be the transformed SPK proof according to the process described above. To
calculate its size, let’s dive into the transformation process step by step.

We replaced each application of the V : right rule with a substitution rule to substitute
one variable with another. The formulas with quantifiers that appeared by weakening rules
have been replaced by formulas with the same size. Afterwards, we added a substitution
before the application of the cut rule to match the corresponding formula. All these steps
change the number of proof lines and the proof size linearly. Let’s denote them by 7/, s,
respectively.

Moreover, we removed all applications of the V : left rule. Therefore, if some application
of the V : left rule transformed the sequent A(B),I' — A into (Vq)A(q),I" — A, then after
the removal, the formula B will appear in the next lines. This will increase the proof size
by at most n' - |A(B)|, where |A(B)| is the size of the formula A(B). Removing the i‘h
application of the V : left rule increases the proof size by at most n’-|A;(B;)|, then removing
all of them will add no more than

Zn/‘ ’Al(Bz)‘ :n/Z’Al(BZ)‘ S n/'S/ S 8/2

to the proof size. As s’ is O(s), after this step, the proof size will be O(s?) and the number
of lines will remain O(n).

Removing applications of the contraction rule has the following two effects on the proof
size.

First of all, it will keep the eliminated formula in a sequent, so it will appear in the next
lines. The added proof size can be calculated completely like the previous method. Since
the number of applications of the contraction rule is O(n) and the proof size is O(s?), this
change will make the proof size O(s*). The number of lines will remain O(n).

The second effect of removing applications of the contraction rule will be applying the
same inference rules to both formulas. Since the proof size is O(s?®), then applying the same

H. Tamazyan 33

inference rule to the previously eliminated formula can increase the proof size by O(s?). The
number of applications of the contraction rule is O(n), and since n < s, the overall proof
size will become O(s*).

Finally, the removal of the V : le ft rule causes some substitution steps to also substitute
the same variable in several other formulas of the same sequent. Notice that all these
substitution steps were V : right rule replacements that substitute one variable with another,
as otherwise we won’t face such a problem. Each such substitution that simultaneously
substitutes the same variable in these sequent formulas required O(n) lines. If the i*h such
substitution is applied to the sequent .S;, then this change will overall add no more than

den-|Sl=cn- D[S <c s> S

to the proof size, where |S;| is the size of the sequent S; and ¢ is some constant. >;|S;| is
smaller than the current proof size, therefore the transformed SPK proof will have O(s®)
size. W

Corollary. Since the system SPK is polynomially equivalent to the system SF, there is a
transformation of a linear proof of any quantifier-free tautology in QPK into a linear proof
in the system SF that increases the proof lines and size at most polynomially.

4. Conclusion

This work described an algorithm according to which any QQPK linear proof can be trans-
formed into a SF’ linear proof by increasing its lines and size to at most a polynomial extent.
The obtained results show that the (Q PK system does not have a substantial advantage over
the system SF' in terms of linear proofs.

References

[1] S. A. Cook and A. R. Reckhow, “The relative efficiency of propositional proof systems”,
Symbolic Logic, vol. 44, pp. 36-50, 1979.

[2] A. Carbone, “Quantified propositional logic and the number of lines of tree-like proofs”,
Studia Logica, vol. 64, pp. 315-321, 2000.

[3] H. A. Tamazyan and A. A. Chubaryan, “On proof complexities relations in some
systems of propositional calculus, Mathematical Problems of Computer Science, vol.
54, pp. 138146, 2020.

[4] L. A. Apinyan and A. A Chubaryan, “On sizes of linear and tree-like proofs for any
formulae families in some systems of propositional calculus”, Mathematical Problems
of Computer Science, vol. 57, pp. 47-55, 2022.

[5] P. Pudlak, The Lengths of Proofs, in S. Buss (ed.), Handbook of Proof Theory, Elsevier,
vol. 137, pp. 547-637, 1998.

6] J. Krajicek, Proof Complexity, Encyclopedia of Mathematics and Its Applications,
Cambridge University Press, vol. 170, 2019.

[7] G. Gentzen, “Die Widerspruchsfreiheit der reinen Zahlentheorie”, Mathematische An-
nalen, vol. 112, pp. 493-565, 1936.

34 The Relationship Between the Proof Complexities of Linear Proofs in QPK and Substitution SF

Q-0wjh0 wpnwondltph pupnmipniGGtph Juwn owjwihsGbhpny
utijytighw; hwiwljwnpgnid b mtnunpiwb
Jwlnlny dbptiqth hwiwjwpqgbipnid

Jwiynp U. Pwdwqul

Gplwlh whnwlyw hwdwuwpuG, Gplawb, {wujwunwi
e-mail: hakob.tamazyan@ysu.am

Udthnthnid

‘Lwfuyhlind wwywgnmgyt] £, np owjwihsGtpny utyytlghw] hwiwjupgmd wnjw
L pwjytph pwGwyh Epuwynltlghw] wpwqugni wbtnunpiwl YJuwlnlng dplqbh
hwdwlwpqbiph Guwwmdwdp, Gpp nphnwpynd Glp SwnwjhG wpmwondGtpp: Uyu hnnpjuon
gniyg L wmwihu, np wnwlg owywihsGtph, gwlluwgwd GniyyGwpwlmpjul qowjhl
wnpunwonip owywihsGipny utlytiighw) hwdwlwpgnd hGwpwynp £ ytpwoty GnylG
(nyGwpwlnpjul qowjhl wpumwoiwl mtnunpiwl Juinlny dbptigth hwiwwpgbipnid’
nGtGwny wpmwodw b pwjiph pwlwyh b Gpupnipjwl wnwytpugnyy G puqiwlinudwjhl
wa:

Pwlwih pwnbtp ublytGghw; hwdwlwpgtp, dptqth hwdwlupgtip, wpunwotwl
tnqupnipyml, wpnwodwl pwjiinh pwwl, tpuynbtlighw); wpwqugniy:

CBs3b MEXXAY CAOKHOCTAMHU AOKA3dATEALCTB AMHENHBIX
BEIBOAOB B CUCTeMe CEKBEHIIMAABHOI'O UICUYHUCAEHUS C
KBAHTOPAMHU U CUCTEMaX (Dpere C IIPABUAOM IIOACTAHOBKH

Axo6 A. Tama3ssau

EpeBaHCKU rocypapCTBeHHBIM YHUBepcUTeT, EpeBan, ApMeHusa
e-mail: hakob.tamazyan@ysu.am

AnHoTanuys

Panee OBINO AOKA3aHO, UTO CYILIECTBYET SKCIIOHEHIIMAaABHOE YCKOPEeHNEe KOANYECTBA
IIaroB B CHUCTEME CEKBEHIIMAaAbHOT'O MCUYUCAEHUS BBICKA3bIBAaHUW C KBAHTOPAMU IO
cpaBHeHUIO ¢ cucTeMaMu Dpere ¢ TPaBUAOM ITOACTAHOBKH, KOTAQ MBI pacCMaTpUBaeM
BBIBOALI B BHAE AEPEBBEB. OTa CTaThd MOKA3bIBAET, UTO AMHEMNHBIM BBIBOA AIOOOM
OeCKBAHTOPHOU TABTOAOTUM B CUCTEME CEKBEHITMAABHOTO UCUMCAEHUS BHICKAa3bIBAHUM
C KBAHTOPAMU MO>KHO MMPEBPATUTH B AMHEMHBIN BBIBOA TOM JKe TABTOAOTUU B CUCTEMAX
Opere ¢ TpaBUAOM TTOACTAHOBKU C He OoAee UeM ITOAMHOMUAABHO BO3PacTarOIUM
KOAMYECTBOM IIIaroB Y AAMHOM BBIBOAA.

KAloueBEIe CAOBAa: CeKBeHITMaAbHBIE CHUCTEMBI, cucTeMbl Dpere, AAMHa BBIBOAQ,
KOAMYECTBO IIIarOB BBIBOAQ, SKCIIOHEHIIMAaABHOE YCKOPEHHUE.

Mathematical Problems of Computer Science 59, 35-44, 2023.
doi: 10.51408/1963-0100

UDC 004.75

Data Compression-Aware Performance Analysis of

Dask and Spark for Earth Observation Data Processing

Arthur G. Lalayan

Institute for Informatics and Automation Problems of NAS RA, Yerevan, Armenia
National Polytechnic University of Armenia, Yerevan, Armenia
e-mail: arthurlalayan97@gmail.com

Abstract

High-performance computing is a good choice for handling Big Earth Observation
data, allowing the processing of the data in a distributed and performance-efficient way
using in-memory computing frameworks. The data compression technique reduces the
amount of storage and network transfer time and improves processing performance.
The article aims to investigate the effectiveness of widely used distributed data pro-
cessing frameworks in conjunction with lossless data compression techniques, to find
the optimal compression method and processing framework for specific earth obser-
vation workflows. Normalized Difference Vegetation Index has been evaluated for the
territory of Armenia, obtaining data from the Sentinel satellite and considering the
supported compression methods to compare the performance of in-memory Dask and
Spark frameworks. Experiments show that the Zstandard compression method and
the Dask framework are the best choices for such workflows.

Keywords: Earth observation, HPC, Spark, Dask, Distributed computing, Data com-
pression.

Article info: Received 29 January 2022; sent for review 7 February 2023; received in
revised form 15 March 2023; accepted 17 April 2023.

Acknowledgement: The research was supported by the Science Committee of the
Republic of Armenia and the University of Geneva Leading House by the projects enti-
tled Self-organized Swarm of UAVs Smart Cloud Platform Equipped with Multi-agent
Algorithms and Systems (Nr. 21AG-1B052), Remote sensing data processing methods
using neural networks and deep learning to predict changes in weather phenomena (Nr.
21SC- BRFFR-1B009), and ADC4SD: Armenian Data Cube for Sustainable Develop-
ment.

1. Background and Motivation

Earth Observation (EO) satellite data are necessary for environmental monitoring and gath-
ering vital information about various Earth layers [1]. Specifically, EO data are widely used

35

36 Data Compression-Aware Performance Analysis of Dask and Spark for Earth Obser. Data Processing

to monitor the atmosphere including air pollution [2] and temperature [3], the oceans con-
sidering sea pollution and ocean acidity [4], and ground, such as deforestation [5] and forest
fire [6], as well as to detect climatic changes [7].

To facilitate work with EO data, Australian researchers [8] have provided an open-source
Open Data Cube (ODC) [9], which is deployed and widely used by several communities
from different countries, including Armenia [10]. Nevertheless, the ODC communities still
encounter the Big EO data processing challenge requiring high-performance computational
(HPC) resources. For instance, the Sentinel-2 satellite [11] provides approximately 200-300
GB, 3 TB, and 36 TB of daily, monthly, and annual data for the territory of Armenia.
Handling this amount of data is a complex task. Therefore, HPC is the right choice to
improve data processing performance using distributed computing techniques. Thus, the Big
EO data processing obstacle is coping with using open-source Apache Spark [12] and Dask
[13] frameworks, which can process data in parallel by dividing them into chunks, processing
them in a distributed way using computational clusters, and aggregating the result. Both
frameworks have master-slave architecture, where slave nodes are worker nodes executing
functions in parallel, and the master node is the driver or scheduler to manage them. Spark
ecosystem supports many projects in data streaming, SQL analytics, and machine learning.
Spark is a multi-language engine that processes and analyzes data, while Dask is a Python
library. Therefore, Spark has its ecosystem APIs and memory models, while Dask uses
them from the Python ecosystem. However, these frameworks have some differences and
limitations in finding an optimal solution for EO data processing workflows.

Besides using HPC, the format of EO satellite images also has a crucial influence on
performance. The data compression techniques can reduce storage usage and the number
of I/O operations, improving processing performance. Recent studies [14, 15] show that
compression methods combined with HPC can significantly enhance the performance of Big
data workflows. One of the optimal satellite image formats is Cloud Optimized GeoTIFF
(COG) [16], which provides essential advantages compared to traditional formats, such as
NetCDF [17]. COG format provides an HTTP range request to extract a part of the data.
Hence, when extracting EO data using COG, there is no need to download the entire image
and then extract the area of interest as in the NetCDF format. Besides the mentioned
benefit, both COG and NetCDF formats support data compression methods.

Several studies [18, 19, 20] evaluate and compare the performance of the frameworks for
particular cases, such as data-intensive neuroimaging pipelines [18], different applications
of molecular dynamics [20], and scientific image analytics [19]. Nevertheless, they did not
consider performance-tuning techniques, such as data compression.

The main objective of the article is to investigate the efficacy of widely used distributed
data processing frameworks, such as Dask and Spark, in combination with lossless data
compression methods, to enhance the performance of EO data processing. The methodology
involved evaluating the approach on the Armenian hybrid research computing platform, and
the results obtained from the evaluation could be used by EO communities to make informed
decisions about improving their data processing performance.

2. Methodology

A test-bed platform for EO data processing has been deployed to execute EO data pro-
cessing functions and compare the performances in Spark and Dask. The platform is a
container-based solution within the Kubernetes system, enabling evaluating and comparing

A. Lalayan 37

the environments’ performance. It relies on the computational resources of the Armenian
hybrid research computing platform [21]. Fig. 1 shows the architecture of the experimental
platform.

N

Gpal’kl Driverﬂ. a\\

|

a
s Jupyter ; [Executor][Executor] [Executor]
> Notebool o \Z

(]

S/t B 7N

=1

* DaSk Scheduler

> f‘ Data
[] repositories

[

iWorker][Worker] [WOrker/

Fig. 1. Test-bed platform based on Spark and Dask.

\S

As the figure shows, each node scheduler/driver or worker/executor corresponds to a
pod in Kubernetes with some fixed computational resources. It is possible to configure the
computational resource characteristics of nodes with Kubernetes API. The Jupyter Notebook
[22] corresponds to the FrontEnd of the Spark and Dask cluster BackEnd. It connects to
Dask and Spark of master nodes, configures environments by providing the number of worker
nodes and computational resources for each node, requests to process EO data using Dask
and Spark clusters, and visualizes the output. Dask and Spark clusters fetch data from
repositories of either local Armenian DataCube [23] or global EO data providers. Armenian
DataCube [10] provides data from Landsat 5, 7, 8 [24], and Sentinel-2 satellites, and one of
the global EO data providers is Sentinel-2 Cloud-Optimized GeoTIFFs [25].

The functionality evaluation of the Dask and Spark frameworks is quite interesting.
Dask is a flexible Python library, which makes it easy to migrate and execute the old-
written Python code in a distributed manner. Moreover, Python is widely used in EO data
workflows, and various useful libraries provide vital tools to make the work with EO data
easier. However, working with EO data in Spark is a little tricky because the execution
of the old-written codes in the Spark environment is impossible, as it supports APIs of its
ecosystem, therefore, the code adjustment is inevitable. The GeoPySpark library [26] makes
working with EO data somewhat easier in Spark. So the data processing function can be
easily parallelized only in Dask, considering the limitations and complexity of using Spark.

As EO data processing applications, the Normalized Difference Vegetation Index (NDVT)
[27] was evaluated during the experiments, which provides information for monitoring the
health of the vegetation. The formula of the index is presented in (1).

NIR — RED
NDVI = ————— 1
v NIR+ RED’ (1)
where RE D is the red band, and NIR is the near-infrared band. All bands and the calcula-
tion result are matrices or images and the NDVI index is calculated from Sentinel-2 satellite

images.

38 Data Compression-Aware Performance Analysis of Dask and Spark for Earth Obser. Data Processing

Several experiments were conducted with different parameters to evaluate the perfor-
mances of Dask and Spark using the developed experimental platform. Table 1 presents all
parameters and their values.

Table 1: Experimental parameters and their values.

Parameter name Possible values
Environment Dask and Spark
Input Data sizes 16, 32, 64 GBs
Number of workers 4, 8, 16, 32
Applications NDVI
Compression methods | None, Deflate, LZW, Packbits, and Zstandard

3. Experimental Results

Data compression techniques reduce the actual size of data, resulting in savings in stor-
age space, providing faster network transmission times, and improving the performance of
processing. EO data repositories, which provide satellite images in COG format, such as
Sentinel-2 COGs, by default, use Deflate compression method to reduce the downloading
time of satellite images and save some storage space. Besides the Deflate method, several
compression methods, either lossy or lossless, could be applied with COGs. The accuracy
of the satellite image is essential, as the spatial resolution of the Sentinel-2 image is 10m
[10], which corresponds to the surface area measured on the ground represented by each
pixel. Therefore, the compression methods used for optimization should be lossless to en-
sure accurate results. The COG format supports several lossless compression methods, such
as Deflate [28], LZW [29], Packbits [30], and Zstandard [31].

EO band tiles come in three different sizes (light, medium, and heavy) by which the
compression factor is estimated to understand the average compression ratio of the method.
The light band tiles (coastal, water vapor, etc.) usually have up to 5-10 MB size, medium
50-70 MB (Short-wave infrared (SWIR), vegetation red edge, etc.), and heavy 200-250 MB
(RED, NIR, etc.). They consider all types of possible lossless compression methods. The
compression ratio is calculated for each method by dividing the compressed data size by the
original uncompressed data size. The compression ratios for various compression methods
are presented in Fig. 2.

The figure shows that the best compression factor is provided by the Zstandard method,
whereas the worst one is provided by the Packbits method. Zstandard codec compresses
the band image more than the Deflate does, which is by default used by the Sentinel-2
COGs repository. Therefore, using Zstandard instead of Deflate will lead to more storage
savings, and less network transfer time and I/O operations. The storage reduction, in this
case, is 34 % compared with the uncompressed data and 16 % compared with Deflate. The
compression ratio of the Packbits method for the heavy tiles is close to 1, which means that
the method is useless for data size reduction since the actual size and compressed data size
will be the same. Besides the storage saving, further data processing is also essential, as

A. Lalayan 39

Compression ratio

1.0
0.8
0.6 Codec
_g mmm DEFLATE
& - ZW
mmm PACKBITS
0.4 mm /STD
0.2
0.0
Light Medium Heavy
Data size

Fig. 2. Compression ratio of Deflate, LZW, Packbits, and Zstandard methods for light, medium,
and heavy tiles.

high compression needs more CPU time to decompress into memory before processing. The
majority of the time spent in computing NDVT is devoted to transferring satellite images
over the network and loading them into memory, rather than performing calculations using
the CPU. The comparison of the performances of Dask and Spark, considering different sizes
of input data, compression methods, and 32 worker nodes is shown in Fig. 3.

The execution time of the COG tile compressed with the Packbits method and without
compression is almost the same, as Packbits provides weak compression; thus, it uses lit-
tle CPU time for decompression. The worst performance for both environments from the
possible compression methods is Deflate, whereas the best one is Zstandard. Hence, the
best compression method for satellite images in COG format is Zstandard, as it provides
the highest compression ratio and optimal memory loading time. The performance im-
provement when using Zstandard compared to uncompressed mode is achieved by reducing
network transfer time. Zstandard provides on average 2.15 and 1.82 times faster execu-
tion time compared with the uncompressed mode, approximately 4.72 and 3.99 times faster
than the default selected Deflate method provided by global satellite image repositories cor-
respondingly for Dask and Spark environments. Performance evaluation using Dask and
Spark is quite interesting. For the default used Deflate compression method provided by EO
repositories, Spark and Dask show similar execution times; however, Spark is a bit faster.
The LZW compression method for the Dask environment is better than Deflate but worse
than without compressing or compressing with Zstandard. Also, Spark does not support
the compression method. With uncompressed data, Dask is faster than Spark for 16 GB
input, whereas, in cases of 32 GB and 64 GB, Spark is faster. Performance in Dask using
the Zstandard compression method is an optimal choice.

40 Data Compression-Aware Performance Analysis of Dask and Spark for Earth Obser. Data Processing

Dask vs Spark

—— NONE/PACKBITS
200 —— DEFLATE
— LZW
— Z5TD
= B Spark
o 150 @ Dask
£
e
[
R=]
100
(=]
@
>
L
50
0
16 32 48 64
Data Size (GB)

Fig. 3. Comparison of Dask and Spark considering 16, 32, 64 GBs of input data and compression
methods.

4. Discussion

The study showed that various data compression methods could reduce storage require-
ments and network transfer time at different scales. Moreover, compressed data processing
using multiple techniques in distributed environments such as Spark and Dask exhibited
other execution times, with some compression methods outperforming uncompressed data
processing time. The study aims to determine the optimal data compression method that
balances performance and storage savings in the chosen distributed processing environments.
The evaluation shows that the Dask and Zstandard combination is the best choice for the
environment and compression method for EO satellite images. It provides the highest com-
pression factor and performance compared to other supported compression methods.

The Armenian DataCube was initially set up with a 2-terabyte storage capacity, which is
limited. To manage this, only the essential bands for specific EO applications that researchers
are interested in during a particular period are downloaded and stored. If the storage capacity
is exceeded, the options are to scale vertically or add external storage. The Zstandard
compression technique was used in experiments to conserve 34 % of storage. This allows
more data to be stored in the allocated DataCube space.

The Zstandard compression method combined with the Dask environment offers benefits
such as improved data storage efficiency and EO data processing time. However, additional
steps are required to achieve these benefits, such as converting analysis-ready data from the
DataCube to Cloud Optimized GeoTIFF format and compressing them using the Zstandard
method. Although this may increase the total execution time of downloading and prepro-
cessing, it provides such benefits as enhanced processing time and storage savings. Moreover,
this efficient method of storing compressed data can be applied to other types of EO data
repositories and DataCubes.

A. Lalayan 41

In conclusion, data compression methods can effectively reduce the amount of EO data
stored and improve processing performance. Zstandard exhibits the best performance and
storage efficiency for EO data among the available compression methods. Additionally, the
implementation of the Dask environment speeds up distributed processing.

5. Conclusion

The study evaluates the performance of EO data processing in Dask and Spark, considering
compression methods. Experimental results show that Dask and Spark provide similar data
processing performances. The mixture of the Dask and Zstandard compression methods
is optimal, as the compression method provides the best compression factor of all possible
lossless compression methods. It reduces the amount of used storage by 16 % and speeds up
execution times by 4.72x and 3.99x in Dask and Spark, correspondingly compared with the
Deflate method, which is used by default from the EO data repositories. In further work, it
is planned to store the data in Armenian DataCube compressed with the Zstandard method
and use the Dask environment for data processing.

References

[1] O. R. Young, M. Onoda. “Satellite Earth Observations in Environmental Problem-
Solving”, In book: Satellite Earth Observations and Their Impact on Society and Pol-
icy, pp. 3-27, 2017.

2] D. A. Chu, Y. J. Kaufman, “Global monitoring of air pollution over land from the Earth
Observing System-Terra Moderate Resolution Imaging Spectroradiometer (MODIS)”,
Journal of Geophysical Research Atmospheres, vol. 108, no. 21, November 2003.

[3] R.S. dos Santos, “Estimating spatio-temporal air temperature in London (UK) us-
ing machine learning and earth observation satellite data”, International Journal of
Applied Earth Observation and Geoinformation, vol. 88, June 2020.

[4] T. Krishnamurti and A. Chakraborty, “Impact of Arabian Sea pollution on the Bay of
Bengal winter monsoon rains”, Journal of Geophysical Research, vol. 114, March 2009.

[5] R. DeFries and F. Achard, “Earth observations for estimating greenhouse gas emissions
from deforestation in developing countries”, Environmental Science & Policy, vol. 10,
no. 4, pp. 385-394, June 2007.

6] Y. J. Kaufman and C. Ichoku, “Fire and smoke observed from the Earth Observing
System MODIS instrument—products, validation, and operational use”, International
Journal of Remote Sensing, vol. 24, no. 8, pp. 1765-1781, November 2010.

[7] H. D. Guo and L. Zhang, “Earth observation big data for climate change research”,
Advances in Climate Change Research, vol. 6, no. 2, pp. 108-117, June 2015.

[8] A. Lewis, S. Oliver and L. Lymburner, “The Australian Geoscience Data Cube Foun-
dations and lessons learned”, Remote Sensing of Environment, vol. 202, pp. 276-292,
2017.

[9] Open data cube, [Online|. Available: https://www.opendatacube.org/

[10] S. Asmaryan and V. Muradyan, “Paving the Way towards an Armenian Data Cube”,
Data, vol. 4, no. 1, 2019.

42 Data Compression-Aware Performance Analysis of Dask and Spark for Earth Obser. Data Processing

[11]

[12]

[19]

[20]

[21]

M. Drusch and U. D. Bello, “Sentinel-2: ESA’s Optical High-Resolution Mission for
GMES Operational Services”, Remote Sensing of Environment, vol. 120, pp. 25-36,
May 2012.

M. Xiangrui, “Mllib: Machine learning in apache spark”, The Journal of Machine
Learning Research, vol. 17, no. 1, pp. 1235-1241, 2016.

R. Matthew, “Dask: Parallel computation with blocked algorithms and task schedul-
ing”, Proceedings of the 14th python in science conference, vol. 130, 2015.

H. Astsatryan and A. Kocharyan, “Performance Optimization System for Hadoop and
Spark Frameworks”, Cybernetics and Information Technologies, vol. 20, no. 6, pp.
5-17, 2020.

H. Astsatryan and A. Lalayan, “Performance-efficient Recommendation and Prediction
Service for Big Data frameworks focusing on Data Compression and In-memory Data

Storage Indicators”, Scalable Computing: Practice and Experience, vol. 22, no. 4, pp.
401-412, 2021.

Cloud Optimized GeoTIFF, [Online]. Available: https://www.cogeo.org/

J. Li, “Parallel netCDF: A High-Performance Scientific I/O Interface”, Proceedings of
the 2003 ACM/IEEE Conference on Supercomputing, 2003.

D. Mathieu and H. Sasson, “A Performance Comparison of Dask and Apache Spark
for Data-Intensive Neuroimaging Pipelines”, 2019 IEEE/ACM Workflows in Support
of Large-Scale Science (WORKS), pp. 40-49, 2019.

P. Mehta and S. Dorkenwald, “Comparative evaluation of big-data systems on scientific
image analytics workloads”, Proceedings of the VLDB Endowment, vol. 10, no. 11, pp.
1226-1237, 2017.

I. Paraskevakos and A. Luckow, “Task-parallel Analysis of Molecular Dynamics Tra-
jectories”, ICPP 2018: Proceedings of the 47th International Conference on Parallel
Processing, no. 49, pp. 1-10, 2018.

Y. Shoukourian and V. Sahakyan, “E-Infrastructures in Armenia: Virtual research
environments”, Ninth International Conference on Computer Science and Information
Technologies Revised Selected Papers, pp. 1-7, 2013.

B. M. Randles and I. V. Pasquetto, “Using the Jupyter Notebook as a Tool for Open
Science: An Empirical Study”, 2017 ACM/IEEE Joint Conference on Digital Libraries
(JCDL), pp. 1-2, 2017.

Armenian DataCube, [Online]. Available: http://datacube.sci.am/

M. A. Wulder and T. R. Loveland, “Current status of Landsat program, science, and
applications”, Remote Sensing of Environment, vol. 225, pp. 127-147, 2019.

Sentinel-2 Cloud-Optimized GeoTIFFs, [Online]. Available:
https://registry.opendata.aws/sentinel-2-12a-cogs

G. Jifu and C. Huang, “A Scalable Computing Resources System for Remote Sensing
Big Data Processing Using GeoPySpark Based on Spark on K8s”, Remote Sensing,
vol. 14, no. 3, 2022.

A. Lalayan 43

[27] N. Pettorelli, J. O. Vik, “Using the satellite-derived NDVT to assess ecological responses

to environmental change”, Trends in FEcology ¢ Fvolution, vol. 20, no. 9, pp. 503-510,
2005.

(28] S. Oswal, A. Singh, “Deflate compression algorithm”, International Journal of Engi-
neering Research and General Science, vol. 4, no. 1, 2016.

[29] M. J. Knieser, F. G. Wolff, “A technique for high ratio LZW compression [logic test
vector compression”, Automation and Test in Europe Conference and Fxhibition, pp.
116-121, 2003.

[30] G. Feng, C. A. Bouman, “Efficient document rendering with enhanced run length
encoding”, Color Imaging XI: Processing, Hardcopy, and Applications, January 2006.

[31] Y. Collet, M. Kucherawy, “Zstandard Compression and the "application/zstd’ Media
Type”, RFC Editor, USA, February 2021.

Dask-h L Spark-h juumwpnnuwGh ytpmionipjniG’ hw)yyh wnGbny

wnyjwGbph utindnudp Gpynph nhunwplydwb
nyjuwGbph dywldwl hwdwp

Uppnip G- LwjuwywG

X< QUU hGbnpiwnmphlyuwgh b wjunniwnwgiwG ypnpitdGiph hpGunpnnun, Gplawd, <ujwunwb
Lwjwuwnwlh wqqujhlG ynihuntfuGhyuywl hwdwuwpwb, Gplwb, <wujwunwi
e-mail: arthurlalayan97@gmail.com

Udthnthnid

Pwpdép Juuwpnquiwb hwpqupyp jwy pGuopnipymG L Gpyph ghunwpydiwl dto
nyjwGtph QQwliwl hwdwp, hGsp poyp L nwihu myjwltph QQwindp pupfuqwo b pupdp
wpyniGwytnnipjudp’ oquuwqnpotyny hppnnmipjwl k9 hwpynnuwl hwppwylbip:
SYjwiGtph ubtnidwl wbhulnnghw6 Gwqtglmd E wwhwloynn wwhbumwynpiwb
owjwpn L gwlgh thnfuwlgiwl dwiwlGwyp, hGyuybu Gwbk pwpbjuymyd L wnyjwGbph
Wuwliwl dwdwlwyp: <npjuoh Guuwuwlyl t numdGuuhpt) wjlnptl oquwuqnpoynn
nyjwGtiph Quwlydwbi powlwyltnh wpyniGuwytummpniGp’ wnyjultph wiynpniumnm
utiniiwl wnbjuGhywjh htn hwdiwwmbn, Gpyph ghunwpiwl hwunnly w)uwnwipwihl
hnuptiph hwdwp utnddwl owwhdiw) dbpnny L Wuwliwl Jppwlwl qultim hwdwnp:
Pnuuwuwlnipjul Gnpdwjugwd mwpptpnipjul hGntipup qGwhwwyty] L {wjwuwnmwGh
nwpwoph hwdiwp’ oquuagnpotiny Sentinel wppwljuyh wjuwiGtpp L hwyyh wnGhny
utniiwl wowlgynn ubpnnGpp hhpnnmpjul vty Dask L Spark ppowGuyGtph
wpfuwnwlph hwitdwniwl hwdwp: Onpdbtpp gniyg GG wmwihu, np Zstandard utnudwG
utipnnp L Dask dhowjuwjnp jwjwgnijG pGupnipyniGG GG GdwG wfuwnmwbpujhG hnuptiph
hwdwn:

Pwluh puwntp Gpypp nhuwpynd, HPC, Spark, Dask, puwpfuqwd hwpupy,
wnyjw Ghphutinunud:

44 Data Compression-Aware Performance Analysis of Dask and Spark for Earth Observation Data Processing

Anaau3 npou3BoAUTEeABHOCTH Dask 1 Spark aast o6paboTku
AQHHBEIX HaOAIOA€HUS 3€MAU C YYE€TOM CKATUsl AQHHBIX

Aptyp I'. Aarasgu

WucturyT npodbaeM nHdpopMaTuku u aproMatrzanuu HAH PA, Epesan, ApMeHusa
HarnoHaABHBIN TOAMTEXHUYECKUN YHUBepcUTeT ApMeHuy, EpeBan, ApMeHusa
e-mail: arthurlalayan97@gmail.com

AnHoTanuys

BBICOKOTIPOM3BOAUTEABHBIE BBIYUCACHUS SBASIOTCSI XOPOIIMM BBIOOPOM AAS
00pPabOTKU OOABIIINX AQHHBIX HAOAIOA€HUS 3€MAU, MO3BOASIS 00pabaThiBaTh AQHHBIE
pacupeAeAeHHBIM ¥ BBICOKOIPOM3BOAUTEABHBIM CIOCOOOM C HMCHOAB30BaHUEM
BBIUMCAUTEABHBIX TIAQT(OPM B IaMATH. TEeXHOAOTUS CXKATHUSI AQHHBIX COKpAIaeT
o0beM XpaHUAMINA U BpeMS MepepauM II0 CETU U IOBBIIIAeT IIPOU3BOAUTEABHOCTH
obpabotku. LleAapto cTaThu ABASIETCS HCCAeAOBaHUE Jd(PEPEKTUBHOCTU UIIMPOKO
HWCIOAB3yEMBIX CHUCTEM pPACIPEAEAEHHOM OOpabOTKM AQHHBIX B COYETAHUU C
METOAAMU C)KaTus AAHHBIX 0Oe3 MoTepb, 4YTOObBlI HAWUTHU OINTUMAABHBIM METOA
COKATHS U CTPYKTYPY OOpabOTKU AAI KOHKPETHBIX PabOumMX MPOIeCCOB HAOAIOAEHUSA
3emMau. HopMaanM30BaHHBINM PAa3HOCTHBIM MHAEKC PACTUTEABHOCTH OBIA OIl€eHEH
AN TeppuTOpry ApPMEHUU C HCIOAB30BAaHMEM AQHHBIX CO CIIyTHMKA Sentinel m c
YU4EeTOM IIOAAEPKUBAEMBIX METOAOB CJKATUA AN CPAaBHEHMS IIPOU3BOAUTEABHOCTH
dperiMBOopkOB Dask m Spark B mamMsaTH. OKCOEPUMEHTHI IMOKA3BIBAIOT, UTO METOA
cxartusa Zstandard m gperiMBopK Dask gBASIOTCS HAWMAYYIIMM BBEIOOPOM AAS TaKHUX
paboyrx IpoIleCcCoB.

KaroueBrle caoBa: HaOatopenme 3emanm, HPC, Spark, Dask, pacnpeaereHHBIE
BBIUMCAEHUS, CKaTUue AAHHBIX.

Mathematical Problems of Computer Science 59, 45-56, 2023.
doi: 10.51408/1963-0101

UDC 004.891.3

Expert Knowledge-Based RGT Solvers for Software
Testing

Mane P. Buniatyan!, Sedrak V. Grigoryan? and Emma H. Danielyan®

!Synopsys Armenia, Yerevan, Armenia
2Institute for Informatics and Automation Problems of NAS RA,Yerevan, Armenia
3EPAM Systems Inc., Yerevan, Armenia
e-mail: buniatyanmane@gmail.com, addressforsd@gmail.com, emma_danielyan@yahoo.com

Abstract

Program testing is a way of assessing the quality of software and reducing the risk
of software failure in operation [1]. Quality issues can cause as financial loss as well as
harm to human lives (e.g., when the bug is in medical instruments, cars, etc.). So, it
is very hard to underestimate the importance of testing.

There are multiple testing techniques, which are split into 3 major categories.
One of them includes experience-based techniques. Test cases and scenarios used in
experience-based testing are derived from the tester’s knowledge and intuition, as well
as their experience with similar applications and technologies. These techniques can
be helpful in identifying tests that are not identified easily by other more system-
atic techniques. Depending on the tester’s approach and experience, experience-based
techniques may achieve widely varying degrees of coverage and effectiveness [1].

We propose a method for automation of experience-based testing via a class of
combinatorial problems (RGT class). A Solver is developed for the class. It acquires
expert knowledge and elaborates effective strategies for RGT problems [2]. The pro-
posed method generates test cases dynamically based on the response of the program.
The adequacy of the method is being experimented for ”blender” open-source appli-
cation, which has Python API allowing to experiment with testing and analyze test
results.

Keywords: RGT class, RGT Solver, Software testing, Expert systems.

Article info: Received 25 September 2022; sent for review 11 October 2022; accepted
07 February 2023.

Acknowledgement: The authors express their deep gratitude to Dr. Edward Pogos-
sian for his contribution and constructive comments to the work.

1. Introduction

Software Testing is an approach to assess the quality of software and to reduce the risk of
its failure in operation [1].

45

46 Expert Knowledge-Based RGT Solvers for Software Testing

In [1], testing techniques are divided into 3 groups: black-box, white-box and experience-
based techniques. In the case of the last one, test cases are based on the testers’ knowledge
and intuition, on experience with similar applications and technologies. These techniques are
efficient in identifying tests that are not identified easily by other more systematic techniques
as well as when there is a limited testing time or incomplete specifications [1].

According to the World Quality Report 2021-2022 [3], one of the current trends in quality
assurance and software testing is test automation. Test automation has the following benefits

[1]:
e saves time by reducing repetitive manual work
e provides greater consistency and repeatability

e allows to evaluate the situation more objectively based on static measures, coverage
reports, etc.

e provides more accurate information about the current state of testing based on gathered
statistics, test progress, defect rates and performance.

There is a way to automate test case generation, known as the model-based testing
(MBT). MBT is a technique for generating a test suite from requirements [4]. Instead of
individual tests creation, testers create models that allow generating test cases automatically.
These methods can be used in regression testing and are especially useful when the system
changes frequently. In this case, the test suite can be regenerated easily by adjusting the
model instead of readjusting each test case separately.

MBT has three important components [4]:

e a model (requirement, information, workflow, architectural, behavioral, configuration,
deployment, performance, risk, environment, and usage models [5])

e a test-generation algorithm
e tools generating a supporting infrastructure (including the expected output).

MBT tools are meant to generate test suites by manipulating either with input data or
behavior without handling both simultaneously. Generated test cases do not provide ways
to test the system dynamically (the choice of modules to testing depends on the previous
test results).

Software Testing can be considered as a combinatorial problem between a tester and states
of a program. Hence, testing can be also considered as a representative of Reproducible Game
Tree (RGT) class problems. RGT is a class of combinatorial problems, for which the space
of solutions is a reproducible game tree. These problems meet the following requirements
[6]:

e there are interacting actors (players, competitors, etc.) performing identified types of
actions in specified moments of time and specified types of situations

e there are identified benefits for each actor

e there are descriptions of situations in which actors act in and are transformed after
actions.

M. Buniatyan, S. Grigoryan and E. Danielyan 47

For such problems with a given arbitrary situation x and an actor A, who is going to act
in x, we can generate a corresponding game tree GT(x, A) comprising all the games started
from x. Games represent all possible sequences of legal actions for players and situations
that they can create from the given initial, or the root situation x. In our consideration, the
games are finite and end with one of the goal situations of the problem [6].

Assuming that A plays according to a deterministic program, a strategy, the GT(x, A)
represents, in fact, all possible performance trees of the strategies from x. In that sense, the
GT(x, A) determines the space of all possible solutions from the situation x. With the given
criterion K to evaluate the quality of strategies, we can define the best strategy S*(x, A)
and the corresponding best action of A from x [6].

RGT class includes important problems like computer networks intrusion protection, op-
timal management and marketing strategy elaboration in competitive environments, testing
of programs, defense of military units from various types of attacks, communication prob-
lems, certain types of teaching, chess and chess-like games [2].

One of the advantages of RGT class is that these problems are reducible to the standard
kernel problems K. K- methodology multiplies the achievements for particular problems
of this class. Distributed development of this methodology is possible. K-methodology en-
hances the effectiveness of RGT Solvers providing answers to urgent RGT questions including
the following ones [2]:

e measurement of the effectiveness of Solvers
e analysis and typification of combating knowledge
e construction of knowledge-based Solvers

e regular acquisition of RGT expert knowledge and enhancing the effectiveness of Solvers.

The validity of K-methodology was proved for certain RGT problems including Chess,
Network Intrusion Protection, Navy Defense from Attacks, Management, Marketing etc. [2].

RGT Solver is a software that acquires expert knowledge and elaborates effective strate-
gies for RGT problems [2]. It is a universal tool for solving RGT-class problems.

Strategy searching and game tree. As already mentioned, the space of solutions for
RGT problems is a reproducible game tree, and with the given criteria, we can evaluate and
choose the best possible actions in given situations for the given actor.

As the combinatorial complexity of the mentioned problems is huge, we need to reduce
the game tree. Otherwise, the computer’s computational resources (memory and storage)
will not be enough to solve them. C. Shannon suggested reducing the tree by building it
until the resources are expired. It is not an effective way because we waste our resources to
compute steps that will not improve the current situation. Another approach, suggested by
M. Botvinnik, is to consider only those steps that have potential benefit in the current case,
i.e., we should not examine the steps that have no meaning. We can evaluate the possible
usefulness of an action with the knowledge (without reviewing the opponent’s answers) and
choose the most profitable one. Then, by checking the opponent’s potential actions, we can
build the game tree and choose the best move in a given situation [7].

The Solver builds the game tree, evaluates situations with the knowledge, then chooses
the best action using the minimax algorithm.

48 Expert Knowledge-Based RGT Solvers for Software Testing

The purpose of this paper: Testing of programs can be considered as an RGT prob-
lem, and RGT Solver can be used for experience-based testing as an expert system when the
corresponding knowledge is available.

In this work, we aim to provide a definition of testing problems as RGT problems, a way of
formulating knowledge, and an approach for proper assessment of tested programs, which also
covers the drawbacks of model-based testing approaches (in particular, combining different
behaviors and input data, running both functional and non-functional tests at the same
time, and generating tests dynamically). Thus, the following open questions are addressed:

1. What kind of knowledge are we going to use, who are the actors as well as what are
their possible actions?

2. How to evaluate each situation, what kind of goals each actor has, etc.?

Overall, this leads to proposing a model for representing an experience-based testing as
an RGT problem.

2. Reduction of Program Testing to RGT Class

In RGT problems, it is essential to define the situations, the actors, the actions, and benefits
for each of them. Let’s define these terms for program testing.

The actors in software testing are the system under test (i.e., the program) and the
tester. Note, that unlike some other problems in the RGT class (e.g., like chess), where the
opponent tries to make counteraction, in testing the program just responds to the tester’s
actions.

The actions are any valid elementary operations that can be performed with the program.
While building the ”game” tree, the Solver dynamically combines these actions, creates test
cases and executes them depending on the response of the program. Note, that not all
combinations of the elementary operations are meaningful from the perspective of the user
(e.g., actions that have no effect or are not connected with each other). That is why we need
to find a way to control these combinations. The actions of the program are actually only
responses to the tester’s actions.

The situations are the current states of the program. We can estimate the current
situations with [0;1] numbers, where 0 means that no bugs are found, 1- that the program
is in a critical state and is not usable. The numbers in-between 0 and 1 are intermediate
values, and situations with values closer to 1 are worse than situations with values closer
to 0. We suggest the following criteria for evaluating the current state of programs (these
criteria can be expanded later):

e Existence of bugs (difference between expected and observed results): different bugs
have different importance; when the main functionalities of the program do not work
as expected, the program becomes useless (e.g., if the user is not able to log into a
social network, save the result of the accomplished job, do a transfer in the banking
system, etc.).

e Performance degradation: we all would like to have fast, high performing programs,
but unfortunately it is not always possible. Performance degradation in a part of the
program that is used frequently will cause to slowdown the work, but if it is in a part

M. Buniatyan, S. Grigoryan and E. Danielyan 49

that can be done without human interaction and/or is performing rarely, then it can
be acceptable.

e Security: this is essential for some programs (e.g., banking system, strategic informa-
tion storing, transfers, etc.).

e Crashes and hangovers: this is always bad, and in some cases, they can even cause to
a fatal problem, like losing the whole work performed. In most situations, this is not
acceptable.

We need to take into account the number of problems, as well as their severity and
importance, the sequence of actions causing the problem (i.e., how frequently the problem
occurs in “real life”). A bug in a very important functionality is worse than a crash that
users might not even encounter, but, on the other hand, having lots of "minor” issues in
the program is also not acceptable. When one of the main functionalities does not meet the
requirements mentioned above, the program is in a critical state, and it cannot be delivered
to customers. The importance of each functionality is considered as a multiplier for the
appropriate criterion.

The current state of the program can be measured with the following evaluation function:

st=mc*xc+mbxb+mpxp+msxs, (1)

where mc, mb,mp, ms € [0;1], ¢, b, p, s ={0 | 1}. C, b, p and s are Boolean variables,
that show the existence of crashes/hangovers, bugs, performance degradations or security
problems respectively (1 if the mentioned problems occurred, otherwise - 0). Mc, mb, mp
and ms are multipliers for the occurred problems (they show the importance of the broken
functionality). Any occurred problem is counted only once, so if, for example, a crash occurs,
even if it relates to a security problem or it is a bug (obviously, it is not an expected result)
we will consider ¢ = 1, b =0, s = 0 and p = 0. If the current state of the program is bigger
than 1, we consider it as 1.

3. RGT Expert Knowledge Formatting for Testing

Error guessing, exploratory testing and checklist-based testing are representatives of
experience-based techniques [1].

Considering the characteristics of each of these techniques, we propose the following usage
of the Solver: by reviewing issues occurred before, the usage of the program and its main
functionalities, we create checklists. In the Solver, checklists are represented as plans, and
the checklists” actions as goals. Based on the coverage reports, the source files responsible
for each action can be defined. These connections help to prioritize the created checklists.
The user can also define priorities depending on the module he/she is most interested in.

Checklists lead to the creation of a game tree. Each branch in the tree is a test case.
It is important to mention that actions in the checklists are general, i.e., many elementary
actions can correspond to one action in the checklist. It allows you to combine multiple
actions and build a tree. Checklists define if it still needs to proceed to the next steps or not
in case of a defect occurrences in the current step.

Multipliers in formula (1) are also given as knowledge for the Solver. They show the
importance of user action. Note, that multipliers should be defined for both elementary

50 Expert Knowledge-Based RGT Solvers for Software Testing

and checklist actions. The same elementary action in different situations can have different
importance, e.g., if the user tries to save a text file it is more important to save the text
than the style. We multiply both multipliers to get one for the action. Imagine that in the
example below, mb = 0.8 for the elementary action “save” and for the following checklists
of actions ”open the program, add text, save”, “open an existing text file, change the style,
save”. Let’s say we have mb = 1 for the “save” in the checklistl] and mb = 0.6 for the
“save” in the checklist2. In this case, if the program is not able to save the text, we will
have mb=1%0.8=0.8 and for the second case: mb=0.6%0.8 = 0.48. Thus, the first case will
be considered worse than the second one.

In the case of performance degradation, we need to multiply mp with the coefficient
showing how many times the performance was slowed down or how much longer it takes to
perform the same action. E.g., if the performance is 2x slower than expected, we need to
multiply mp with 2.

The testing continues until a. the given time is expired, b. all/chosen checklists are
checked or c. if the program gets into a critical state.

4. RGT Solver Experiments in Program Testing

We have chosen the Blender program as a system under test. It is an open-source 3D model-
ing program with a Python interface that can be used for testing. In order to understand how
the program testing Solver works and how the knowledge and checklists can be represented,
let’s study an example.

To understand how the knowledge and checklists can be represented, let us review an
example.

The checklist below checks some of the main functionalities of the program:

basic_operations; X.cpp

Open the program; mc=1, mp/5s/=0.04;

. Move 3d cursor; mb=0.7, mc=0.9, mp=0.06, nextStep=1;
Add object; mb=0.9, mc=0.9, mp=0.07;

s Change geometry; mb=0.8, mc=0.9, mp=0.07;
Transform object; mb=0.8; mc=0.9, mp=0.07

Fig. 1. Checklist Example.

To keep it simple, we just added a few basic operations, but this list can be enlarged if
needed. The operations in this checklist can be independent, like lines 6 and 7. But if this
was a checklist based on the previous failures or a user story, then all steps would depend on
each other. This checklist could be used if we had limited testing time and could only check
the main operations to make sure that there were no critical issues (like a smoke test). The
first line of the checklist (i.e., the comment) represents the name of the checklist and the
source file which is associated with the checklist (here, as we don’t know the corresponding
source file, we put x.cpp just to show the structure of the checklist. The source file is not

M. Buniatyan, S. Grigoryan and E. Danielyan 51

mandatory). If some multipliers are absent in the checklist, we assign 0 to them (e.g., ms=0
for all actions in checklist below, because they could not lead to security problems). The
variable nextStep is used to determine whether the next step should be performed or not in
case of bug in the current step (e.g., if the user is not able to move the 3D cursor it is still
somewhere in the scene and the user can add objects). In line 3 we open the program. If it
crashes it is a critical state for the program, thus mc=1.

Next to mp there is the expected time the operation should take (mp/5s/). If it takes 25
seconds, we multiply mp by 5. As this operation is not repeatable and happens only once,
when the work starts, its performance is not very important, but yet the user cannot wait
for about 10 minutes to start working. As the performance depends on the users’ computer,
the performance parameters are defined for minimum system requirements of the program.
In the example above, we just used values based on local resources.

In line 4, we need to move the 3D cursor. 3D cursor position defines where the object is
being added. It can also be used as a 3D view orientation to define where to move objects,
to move the pivot point to the 3D cursor, as the rotation point in the spin tool, etc. So, it
is a quite important feature, but in case it does not work users can still find workarounds.
Note that there is no expected time next to mp for this action. It is because this action
should work simultaneously with the click (i.e., should not take noticeable time). Like other
actions in the checklist, this is one of the basic operations, so crash is unacceptable here,
thus mc = 0.9. Note that all the multipliers here are conditional and this is just an example.
In real world example, probably, multipliers should be chosen more thoroughly. nextStep is
1 here, because even if the 3D cursor cannot be moved, we are still able to add an object.
To perform this step using the Python API we do the following:

Move 3d cursor , m=I

import random
import bpy # python module for blender

x = random.randint (0, 100)

¢y = random.randint (0, 100)
z = random.randint (0, 100)
bpy.context.scene.cursor.location = (x, y, z)

assertEqual (bpy.context.scene.cursor.location.x, X)
- assertEqual (bpy.context.scene.cursor.location.y, y)

assertEqual (bpy.context.scene.cursor.location.z, z)

Fig. 2. Elementary Operation: Move 3D Cursor

This is an elementary operation for moving the 3D cursor. The first line comment shows
the corresponding general operation (in the checklist) and the multiplier. As in this case

52 Expert Knowledge-Based RGT Solvers for Software Testing

only 1 elementary operation corresponds to the checklist operation, its multiplier is 1. Note
that the case is not always the same (the coordinates are randomly generated) and the test
also checks if the operation was performed successfully or not.

In the 5th line of the checklist, we have the ” Add object” operation. Many elementary
operations correspond to this operation (see Fig. 3): there are lots of groups of objects, and
each group itself contains various objects.

P [] Plane
3 Cube
Circle
(0 UV Sphere

r'__J lco ';'-.[.I'.r_-[r_-

I| Ij-_. linder

Image

Light
Light Probe

Camera

Force Field

Collection Instance

Fig. 3. Add Object.

The Python code below is an example of the “Add object” operation. It adds a cube
in the current location of the cursor. As all objects can be used for creating different 3D
models, and their importance is dependent on what exactly the user tries to create m=1 for
all objects. Note that if the object is not added then we cannot perform the next action,
i.e., we cannot change its geometry.

The last command in the checklist is “Change geometry”. First of all, the user should
switch to the edit mode in order to change the object’s geometry, i.e., move the object’s
vertices, edges and faces, and then perform the corresponding operations. For this general
action, there are 3 possible elementary actions (move vertices, edges, faces). All of them are
important while creating a 3D model, but considering the fact that if a user is not able to
move the edge, he/she can choose vertices of the edge and move them together (so that the
edge will be moved), or choose all edges/vertices of a face and move it. The most important
one in those operations is moving vertices, and then edges, then surfaces.

For the given example, the Solver moves the 3D cursor to different positions, adds different
objects, changes their geometry, and makes sure that these operations work as expected for
different objects (i.e., checks that the Python tests are passing). To check how the Solver

M. Buniatyan, S. Grigoryan and E. Danielyan 53

Add object, cube, m=I
import bpy

initial count = len(bpy.context.scene.objects)
cl = bpy.ops.mesh. primitive_cube_add (enter_editmode=False ,
« align="WORLD" ,

location=bpy.context.scene.cursor.location , scale=(1, 1, 1))

count_after _add = len(bpy.context.scene.objects)

w assertEqual (initial_count , (count_after_add — 1))

Fig. 4. Elementary Operation: Add Object.

Thus, in this case, the multiplier for each operation will be different:

Change geometry, vertices , m=0.9
: #

Change geometry, edges, m=0.8
: #

Change geometry, faces, m=0.7
> #

Fig. 5. Elementary Operation: Change Geometry.

behaves if the operation does not work, we can simply use assertNotEqual function instead
of assertEqual (e.g., instead of “assertEqual(bpy.context.scene.cursor.location.x, x)” we can
write “assertNotEqual(bpy.context.scene.cursor.location.x, x)”). The Solver will combine
different elementary tests together, create test cases and run them.

To run tests, we use the following command:

ctest —R <test_name> —C Release ——output—on—failure

Fig. 6. Command For Running a Test.

In order to use the Solver for different programs, we use a configuration file, which defines
how to run tests (e.g., paths to test cases, checklists and elementary operations).

54

5.

Expert Knowledge-Based RGT Solvers for Software Testing

Conclusion

We propose a new approach for test automation and test results evaluation considering the
testing of programs as a RGT-class problem. In this work:

1.

tools defining the types of knowledge for testing the target application are described.
The described knowledge is being integrated into RGT Solver and being used to run
test cases, test scenarios with later evaluation of test results.

. An approach for evaluating the state of the program during the testing is proposed.

The adequacy of the proposed approach is being experimented with the open-source
Blender application.

The proposed approach solves drawbacks of the model-based testing approach, namely,
allows to generate test cases dynamically.

The described solution is generic for the RGT Solver and can be used for testing various
applications.

References

1]

K. Olsen and M. Posthuma and S. Ulrich, “ Certified Tester Foundation Level Syllal-
bus”, International Software Testing Qualifications Board, pp. 5662, 2019.

E. Pogossian, Constructing Models of Being by Cognizing. Yerevan, pp. 150-159, 2020.
World Quality Report, Capgemini, Sogeti, Micro Focus, pp 16-37, 2021

D. Rakhi, J. Ashish, N. Karunanithi, J. Leaton, C. Lott, G. Patton and B. Horowitz,
“Model-based testing in practice”, Proceedings of the 1999 International Conference
on Software Engineering (IEEE Cat. No.99CB37002), Los Angeles, CA, USA, 1999,
pp. 285-294, doi: 10.1145/302405.302640.

I. Schieferdecker and A. Hoffmann, Model-Based Testing, IEEE Software 29.1, pp.
14-18, 2012.

E. Pogossian, V. Vahradyan A. Grigoryan, On competing agents consistent with ex-
pert knowledge, Proceedings of Second International Workshop, AIS-ADM 2007, Au-
tonomous Intelligent Systems: Multi-Agents and Data Mining, St. Petersburg, Russia,
pp. 229-241, 2007.

M. Botvinnik, Computers in Chess: Solving Inexact Search Problems, Springer-Verlag,
New York, 1983.

M. Buniatyan, S. Grigoryan and E. Danielyan 955

Onpodwghnwljwl qghwnbihpltph ypw hhiGjuwo RGT SOLVER-h
Jhpwnnidp opwgpuijhl wywhnydiwl phunwynpiwl fulnpmd

Uwit M. PniGhwpjuGl, Uinpuy 9. Q-phgnpyub 2 L Eddw <. Fwbhbjw6?

1Syrlopsys Lwjwuwnw@, Gplw G
2:¢ quu hGpnpiwmpluwjh L wyunniwnmwgdwl ypnptdGtph hGunpunnun, Gplawb, wjwunwb
3 EPAM <wjwuwnw(, Gpluwd
e-mail: buniatyanmane@gmail.com, addressforsd@gmail.com, emma_danielyan@yahoo.com

Udthnthnid

Otunwynpmip opwqgph npuwyp qlwhwwmbtim U jwhwgnpodiwl vk opwqpuwjhl
wywhnyiwl dwhunniwl phuytipp GJuqtigGhnt dhong E: Opwqpnud ujuw)Gtph
wniuwynipjnilp Yupnn E pbpt) hGywytu $hGwlGuwub YnpniunmGhph, wyGytu L SwpnuyhG
gnhtiph (ophGwy, pdquywl vwppwynpnuiGtph Juyd dtptGuGtpmd wnw ufuw)Ghpp):
Ujuwhuny, pwpn b pbpwqlwhwwnby ptunmwynpiwl jupunpnipynbp: Otunwynpiwl
unnbtgnuiGtpp Jupbjh bt pwdw6l 3 hhdGwywl hudptph, npnlghg dtyp thnpéh Ypw
hhiGywo (experience-based) ptiunwynpnuil L: Uju wuwpwqund ptunmbtipp untindymu
LG hhdGytiny pbumwynpnnh qhbjhpGiph L hGunhghwh, hGswybu Gub GwjulyhGomd
(Wwlwwmhy opwgnptph htim mGtguwo thnpéh Yypw: Onpdh Yypw hhiGguwo dnntigniGtpnG
oqlnmu Gl pwgwhwjnt] wjluyhuh uvfuw(ltp, npnlp wwn pwpn L hwymGupbpbp wybh
hwiwupqwo dnntgnuiGtpny: Uju wpjuwwnwlpmd dtlp wnwownpymd tlp thnpdh
Ypw hpdGjwo punmwynpiwl wynniwwmwgnid® oqunuwgnpotiny YniphGwwmnp fulinhpGtph
RGT nuwup: RGT nuup tuGnhpGiph miodw 6 hwdwp Qywyynd ERGT Solver-p” opwgpuhG
thwptip, npp jmuunwlimd £ thnpdwghnwlwl ghnbihplbp b unbnond £ wpnyyniGuybtun
nwqiwywpmpjniGlip RGT nwuh pulnphpGtph miodwl hwdwp: Unwowpynid Glp
RGT Solver-G oquwugnpoty opwgptph ptunwynpiwl fulnpnid: Solver-n untinomud L
ptiunwjhG hpJwhdwyGbp® Juudwo opwgph wpdwqubphg/ywmwufuwlhg b gGwhwnmd
L gpwip pun Gwhiwwbu vwhdwljwo swhwGhGtph: Uju dinnbgiwl wntuumnipjniln
thnpdwplynid k tnwswh dnphjuynpiwi “Blender” dopwgph dhongny:

Pwluh puwntin’ RGT nuwu, RGT Solver, dpwqpujhl wwywhniwl phumwynpnid,
thnpdwghmnwywuwl hwiwyupqbnp:

56 Expert Knowledge-Based RGT Solvers for Software Testing

RGT SOLVER Ha OCHOBe 3KCIIEPTHHIX 3HAHUU A
TECTHPOBaHMS IIPOrpaMMHOro o0ecrnedeHus

Masme I1. Bynuatsau!, Ceapak B. I'puropsn’® u Emma I'. Aanueasus®

1Synopsys Apmenusd, EpeBan
2I/IH(:TI/ITyT npobaeM nHpopMaTuku U aproMatn3anuu HAH PA, EpesaH, ApMeHUusa
3EPAM Apwmenusi, EpeBan
e-mail: buniatyanmane@gmail.com, addressforsd@gmail.com, emma_danielyan@yahoo.com

AnHoTanuys

TecTpoBaHNWE IIPOrpaMM-3TO CIIOCOO OIEHKH KadecTBa IIPOTPAaMMHOro obecre-
YeHUs U CHU’KEHUS pUCKA OTKasa IIPpOrpaMMHOIO obOecrnedyeHus B pabore. OueHb
TPYAHO HEAOOIIEHUTH Ba’)KHOCTH TECTUPOBAHUSA: IIPOOAEMBI C KQ@4eCTBOM IIPOIpaMM
MOTYT IPUBECTU KaK K (PMHAHCOBBIM ITIOTEPSIM, TaK U HAHECTH yIIIepO 3A0POBBIO AFOAEU
(HampuMep, KOrpa OIMIMOKa HAaXOAUTCSI B MEAMIIMHCKUX NPUOOPaX, aBTOMOOUAIX U T.
A).

MeToABl TeCTUPOBAHUSA MOKHO ITIOAPA3AEAUTh Ha 3 OCHOBHBIE rpynmnbl. OpHa U3
HUX - 3TO METOABI, OCHOBAHHBIE Ha OINBITE. 3AECh TECTOBBLIE IIPUMEPHI CO3AAIOTCA
Ha OCHOBE 3HAHWU U MHTYULMU TECTHUPOBIINKE, @ TaK)Ke Ha ero OIbITe pabOoTHI C
QHAAOTUYHBIMU IIPUAOKEHUSAMU U TEXHOAOTUSIMU. OTU METOABI MOTYT OBITH IIOA€3HBI
IIPU OIIPEAEAEHUM TeCTOB, KOTOpPhble He AErKO HAEHTHU(PUIIMPOBATH APYTUMH OOAee
CHUCTEMATUUYECKUMHU IIOAXOAAMM K TEeCTHPOBAHMIO. B 3aBUCHMOCTH OT IMOAXOAA
U OIIbITAa TECTHUPOBIIVKE, 3TH METOABI MOryT O0OecleduBaTh IIUPOKYIO CTeleHb
IIOKPBITUA M 3(PPEeKTUBHOCTHL TECTUPOBaHUA. B AQHHOM cTaTbe MBI IIpepAaraeM
MeTOA TECTMPOBAHMI Ha OCHOBE OITbITA (@aBTOMATU3AllWd TECTUPOBAHUS) Yepe3 KAACC
kKoMOnHaTOPHBIX 3apau (RGT kaacc). RGT Kaacc BKAIOY@ET TaKMe Ba’KHbIE 3apauy,
KaK 3alluTa OT BTOP’KEHUU B KOMIBIOTEPHBIE CeTH, pa3paboTKa OITUMAABHOU
CTpaTeruy YyIpPaBAEHUS U MapKeTHUHTa B KOHKYPEHTHOW CpeAe, TeCTUPOBAHUE
IIporpaMM, 3alliUTa BOWHCKHUX YacTed OT PA3AWYHBIX THUIIOB aTaK, IPOOAEMBI CO
CBSI3BIO, OTAEABHBIE BUABI OOy4eHMd, IIaXMaThl U IIaXMaTOIIOAOOHBIe Urphl. RGT
Solver - 3To mporpaMMa, KOTOpasd HaKallAUBAaeT SKCIIEPTHLIE 3HAaHUA U pa3padaTeiBaeT
3(pekTrBHEIE cTpaTeruu AAA peliieHUd 3apad kKaacca RGT. B kadecTBe 3KCIIepTHOU
CHCTEMBI AAS TECTUPOBAHUS, OCHOBAHHOTO HA ONBITE, IIPEANATAETCS MCIIOAB30BATh
RGT Solver. Solver renepupyeT TeCcTOBble CUTyallMd Ha OCHOBE OTBeTa/peaKkluu
IIpOTpaMMBl M OIleHWBAaeT UX II0 PSAAY 3apaHee OIpeAEAeHHBIX KpPUTEpPUEB.
AMEKBATHOCTb METOAQ TIOKAa3aHa Ha IIpUMepe NPUAOKEHMS C OTKPBITBIM HCXOAHBIM
KoAOM "baeHpep”.

KaroueBeie caoBa: RGT knacc, RGT Solver, TecTupoBaHue IpOrpaMMHOIO
obecrieueHUs, 3HAHUS, IKCIIEPTHBIE CUCTEMBL.

Mathematical Problems of Computer Science 59, 5768, 2023.
doi: 10.51408/1963-0102

UDC 004.934

Making Speaker Diarization System Noise Tolerant

Davit S. Karamyan®?, Grigor A. Kirakosyan®? and Saten A. Harutyunyan?

'Russian-Armenian University, Yerevan, Armenia
2Krisp.ai, Yerevan
3Institute of Mathematics of NAS RA, Yerevan, Armenia

e-mail: {dkaramyan, gkirakosyan, sharutyunyan }@krisp.ai

Abstract

The goal of speaker diarization is to identify and separate different speakers in a
multi-speaker audio recording. However, noise in the recording can interfere with the
accuracy of these systems. In this paper, we explore methods such as multi-condition
training, consistency regularization, and teacher-student techniques to improve the re-
silience of speaker embedding extractors to noise. We test the effectiveness of these
methods on speaker verification and speaker diarization tasks and demonstrate that
they lead to improved performance in the presence of noise and reverberation. To
test the speaker verification and diarization system under noisy and reverberant con-
ditions, we created augmented versions of the VoxCelebl cleaned test and Voxconverse
dev datasets by adding noise and echo with different SNR values. Our results show
that, on average, we can achieve a 19.1% relative improvement in speaker recognition
using the teacher-student method and a 17% relative improvement in speaker diariza-
tion using consistency regularization compared to a multi-condition trained baseline.
Keywords: Speaker recognition, Speaker diarization, Noise robustness, Teacher-
student, Consistency regularization.

Article info: Received 9 January 2023; send to review 30 January 2023, received in
revised form 11 April 2023; accepted 17 April 2023.
Acknowledgement: This research was supported by Krisp.ai.

1. Introduction and Related Work

Speaker recognition (SR) is a broad field of study that addresses two major tasks: speaker
identification and speaker verification. Speaker identification is the task of identifying a
person, whereas speaker verification is the task of determining whether the speaker is who
they claim to be. In this study, we focus on far-field, text-independent speaker recognition,
where the speaker’s identity is determined by the speaking style rather than the content of
the speech. Typically, such speaker recognition systems operate on unconstrained speech
utterances that are converted into a fixed-length vector known as speaker embedding. Many
speechO-processing tasks use speaker embedding such as speaker diarization (SD) [1, 2],
automatic speech recognition (ASR) [3], and speech synthesis [4, 5].

o7

58 Making Speaker Diarization System Noise Tolerant

In recent years, deep neural networks have actively been employed for speaker embedding
extractors since d-vector [6] was proposed. Subsequently, the x-vector [7] was widely used
because of the superior performance achieved by employing statistical pooling and time delay
neural network (TDNN). Other architectures such as ResNet-based convolutional neural net-
works and CNNs with cross-convolutional layers [8, 9] were employed for capturing the traits
of speech. In addition, to deal with variable-length inputs, Transformer [10], CNN-LSTM
[11] and a slew of variants of TDNN [12] were applied for DNN-based speaker embedding
extractors. Finally, to reduce the computational complexity and make the models smaller,
[13, 14] employed 1D depth-wise separable convolutions for the speaker recognition task.

Metric learning techniques have been successful in speaker recognition tasks. These
methods aim to create speaker embeddings with small distances between embeddings of
the same speaker and large distances between embeddings of different speakers since unsu-
pervised clustering will be applied to embeddings later in the speaker diarization pipeline.
The triplet loss was proposed in [15] which required a careful selection of a triplet because
the effectiveness of the performance depended on the contrast between negative and query
samples. The prototypical loss was proposed in [16], where many negative samples were
used and the Euclidean distance between the centroid of all negative samples and the query
embedding was maximized. In the generalized end-to-end loss [17], every utterance in the
mini-batch functions as a query as opposed to just one in the prototypical loss. The angular
prototypical (AP) loss [18] used only one utterance from each class as the query like the
prototypical loss, but with a cosine similarity-based metric.

The primary use case for speaker embeddings is speaker diarization. Speaker diarization
is the process of dividing an input audio stream into homogeneous segments according to
the speaker’s identity. A typical speaker diarization system usually consists of several steps:
(1) Speech segmentation, where the input audio is segmented into short sections that are
assumed to have a single speaker, and the non-speech sections are filtered out by Voice
Activity Detection (VAD), (2) Speaker embedding extractor, where speaker embeddings are
extracted from segmented sections, (3) Clustering, where the extracted audio embeddings
are grouped [1] into clusters based on the number of speakers present in the audio recording,
and optionally, (4) Resegmentation step is performed to further refine clustering results.

In real-world environment, noise causes significant degradations to the performance of
speaker diarization systems, and is, hence, a major problem requiring special attention.
The goal of noise-tolerant speaker diarization is to achieve improved performance in noisy
environments. A recent work [19] tackles this problem using the auto-encoder architecture
as a dimensionality reduction module. They extract two low-dimensional codes from speaker
embeddings, representing the speaker identity and irrelevant noise information, then remove
the noise factors. To our knowledge, there hasn’t been a lot of research done in this particular
area. ASR systems also suffer deterioration due to audio noise, and this has been the subject
of extensive research [20, 21, 22], some of which inspired us.

In this paper, we explore several approaches, borrowed from unsupervised domain adapta-
tion, to make the speaker recognition models noise tolerant. In particular, we apply teacher-
student and consistency regularization techniques on speaker recognition and diarization
tasks and compare them with multi-condition training when various noise augmentations
are used.

We were inspired by the significant results of this work for teacher-student [22], where
clean and noisy audios are fed to the teacher and the student, respectively, to enforce sim-
ilarity between the output distributions. Consistency regularization is a commonly-used

D. Karamyan, G. Kirakosyan and S. Harutyunyan 59

technique amongst a variety of tasks in machine learning. This work [20] applies it in a
manner similar to that mentioned previously, only here clean and noisy inputs are both fed
to the student model. In the paragraphs that follow, we’ll discuss in detail how we apply
these concepts to obtain noise-robust speaker recognition and diarization.

2. Improving Noise Robustness of Speaker Diarization System

There are several ways to improve the performance of speaker diarization systems in noisy
and reverberant environments. For instance, work in [1] proposed the sequence of refinement
operations to smooth and denoise data in the similarity space. In this work, we will focus
only on the speaker embedding extraction part, and we are going to use unsupervised domain
adaptation techniques to make the model noise tolerant.

Given a training dataset consisting of pairs (z;, y;) where x; represents an audio signal and
y; represents the speaker id. Our goal is to learn a parametrized function fy, which should
be able to compress any given audio into a d-dimensional vector, also known as a speaker
embedding. Moreover, if two audio signals are spoken by the same speaker, then the cosine
similarity between their corresponding embeddings should be higher. Conversely, if the
two audios are spoken by different speakers, the cosine similarity between their embeddings
should be lower. The additive angular margin (AAM) loss, as proposed in [23], is a prevalent
method for training speaker embedding extractors. The aim of the AAM loss is to minimize
the angle between speaker embeddings belonging to the same speaker while simultaneously
maximizing the angle between speaker embeddings belonging to different speakers.

2.1 Consistency Regularization

The core idea behind consistency regularization (CR) is to make sure that the network
produces similar embeddings for the augmented versions of the same unlabeled utterance
20, 24, 25]. It is enforced by an additional regularization term in the loss function:

Lon = 3_ 1Al A) - fa(A

where fp is an embedding extractor with parameters 6, N represents the total number
of training examples within the dataset. By A(z) we denote a stochastic operation that
augments the audio in such a way that the speaker identity remains the same. So the
difference is most likely non-zero. The final form of loss is a weighted combination of L 445,
and Lcgr as shown below:

L= (1 — OJ)LAAM + OJLCR,

where « is a hyperparameter taking values between 0 and 1.

2.2 Teacher-Student

One critical problem with Log loss is that it is not stable because of unstable target. To
mitigate unstable target problem, the teacher-student model was proposed in [26], where
two separate models were used: a Student network with 6 parameters and a Teacher with

60 Making Speaker Diarization System Noise Tolerant

0" parameters. On unlabeled examples, the Teacher network provides the learning target for
the Student network:

N
1 uden eacher
Lrg = N; | [(Alz)) — forer (A()) |5

Student is trained as usual. Teacher model is not trained via back-propagation. Instead, its
weights are updated at each iteration using the weights from the Student network. Again,
the final loss is a weighted combination of £ 440 and Lpg as shown below:

L= (1 — Oz)LAAM + alLrg.

2.3 Knowledge Distillation

If the teacher model is already trained, it is desirable that its weights remain constant. This
training setup is known as "knowledge distillation”, where the Student model is trained to
mimic a pre-trained, larger model [27].

3. Experiments

3.1 Model Architecture

In all experiments, we will use the SpeakerNet [13] architecture as the backbone model.
SpeakerNet models are made up of 1D Depth-wise separable convolutional layers. On top
of the model, a statistical pooling layer is used to obtain a fixed-length vector. The pro-
posed variation of SpeakerNet (SpeakerNet-M) has fewer parameters (5M) when compared
to SOTA and shows very similar performance on VoxCelebl [28] trial files when compared
to SOTA systems. The model provides embeddings of size 256 for a given audio sample.

In teacher-student experiments, both the teacher and the student have the same archi-
tecture.

3.2 Datasets

The VoxCelebl [28] and VoxCeleb2 [29] datasets are widely recognized benchmarks in the
field of speaker recognition. These datasets have pre-defined development and test sets,
which allow for an objective and consistent evaluation of speaker recognition models. We
trained our speaker recognition models using only the development part, which consisted of
7205 distinct speakers.

For evaluation of speaker embeddings quality, we use VoxCelebl cleaned test trial file.
The test trial file contains a list of audio pairs, and the model’s performance is evaluated
based on its ability to correctly determine whether the two recordings belong to the same
speaker or not. To evaluate speaker diarization, we use the VoxConverse [30] development
set. The dataset statistics are shown in Table 1.

3.3 Metrics

The equal error rate (EER) metric is used to evaluate the speaker verification. This is the
rate used to determine the threshold value for a system when its false acceptance rate and

D. Karamyan, G. Kirakosyan and S. Harutyunyan 61

Table 1: Statistics of datasets used for training SpeakerNet.

Dataset # Speakers Duration (k) # Utterances
VoxCelebl 1211 340.4 148642
VoxCeleb2 5994 2359.77 1,092,009

false rejection rate are equal. We calculate EER on VoxCelebl cleaned test trial file under
original, noisy and echo conditions.

For diarization evaluation purposes, we used diarization error rate (DER). This is the
sum of three error terms: false alarm (FA), missed detection (MS) and speaker confusion
error rate (CER). Similar to the previous works [12, 14], we use collar 0.25 sec and ignore
overlap speech regions for confusion error rate calculation. We test the diarization system
in original, noisy, and echo scenarios, just like we do for speaker verification.

Both EER and DER are calculated using the cosine similarity back-end.

3.4 Experiment Setup
3.4.1 Input Features

Our audio pre-processing procedure is identical to the one described in the SpeakerNet paper
[13]. For each frame window of 20 ms, shifted by 10 ms, 64-dimensional acoustic features
were calculated from the speech recordings. Each utterance fed to the encoder has a size
T x 64, where T' is the number of frames in a given audio sample. We crop speech segments
into random chunks from 3 to 8 seconds. With larger chunks, the model converges faster.

3.4.2 Clean Teacher

Our first baseline is a clean teacher trained on VoxCelebl and VoxCeleb2 datasets with
additive angular margin loss. We set the AAM loss hyperparameters to s = 30 and m = 0.2,
as it was shown in [13, 14], these values give the best results. To avoid overfitting, we added
SpecAugment [31] to the training pipeline, which randomly masks blocks of frequency and
time channels.

3.4.3 Noisy Teacher

Our second baseline is a noisy teacher trained with the same objective as a clean baseline,
and with the additional augmentation steps described below:

e No Augment: Leave the utterance unchanged

e RIR Augment: Reverberate an input audio using an impulse response from RIRS
dataset [32]

o Noise Augment: Add noise from MUSAN [33] dataset with signal-to-noise (SNR)
values randomly chosen from 0-50DB

e RIR-Noise Augment: Apply noise and echo perturbations to the same audio at the
same time

62 Making Speaker Diarization System Noise Tolerant

o Speed Augment: Speed perturbation with 0.95x and 1.05x speeds

RIR, Noise, and RIR-Noise augmentations all have a probability of 0.25 and are mutually
exclusive. Speed augmentation is applied independently with a probability of 0.1.

3.4.4 Consistency Regularization

We add an extra mean squared loss between embeddings for the augmented and non-
augmented versions of the same utterance to the AAM loss during training.
We set the o hyperparameter in the final loss to 0.1.

3.4.5 Teacher-Student

In order to supervise the student model, we choose our Clean-Teacher baseline as the teacher.
We did not update teacher weights during the training and no perturbations were applied
to the input of the teacher model. The flow chart of teacher-student training is presented in
Fig. 1. During the training procedure, in addition to the AAM loss, the mean squared loss
between the student and teacher-produced embeddings is minimized.

We set the o hyperparameter in the final loss to 0.1.

MSE Loss

Student

=
J

Fig.1. Flow chart of teacher-student learning for improving noise robustness of SR.

3.4.6 Optimization

All models are trained for 200 epochs with an SGD optimizer, with an initial learning rate
(LR) of 0.08 using a cosine annealing LR scheduler on 4 A100 GPUs.

3.5 Evaluations
3.5.1 Speaker Verification

All the experiment findings are displayed in Table 2. The results of the original SpeakerNet
and the pre-trained checkpoint! publicly released by Nvidia are also provided for comparison.

1
https:
//catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/speakerverification_speakernet

D. Karamyan, G. Kirakosyan and S. Harutyunyan 63

The pre-trained checkpoint was trained solely with noise augmentation using the above-
mentioned datasets. In order to examine the speaker verification system under noisy and
reverberant conditions, we created augmented versions of VoxCelebl clean test trials by
injecting noise and echo with different SNR, values.

Table 2: Comparison of different speaker verification models under noise and reverb conditions.
The results are reported in equal error rates. The more aggressively noise has been applied, the
lower the SNR values were. A noise level of 0 db indicates that the sound and the noise have the
same energy.

Model Orig 0db 5db 10db Rir
SpeakerNet [13] 2.14 - - - -

SpeakerNet (NVIDIA) 192 9.75 543 3.61 16.5
Clean Teacher 1.87 129 6.94 421 16.5
Noisy Teacher 26 935 584 423 1274
Consistency Reg. 1.76 8.05 4.40 3.13 12.26
Teacher-Student 1.73 9.16 479 3.26 9.18

Table 2 showcases the effectiveness of the methods applied. We can see that training
the SpeakerNet model with data augmentation (Noisy Teacher) improves the results in the
noisy /reverberant environment with a small deterioration of EER on the original (not per-
turbed) audios. The Teacher-Student method achieves the lowest EER scores in original and
reverberant cases (RIR), whereas the consistency regularization method shows the best re-
sults for noisy audios. Using the teacher-student method, we were able to improve the EER
by an average of 19.1% compared to the multi-condition trained model. With consistency
regularization, we were able to improve the EER by an average of 14.8% compared to the
multi-condition trained model.

3.5.2 Speaker Diarization

We employ our trained SpeakerNet models for speaker diarization task to see which model
has the smallest performance degradation in noisy conditions. We found that the optimal
sliding window size and shift for speech segmentation are 1.5 and 0.5 seconds, respectively. In
addition, diarization experiments are based on oracle VAD to evaluate the VAD-independent
performance. The affinity matrix A is constructed using the cosine similarity between seg-
ment embeddings. We further apply the following sequence of refinement operations to the
affinity matrix A:

e Row-wise Thresholding: For each row, keep top-12 largest elements and set the rest to
0

o Symmetrization: Y = 1(A+ AT)
o Diffusion: Y = AAT

We use the spectral clustering method [34] to obtain speaker labels. To get a full picture,
we present the diarization results for both known (oracle) and unknown numbers of speakers.
In the latter case, we utilize the maximal eigen-gap approach to determine the number of
speakers [1].

64 Making Speaker Diarization System Noise Tolerant

Table 3: Comparison of speaker diarization systems with various speaker embedding extractors
under noise and reverberant conditions. The results are reported in diarization error rate (DER).

Model Known #Speakers Unknown #Speakers

0db 5db 10db Rir Orig Avg| 0db 5db 10db Rir Orig Avg
Clean Teacher 12.13 448 1.96 244 1.26 4.45 | 1544 759 274 448 1.78 6.40
Noisy Teacher 9.20 449 3.13 3.12 157 430 [13.09 794 418 414 195 6.26

Consistency Reg. | 9.50 346 20 250 145 3.78 | 1340 4.90 2.57 3.45 1.67 5.20
Teacher-Student | 9.84 3.41 211 243 136 383 | 1399 6.17 3.09 352 1.61 5.67

In order to assess the performance of the speaker diarization system under noisy and
reverberant conditions, we modified the Voxconverse dev dataset by adding noise and echo at
various signal-to-noise ratios. The results, shown in Table 3, indicate that the teacher-student
and consistency regularization methods generally outperform the multi-condition baseline
model for both scenarios involving known and unknown numbers of speakers. In particular,
when the number of speakers is unknown, we observed approximately 17% and 9.5% relative
performance improvements for the consistency regularization and teacher-student methods,
respectively, compared to the multi-condition baseline.

However, it is worth noting that in certain specific scenarios, the baseline models may
outperform the models with the overall best average performance.

4. Conclusions

In this research, we explore ways to increase the accuracy of speaker recognition and speaker
diarization in noisy and reverberant environments, such as multi-condition, teacher-student,
and consistency regularization. The key component of the methods used is the additional
regularization term between embeddings for augmented and non-augmented versions of the
same utterance. Through the use of teacher-student and consistency regularization, we were
able to improve the performance of SpeakerNet on speaker recognition and diarization tasks
in noisy and reverberant situations.

References

[1] Q. Wang, C. Downey, L. Wan, P. Mansfield and I. Moreno, “Speaker diarization with
LSTM”, 2018 IEEE International Conference On Acoustics, Speech And Signal Pro-
cessing (ICASSP). pp. 5239-5243, 2018.

[2] X. Anguera, S. Bozonnet, N. Evans, C. Fredouille, G. Friedland, and O. Vinyals,
“Speaker diarization: A review of recent research”, IFEE Transactions On Audio,
Speech, And Language Processing, vol. 20, pp. 356-370, 2012.

[3] Q. Wang, H. Muckenhirn, K. Wilson, P. Sridhar, Z. Wu, J. Hershey, R. Saurous,
R. Weiss, Y. Jia, and I. Moreno, “Voicefilter: Targeted voice separation by speaker-
conditioned spectrogram masking”, ArXiww Preprint ArXiv:1810.04826, 2018.

[4] Y. Jia, Y. Zhang, R. Weiss, Q. Wang, J. Shen, F. Ren, P. Nguyen, R. Pang, 1. Lopez
Moreno, Y. Wu, and Others, “Transfer learning from speaker verification to multi-

D. Karamyan, G. Kirakosyan and S. Harutyunyan 65

speaker text-to-speech synthesis”, Advances in Neural Information Processing Systems,
vol. 31, 2018.

E. Cooper, C. Lai, Y. Yasuda, F. Fang, X. Wang, N. Chen, and J. Yamagishi, “Zero-
shot multi-speaker text-to-speech with state-of-the-art neural speaker embeddings”,
ICASSP 2020-2020 IEEFE International Conference On Acoustics, Speech And Signal
Processing (ICASSP), pp. 6184-6188, 2020.

E. Variani, X. Lei, E. McDermott, I. Moreno, and J. Gonzalez-Dominguez, “Deep
neural networks for small footprint text-dependent speaker verification”, 2014 IEEFE
International Conference On Acoustics, Speech And Signal Processing (ICASSP), pp.
4052-4056, 2014.

D. Snyder, D. Garcia-Romero, G. Sell, D. Povey and S. Khudanpur, “X-vectors: Ro-
bust dnn embeddings for speaker recognition”, 2018 IEEE International Conference
On Acoustics, Speech And Signal Processing (ICASSP), pp. 5329-5333, 2018.

Y. Yu, L. Fan, and W. Li, “Ensemble additive margin softmax for speaker verification”,
ICASSP 2019-2019 IEEFE International Conference On Acoustics, Speech And Signal
Processing (ICASSP), pp. 6046-6050, (2019).

Z. Gao, Y. Song, I. McLoughlin, W. Guo, and L. Dai, “An improved deep embed-
ding learning method for short duration speaker verification”, International Speech
Communication Association, 2018.

P. Safari, M. India, and J. Hernando, “Self-attention encoding and pooling for speaker
recognition” | ArXiv Preprint ArXiv:2008.01077, 2020.

J. Jung, H. Heo, I. Yang, H. Shim, and H. Yu, “A complete end-to-end speaker verifica-
tion system using deep neural networks: From raw signals to verification result”, IEEE
International Conference On Acoustics, Speech and Signal Processing (ICASSP), pp.
5349-5353, 2018.

N. Dawalatabad, M. Ravanelli, F. Grondin, J.Thienpondt, B. Desplanques and
H. Na, “ECAPA-TDNN embeddings for speaker diarization”, ArXiv Preprint
ArXiv:2104.01466, 2021.

N. Koluguri, J. Li, V. Lavrukhin and B. Ginsburg, “SpeakerNet: 1D depth-wise sepa-
rable convolutional network for text-independent speaker recognition and verification”,
ArXiv Preprint ArXiv:2010.12653, 2020.

N. Koluguri, T. Park and B. Ginsburg, “TitaNet: Neural Model for speaker representa-
tion with 1D Depth-wise separable convolutions and global context”, Proceedings of the
IEEFE International Conference on Acoustics, Speech And Signal Processing (ICASSP),
pp. 8102-8106, 2022.

F. Schroff, D. Kalenichenko and J. Philbin, “Facenet: A unified embedding for face
recognition and clustering”, Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 815-823, 2015.

J. Snell, K. Swersky and R.Zemel, “Prototypical networks for few-shot learning”, Ad-
vances in Neural Information Processing Systems, vol.30, 2017.

L. Wan, Q. Wang, A. Papir and I. Moreno, “Generalized end-to-end loss for speaker
verification” | Proceedings of the IEEE International Conference on Acoustics, Speech
And Signal Processing (ICASSP), pp. 4879-4883, 2018.

66

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]
[28]
[29]
[30]

[31]

[32]

Making Speaker Diarization System Noise Tolerant

J. Chung, J. Huh, S. Mun, M. Lee, H. Heo, S. Choe, C. Ham, S. Jung, B. Lee
and I. Han, “In defence of metric learning for speaker recognition”, ArXiv Preprint
ArXiv:2003.11982, 2020.

Y. Kim, H. Heo, J. Jung, Y. Kwon, B. Lee and J. Chung, “Disentangled dimensional-
ity reduction for noise-robust speaker diarization”, ArXiv Preprint ArXiv:2110.03380,
2021.

Y. Hu, N. Hou, C. Chen E. Chng, “Dual-path style learning for end-to-end noise-robust
speech recognition”, ArXiv Preprint ArXiv:2203.14838, 2022.

Q. Zhu, J. Zhang, Z. Zhang, M. Wu, X. Fang and L. Dai, “A noise-robust self-
supervised pre-training model based speech representation learning for automatic

speech recognition”, Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 3174-3178, 2022.

L. Moner, M. Wu, A. Raju, S. Parthasarathi, K. Kumatani, S. Sundaram, R. Maas,
and B. Hoffmeister, “Improving noise robustness of automatic speech recognition via
parallel data and teacher-student learning”, Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6475-6479, 2019.

J. Deng, J. Guo, N. Xue and S. Zafeiriou, “Arcface: Additive angular margin loss for
deep face recognition”, Proceedings of the IEEE/CVFE Conference on Computer Vision
and Pattern Recognition, pp. 4690-4699, 2019.

A. Vanyan and H. Khachatrian, “Deep semi-supervised image classification algorithms:
a survey”, J. Univers. Comput. Sci., vol. 27, pp. 1390-1407, 2021.

S. Laine and T. Aila, “Temporal ensembling for semi-supervised learning”, ArXiv
Preprint ArXiv:1610.02242, 2016.

A. Tarvainen and H. Valpola, “Mean teachers are better role models: Weight-averaged
consistency targets improve semi-supervised deep learning results”, Advances in Neural
Information Processing Systems, vol.30, 2017.

G. Hinton, O. Vinyals and J. Dean, “Distilling the knowledge in a neural network.
ArXiv Preprint ArXiv:1503.02551, 2015.

A. Nagrani, J. Chung and A. Zisserman, “Voxceleb: a large-scale speaker identification
dataset”, ArXiv Preprint ArXiv:1706.08612, 2017.

J. Chung, A. Nagrani and A. Zisserman, “Voxceleb2: Deep speaker recognition”, ArXiv
Preprint ArXiv:1806.05622, 2018.

J. Chung, J. Huh, A. Nagrani, T. Afouras and A. Zisserman, “Spot the conversation:
speaker diarization in the wild”, ArXiv Preprint ArXiw:2007.01216, 2020.

D. Park, W. Chan, Y. Zhang, C. Chiu, B. Zoph, E. Cubuk and Q. Le, “Specaugment: A
simple data augmentation method for automatic speech recognition”, ArXiv Preprint
ArXiw:1904.08779, 2019.

T. Ko, V. Peddinti, D. Povey, M. Seltzer and S. Khudanpur, “A study on data augmen-
tation of reverberant speech for robust speech recognition”, Proceedings of the IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
5220-5224, 2017.

Davit Karamyan, Grigor Kirakosyan and Saten Harutyunyan 67

[33] D. Snyder, G. Chen and D. Povey, “Musan: A music, speech, and noise corpus”, ArXiv
Preprint ArXiv:1510.08484, 2015.

[34] U.Von Luxburg, “A tutorial on spectral clustering”, Statistics and Computing, vol. 17,
pp. 395-416, 2007.

UnijunhdwgyniGnipjul wyuwhnynmip fjunuGwlyGbpp
nhwphqughwjh hwdiwlwupgnid

Qunjpp U. Lwupwijui'?, Gphgnp U. Uhpwinuyw?? b Uwpkl U. <wpnipymGjuG?

1<wj-ﬂn1uw11wﬁ hwdwuwpwG, Gplwb, <wujwunwi
2Krisp.ai, GplwG, Lwjwunwl
3¢ auu Jwptvwwmhluwjh hGunmhunin,plw G, <wjwunwb
e-mail: {dkaramyan, sharutyunyan, gkirakosyan }@krisp.ai

Udthnthnid

lunuGwylbiph nhwphqughwjh Guwuwlp wnghn dwjlGwqpnipjwl WG9 wmwppbp
funuGwyGtph hwymbGwptipnuiG nt wnwldlGugniib £ UyGnwdtliw)Ghy, $nluwjhl wninyn
Jwpnn L wqnbp wyu hwdwlwpgbph @2qpuunipjul ypw: Uju hnpjuonid niunidGuuhpyty
t0 wjlGuhuh ubkpnnGtp, hGyyhupp GG wwpptp wmqubGumwghwltpny nunignidp,
JuyniGnipjul Jupquynpnuip (consistency regularization) L niunighg-wpwltipn dtipnngp*
funuGuyGtph édwjlwjhl hwwnyuwlhpGtp nnipp ptpnn dngbh JuyniGnipynip wniniyh
Guwndwip pupépuglbnt hwiwp: LYwd dEpnnGhiph wpnynGuybnnipniGp vnngqyt &
funuGuwyGtph GnylGwjuwlugdwl L nhwphqughwjh fulnhpGtpnud L gnyg £ wmpybg, np ngpulp
hwlqbglnd GG YuymGmpjul pwpbjuyiwlp’ wninyh b wpdwqulph wnjuympjwG
ntiypnmu: unuGwyGbph Gnylwlwliwgiwi U ghwphqughwjh hwdwlwpgbpp wnimyh b
wpdwquiph wuwjdwGtpnd hnpdwpybnt hwdwp vntinoyt) GG VoxCelebl L Voxconverse
dev wnjjwilGtph hwjwpwomGtph plyuwjGuwo wmwppbpwyltpp® wybuglting wmwnppbp
SNR wpdtipGtpny $nGwjhl wninly L wpdwqubp: Uwnmwgywo wpnniGpGhpp gniyyg GG
nwhu, np hohG hw)yny Yuntih £ hwult) unuGuyltnh GonyGuwwliwgdwb d2qpumpjul
hwpwptpuwul pwpbjuydwip’ 19, 1%-ny° oquuwugnpdtiing nunighg-wywltpnm dtpnnp
L funuGuyGtph nhwphqughwh Gqpunipjul hwpwpbtpwlwl pwpbudwan’ 17%-
ny" oquuuqgnpotiny Yuwynimpjul YJupquynpiwl dtpngp” hwdbdwnmwo wnwpptin
wniqutiimwghwltpny yupdhgywo vnntijh htin:

Pwluyh puntp funuGuyGtph GnyyGuwluwlGugmd, funuGuyGhiph nhwphqughw,
wnuijw-nhiwgynilnipnil, ntunighg-wpwltinm, Jujninipjwl Jupgquynpnid:

68 Making Speaker Diarization System Noise Tolerant

OObecnieyeHne MIyMOYCTOMYUBOCTUA CUCTEMEI
AMApHU3aLUH AMKTOPOB
Aasup C. Kapamsu®?, T'purop A. Kupakocsu®? u Caten A. ApyTioHsH?

1PocCI/II7ICI<0-ApM;1H(:KI/H71 yHuBepcuretT, EpeBan, ApmeHusa
2Krisp.ai, EpeBan, ApmeHua
3I/IH(:TI/ITyT mareMatuku HAH PA, EpeBaH, ApMeHUus
e-mail: {dkaramyan, sharutyunyan, gkirakosyan}@krisp.ai

AnHoTanuys

Lleapto cuCTEMBI AUAPU3ALUUA AUKTOPOB SBASETCS MACHTUMUIIUPOBAHUE U
pa3peAeHUepasHbIX AMKTOPOB B aypauosanucu. OAHAKO IIyM B 3allUCH MOJKET
IIOBAMATBH HA TOYHOCTD 3TUX CUCTEM. B 3TOU cTaTbe MBI UCCAEAYEM TaKUE METOABI, KaK
oOy4yeHHe C PA3AWYHBIMU QyTMEHTAIUAMH, PEryAspu3alus COrAACOBAHHOCTH (COn-
sistency regularization) u MeTop "y4UTEeAb-YYEHUK', 4TOOBI IIOBBICUTH YCTOMYUBOCTH
SKCTPAKTOPOB pEYEeBBIX XapPaKTEPUCTUK K IyMy. Mel nipoBepseM 3(p(peKTUBHOCTH
35TUX METOAOB B 33Aa4aX PACIO3HABAHUS AMKTOPOB IO T'OAOCY U AWAPU3ALNUA
AUKTOPOB U A€MOHCTPUPYEM, YTO OHU IIPUBOAAT K YAYUIIEHUIO YCTOUYUBOCTHU IIPU
HAaAWYMU IIymMa KU peBepOepanuu. UYTOOBI NPOBEPUTH CUCTEMY PACHO3HABAHUA
U AVaApu3allud AUKTOPOB B YCAOBHUAX IIyMa U peBepOepanuy, Mbl CO3AAAU
pacmiupenHble Bepcuu VoxCelebl m HabopoB paaHHBIX Voxconverse dev, A0OaBUB
IIyM W 3XO C pa3HbIMH 3HadeHuAMH SNR. Hamm pesyabTaThl HNOKa3bIBAIOT, 4TO
B CpPeAHEeM MBI MOJKEM AOOUTBCS OTHOCUTEABHOI'O YAYYIIEHHS PACHO3HAaBAaHUSA
AMKTOPOB Ha 19, 1% ¢ ncnoab30BaHUEM METOARQ "YUUTEAb-YUYEHUK' U OTHOCUTEABHOTO
YAYUIIEeHUS AMapU3alliu AUKTOPOB Ha 17% C UCIIOAB30BaHUEM METOAA PEeTyAIpU3aIiuu
COTAQCOBAHHOCTU IIO CPABHEHUIO C 0OA30BOU MOAEABI), OOy4EeHHOU C IIOMOIIBIO
Pa3sAMYHBIX ayIMEeHTAlluu.

KaroueBEIe CAOBa:pacIiO3HAaBAHUE 110 TOAOCY, AUAPU3aLUsI AUKTOPOB, YCTOUYNUBOCTD
K ILIYMY, YUYUTEAb-YYEHUK, PETryAIPU3AIUA COTAACOBAHHOCTH.

Mathematical Problems of Computer Science 59, 69-81, 2023.
doi: 10.51408/1963-0103

UDC 004.725, 004.852

Research of Model Increasing Reliability Intrusion
Detection Systems

Timur V. Jamgharyan

National Polytechnic University of Armenia, Yrevan, Armenia
e-mail: t.jamgharyan@yandex.ru

Abstract

The paper presents the results of the using, a recurrent neural network to detect
malicious software as part of the Snort intrusion detection system.The research was
conducted on datasets generated on the basis of athena, dyre, engrat, grum,
mimikatz, surtr malware exploiting vulnerability CVE-2022-20685 in the Snort
intrusion detection system. Processing of input traffic data was carried out before the
frag-3 and modbus preprocessors. The method of k nearest neighbors was used as a
mathematical apparatus. The simulation of the developed software at different
iterations.

All research results are available at https://github.com/T-JN

Keywords: Machine learning, Dataset, Malware, Preprocessor, Metasploit, k nearest
neighbors method, Intrusion detection system.

Avrticle info: Received 8 January 2023; send to review 7 February 2023; accepted 7
March 2023.

1. Introduction

The intrusion detection systems (IDS) include many different software components designed to
detect various types of traffic with an embedded malicious component. Detection is carried out
according to a set of rules that are configured based on the threat model and security policies.
The security architecture of the Network Infrastructure (NI) is built taking into account possible
attacks according to various models: triad CIA (Confindentiality, Integrity, Availability, CIA),
Parker's hexad [1]. Network IDS, unlike host IDS, detect attacks directed at the network segment
and contain a set of complementary rules and security scripts that can neutralize an attack on the
network. Unlike host-based IDS, network-based IDS require more computing resources due to
the fact that a larger set of rules and detectors is activated during their operation [2]. When using
host IDS in the Infrastructure for a fleet of computing systems running Linux OS, can disable

69

https://github.com/T-JN

70 Research of Model Increasing Reliability Intrusion Detection Systems

the rules for Windows (or another OS), but hardly possible for a network IDS, since different
operating systems are used in the Infrastructure. Modern IDS are able to detect various types of
attacks at different levels of the OSI (Open System Interconnection, OSI) model: bad traffic,
system scanning, the use of known exploits to attack over various protocols, various backdoors,
various known malware [3]. A significant limitation of systems for analyzing network traffic and
the state of NI is the algorithmic and functional determinism inherent in them.

An important issue of Infrastructure security is the reliability of the processed data of the IDS
itself (data reliability — is, the property of the processed data not to have hidden errors [4]). The
processing of data streams in the IDS itself is determined by the functioning algorithms, data
presentation formats, and the formalization of signature classifiers. Protecting the IDS signature
database (both remote and local) is also one of the most important tasks. If the signatures
database has been attacked for availability, then when a new vulnerability appears, the IDS will
not receive the necessary signature and the Infrastructure perimeter will become vulnerable [5].
The development of M2M (Machine-to-Machine, M2M) and ML (Machine learning, ML)
technologies has increased the capabilities of both attack and defense tools. Various researchers
are conducting research on increasing (improving) various parameters of IDS with ML [6, 7, 8].
One of the parameters that improves when using ML modules as part of a standard IDS is its
variability. Unlike deterministic IDS, IDS with ML are capable of forming a multi-criteria
sample on the basis of which the detector operation scheme is formed within the given
constraints. But IDS with ML have certain limitations when integrating them into the NI
architecture. In particular, ML IDS are very sensitive to various implementations of «noise
attacks» («noise attack» is a variant of an availability attack in which a large number of random
and meaningless fragmented packets are sent to the attacked system, some of which contain
malware [9]). A dangerous consequence of a «noise attack» on a ML network IDS is that
attackers «attack» it for a long time with streams of datasets that cause false positives, «teach»
the ML IDS discriminator to be immune to this type of traffic (creating a cyclic chain of
operations: false positive--true negative--false negative--true positive, which overload both the
IDS itself and the SIEM system (Security information and event management, SIEM).

Various manufacturers combine IDS modules into different classes, which allows you to
quickly reconfigure the IDS itself for specific tasks. In particular, for Snort open source IDS,
there are many different types of preprocessors (frag-3, stream, performance monitor, SMTP,
POP, IMAP, SSH, DNS, DCE/RPC, SIP preprocessors, reputation preprocessor, modbus
preprocessor) each of which is functionally is responsible for handling the given protocol and/or
data type.
> IDS preprocessor is a software module that receives data from the network traffic decoding module

and outputs them to the input of intrusion detection modules.

As stated in the article «Attacks on Machine Learning Systems» [10], the most vulnerable
part of the ML IDS is the traditional IDS component (the deterministic part of the IDS). ML
systems, like any other, will be hacked using vulnerabilities in these traditional components. The
use of ML at the preprocessor level is due to the fact that when developing an IDS with ML, it is
not enough to create a functioning model that can detect a threat not described in a set of rules
(signatures) or generate new ones based on «known» signatures, but it is also necessary to
protect the IDS itself from probable infection with malware that can compromise the reliability
of the results issued by IDS.The choice of using a neural network at the preprocessor level is
also due to the fact that the IDS, which has a neural network in its component composition after
the preprocessor, is able to protect the NI, since malware not detected by standard datasets
(described in the signature/rule database) will be detected with varying probability neural
network. But with a «noise attack», the target is the IDS itself, which, when taken out of the
reliable functioning mode, will no longer detect malware. Undescribed at the preprocessor level,

T. Jamgharyan 71

malicious data embedded in IDS can be detected using performance preprocessors that evaluate
various kinds of statistics. But the problem is that, having determined the type of network IDS,
attackers can design an attack taking into account the work of preprocessors, and malware
embedded in the IDS itself will not go beyond the allowable statistical deviations. A lot of
research has been devoted to the task of applying machine learning as part of IDS, but only a
small part of them explores the use of machine learning at the preprocessor level. This limitation,
in particular, is due to the fact that the «response» of the neural network is probabilistic in nature
and it is necessary to introduce clear boundaries for the neural network itself. Otherwise, the
neural network will be an event generator, which will be classified as an attack by the IDS
detection modules. Thus, there is a recursion to the problem of stability and integrity of both the
IDS and the NI as a whole [11]. This research explores the potential of a recurrent neural
network (RNN) to detect malware at the preprocessor level. The choice in the research of RNN
from the entire set of neural networks is determined by the fact that RNN form a directed
sequence between elements, which allows processing a series of events in time (this
characteristic allows granular processing of fragmented datasets). The relevance of the work lies
in the ever-increasing role of IDS with ML in the NI security architecture and the increasing
security requirements of the IDS itself. The use of a neural network at the preprocessor level will
increase the reliability of malware detection results without affecting the main IDS signature
database, which will reduce the attack surface for the IDS itself. The novelty of the research lies
in the application of the k nearest neighbors (k Nearest Neighbors, kNN) method to detect
malware in IDS before preprocessors.
» The k nearest neighbors method is a metric algorithm for classifying objects.
Malicious software athena, dyre, engrat, grum, mimikatz, surtr obtained from publicly available
sources was used as calibration data [12--15]. The choice of the kNN method is determined by
the fact that it is necessary to minimize the value of the preprocessor error, and for this it is
necessary to carry out a preliminary grouping and classification of unknown input datasets in
normalized traffic.
» Traffic normalization - modification of packets of protocols of the transport, and network levels for
their subsequent processing by IDS detection modules.

2. Formulation and Description the Problem

It is necessary to detect a malicious dataset in normalized traffic.
The mathematical model construction was carried out on the basis of the formulas obtained in
the sources [16,17]. There are network traffic X inputs that contain malware fragments (1).

X™ = {(x1,y1) s o Ym) 3, ¢y
where,

X~ Network traffic datasets that do not contain malicious components,

V- Network traffic datasets containing malicious components,

m- number of the analyzed packet of the input dataset.

On the set of input traffic data sets, the distance function xp(y,y") is given. The greater the
value of the distance function, the less similar the entities are y, y', where y’- the minimum size
of a malware dataset that can be uniquely identified and classified with respect to y. For any
entity v in the data package, arrange the objects x; in ascending order (2).

p(v, xl;v) = p(v'xZ;v) S = p(v'xm:v)' (2)

72 Research of Model Increasing Reliability Intrusion Detection Systems

where x;.,, the set of network traffic data that is the i-th neighbor of the entity v. Similarly for the
i -th neighbor of the entity v in the dataset y;.,,. Using the formula (3 from the source [17], we
determine the malicious KNN components for the traffic arriving in the NI.

a(v) = arg maxZ[y(xi;v) = y| w(i,v), 3)
=1

where, w(i,v)- a given weight function that evaluates the degree of importance of the i-th
neighbor for the classification of the entity v. By changing the w(i,v) value, you can get
different versions of the k nearest neighbors method (4).
w(i,v) =[i < k). (4
When w(i,v) = [i = 1] malware is detected only in the given single value w. That is, the

RNN is only able to detect the malware datasets it was trained on. A graphical representation of
a RNN is shown in Fig. 1.

Input cell

Output cell

Recurrent cell

Entry node

Fig. 1. Recurrent neural network.

Attackers can load malware into the IDS itself not in a single package, but in fragments
(using the built-in frag-3 preprocessor as an internal attack tool), then the research task of
grouping and classifying malware fragments arises. Standard IDS do not cope with this task very
effectively, but ML IDS, in the presence of a training set, are able to solve this problem. The
disadvantage of ML IDS is that they can produce unreliable results if the preprocessor
responsible for a particular type of traffic/protocol is «damaged» as a result of a «noise attack».
A particular danger lies in the fact that any traffic entering the IDS preprocessors (both ML and
deterministic) is not checked for malicious components, since the task of the preprocessor is to
«reformat» traffic for processing by detectors.

3. Task Statement
It is necessary to develop and programmatically implement an algorithm and, based on it,

software that integrates a RNN capable of solving the problem of grouping and classification
with the IDS preprocessor.

T. Jamgharyan 73

. Boundary Conditions

1. The smallest fragment of the malware file (¢) that can be classified ¢ = 20byte (detection

was carried out using context-piecewise hashing (Context Triggered Piecewise Hashing,
CTPH), which is discussed in detail in [18].

. The delay in the processed module should not cause a «signal race». Traffic from the output
of the preprocessor module to the input of the detection modules must be sent synchronously.
As part of this condition, an additional restriction has been introduced - only UDP (User
Datagram Protocol, UDP) traffic is processed.

. The hardware must support the parallel computing mode.

The developed software connects the RNN to frag-3 and modbus preprocessors (frag- 3
preprocessor for defragmenting an IP packet, modbus - preprocessor for processing data from
a variety of devices operating in SCADA networks (Supervisory Control And Data
Acquisition, SCADA).Since the frag-3 preprocessor is designed to build packages, using a
trained RNN can neutralize the process of «assembling» malicious packages inside the IDS,
increasing the level of reliability of its functioning. On Fig.2 shows a diagram of the Snort
IDS with the proposed data processing software implemented on RNN.

Analyzed traffic
frag 3, stream

PreEProcessors

Decoders

J Fo----------- CTTTTTTTTTTTTTTTITIS Developed

/ software

Preprocessors

1
|
1
|
:
(frag3, stream, modbus, q_|_l

performance monifor, etc)

—

Detection modules

l

Qutput modules Detected Threat
Notification

Fig. 2. Snort IDS with developed data processing software.

74 Research of Model Increasing Reliability Intrusion Detection Systems

5. Description of the Module

The network traffic coming from the decoders is directed to the preprocessor processing module
(standard operation of the Snort IDS). The traffic that should processed by the frag - 3 and
modbus preprocessors is sent to the developed module based on the RNN. After processing
according to the developed algorithm, this traffic is again sent to the standard detection modules.
The task of the module is to carry out the primary «cut-off» of possible malware and protect the
IDS itself from being modified by malware.

The developed algorithm is shown in Fig. 3.

Input data _ i@ .
Distance .
from fg 3 ; S .
prepravesor calculatlonjl\ @ :
Inpur Dara N) . :
: \

3 T L
) C ;
Selection of ek objects, the Bufferlng duta 1o Da;;:::wwf“om
distances 1o which are minimal
(phase 2) —
\—\ f
% =0

k=1 (=

Getting the class of an object
(phase 3)

r |
i ‘ A ‘ ! Ps
P]]]
IR
T T

: | P l A ‘ P

Dretected malware
samples
Transmitring data fram
preprocessors module

Fig. 3. Developed algorithm.

Algorithm operation

The software that searches for fragmented malware receives network traffic datasets from
a decoder (Snort IDS a low-level interceptor) as input. Only traffic that must be processed by the
frag-3 and modbus preprocessors is subject to processing.
Step 1. Converting received datasets to «Data Frame». This conversion is necessary to speed up
the work of the RNN, since the traffic not processed by the developed module goes directly to

T. Jamgharyan 75

the preprocessor module and the processing delay should not exceed the boundary conditions

(boundary condition 2).

Step 2 phase 1. Calculation of the distance from the target object, which must be classified to

each of the sample objects (traffic). Computing a distance metric between likely malware

datasets. All calculations are performed in parallel mode (boundary condition 3),

» 2.1 k=0 calculation of the distance metric and detection of malicious datasets is not
performed, since the classification of malicious and non-malicious datasets is impossible,

» 2.2 k=1 the distance between malicious and non-malicious datasets is constant (k=const).
Only those malicious datasets that fall within the specified distance metric are detected,

» 2.3 k=m continuous detection mode.Upper limit: the value of m that the hardware can
handle,

» 2.4 k>m malicious datasets are not detected,

» 2.5 k<m malicious datasets are detected down to the minimum CTPH value. All calculations
were based on the scikit-learn ML library (using instances of the kNeighborsClassifier class).

Step 3 phase 2. Selection of k objects from the sample, the distances to which are minimal.

The RNN to fed only datasets, where corresponding to paragraphs 2.2, 2.3, 2.5. When a number

value with an undefined result NaN (Not-a-Number, NaN) appears in the handler, the execution

of the entire program is «stopped», which resets all values to zero (step 5).

Step 4 phase 3. Obtaining a class of sample objects based on the most frequently occurring k.

Setting the «weights» of the RNN. The weight setting is determined by the number of malware

hash values detected by the CTPH method. Increasing the value p(Ui,Xm;U) (increasing the

number of hits) for a certain type of dataset increases the «weight» of this dataset in the RNN.
The output is a class of malware datasets.
Step 5. Stop and reset all values when NaN values appear in the dataset.
Step 6. Buffering values one step before zeroing. The buffer always contains n-1 dataset values
(the n-dataset currently being processed).
Step 7. Detected malware datasets.
Step 8. Transfer of traffic to the input of the preprocessor module.

All class instances are implemented based on the StandardScaler library. The training
was carried out on the basis of the fit software library.

6. Description of the Experiment

In Windows Server 2016 Standard operating system environment installed the Hyper-V role
(Based on the Dell Power Edge T-330 server). A software-defined network (SDN) has been
deploy, in which Parrot OS is installed with the Metasploit framework and Ubuntu v20.04 OS in
which are installed: IDS Snort version 2.9.18, Clion development environment and developed
software. The introduction of traffic with malware that could lead to a denial of service for the
Snort IDS and an attack on the Infrastructure was carried out using the Metasploit framework
based on the Parrot OS pentest distribution kit. The malicious input was based on a pcap network
traffic dump file. The choice of version 2.9.18.1 of the Snort IDS is due to the fact that in this
version there is a vulnerability CVE-2022-20685 (CVE-2022-20685 Snort IDS vulnerability
leading to a denial of service, bypassing security restrictions and compromising the system [19])
when exploited, attackers can inject malware into the IDS itself and attack the Infrastructure.
With the correct operation of the developed software, the attack should be detected, which will
make it possible to further check the effectiveness of the software for possible and probable

76 Research of Model Increasing Reliability Intrusion Detection Systems

unknown attacks. Through this vulnerability, athena, dyre, engrat, grum, mimikatz, surtr
malware was introduced into the virtual Infrastructure. The Windows Server 2016 operating
system, which is the test.local domain controller, and the Windows 10 client machine were used
as the protected Infrastructure. To increase the reliability of the experiment results, all virtual
machines are connected to each other by a private virtual adapter and connected to different
VLAN (Virtual Local Area Network, VLAN, with vilan ID=100 and vlan 1D=101). Network
address translation (NAT) is configured between virtual networks 172.16.0.0/30 and
192.168.0.0/29.

The experiment was carried out in 2 stages.

Stage 1.

Injection of mimikatz malware through CVE-2022-20685 with kNN-based detection software
disabled. In the first case, the IDS did not detect the intrusion, and the mimikatz software
implemented through the Snort IDS in the «noise attack» mode compromised the domain
administrator's password and did not register the Snort network IDS in any way.

Stage 2.

Introduction of various types of malware (athena, dyre, engrat, grum, mimikatz, surtr) into
the Infrastructure through a vulnerability in the Snort network IDS. The mimikatz, surtr, engrat,
and grum malware were detected immediately, while the athena and dyre malware was detected
after the second iteration.

The scheme of the experiment is shown in Fig. 4.

Parrot OS
(Metasploit, CVE-2022-20685
network traffic dump)

Private virwal adapter
net 1(172.16.0.0/30)
vian ID 100

Protected Infrastructure
Windows Server 2016
____________ (Active Directory Domain Controller)

testfocal

Ubuntu 20.04
(Snort 2.9.18.1, IDE Clion
Developed software)

Private virtual adapter 5
net 2 (192.168.0.0./29) Windows 10
NAT

Software Defined Network

Windows Server 2016 (Hyper-V)

Fig. 4. Scheme of the experiment in SDN.

T. Jamgharyan 77

7. Results

. '?i}:.'.'
f .

Network traffic with malware embedded @ any datz @ dyre @engret @ grum U athena @ surtr @ mimikatz B Ho classiication

Fig. 5. Visualization of datasets classified by the
kNN method of malware (I-iteration).

Network traffic with malware embedded @ any data @ dyre @ engrat @ grum @ athena @ surtr @ mimikatz @ No classification

-'

: a.?.?-

;?-“C'

Ly
f'

Fig. 6. Visualization of datasets classified by the
kNN method of malware (I1-iteration).

Network traffic with malware embedded @ 2ny datz @ dyre @ engrat @ grum @ athenz @ surtr @ mimikatz @ No classification

.
R SR

= o
“?-‘:'Z .
g o
e
g 7 n‘u
R
.
X
EL A
nge

letwork traffic with malware embedded @ any data @ No classification @ engrat @ grum @ athena @ surtr @ mimikatz

Fig. 7. Visualization of datasets classified by the
kNN method of malware (l11-iteration).

w00
o;.:. L

LX)
-
wt
'.

.

%!
.
.

.'.m .~.??mk'#

Fig. 8. Visualization of datasets classified by the
kNN method of malware (I1V-iteration).

@1 Bk=20 Bk=50

|' M‘
i

\\I\l\

|}H

[

i) || Hi

1H i
I|||||||| ” l” Nﬁ‘“ M I||

m
\Iln

........... Jl!’th||hu|}hn’un

ittt ‘H

I\IIMII

30 50 70

Fig. 9. Visualization of datasets classified by the

kNN method of malware. k=1, 20, 50.

‘mll VW "W il |||I|" n

l
| | '|i.||1l||ll||i||l|l

|

}
m‘\h

h !‘l” l \

Bk=60 B k=75 k=90
A
it
Fig. 10. Visualization of datasets classified
by the KNN method of malware. k=60, 75, 90.

neural network -enable Recurrent neural network -disable
I“ i ‘ il
I |
50 60 70

78 Research of Model Increasing Reliability Intrusion Detection Systems

As part of the all research, was developed an IDS with ML. The results of the first model on a
real infrastructure are presented in Fig. 11,12. At this research stage, the sixth version of the
model has been developed and tested in SDN [20].

900

S

~ oo

==

S S
Lo W

2 2 o

=S 8 o

o
S
=]
@
=
=

g

NCIDENTS

0
500

w

73
=)
S

MBER
w
=
=

NUMBER OF INCIDENT:
W s
S S
IS}
[s]
=
=]
=]

NU
ra

=
=

200

=
1=}
=)

100 5 AL 95 73
e 78 65 /6556 yp5i-53-T56—Gd=5645 54 g T
0 —Eerh 3 0 = TE TN = <z i L

123456 7 8 910111213 14 15 16 17 18 19 20 21 22 23 24 123 456 7 8 9101112131415 16 17 18 19 20 21 22 23 24

OBSERVATION TIME OBSERVATION TIME

5556 6556 50—5 3135646 —i5mgg0n 54

network traffic, mbit/s number of incidents network traffic, mbit/s number of inddents

Fig. 11. Visualization of the work of the Snort IDS Fig. 12. Visualization of the work of the Snort IDS
in a 24-hour period without a module with ML. in a 24-hour period with a ML module.

Explanation of visualized results

The Fig. 5,6,7,8 present a visualization of the distribution of detected and classified
malicious datasets embedded in network traffic at different iterations. The first and second
iterations, the percentage of malware detection is about (7.6-8)%, the percentage of classification
is less than 3%. The third iteration, the improvement in the solution of the detection problem is
insignificant (7.9-8.02)%, but the solution of the classification problem becomes acceptable for
practical use (14-16)%. An increase in the number of iterations on the same dataset leads to
retraining of the RNN and an avalanche deterioration in the results of solving the problem of
malware classification (Fig. 8). The most effective detection occurs at speeds up to 50-60 Mbps.
The results of the work of the developed software integrated into the IDS Snort in various modes
shows on Fig. 9,10. As can be seen from Fig. 9, 10, the use of a RNN at the level before the
preprocessor increases the reliability of the data processed in the network IDS. An important
factor when using a RNN before the preprocessor is the need for training datasets to differ not
only quantitatively, but also variably.

Increase, in efficiency by (10-12)% managed to achieve only, the CTPH method.

8. Conclusion

The paper considers a software model for detecting malware using a RNN as part of the Snort
version 2.9.18.1 IDS. A pcap network traffic file with embedded malware was used as a dataset.
The training datasets for RNN are based on the source code of malware obtained from open
sources. The k nearest neighbors method was used as a mathematical apparatus for solving the
classification problem.
Based on the research, it can be concluded:

The use of the k nearest neighbors method at the preprocessor level is justified in the
presence of a large and unique training dataset.

T. Jamgharyan 79

The use of augmentation for training a, RNN included in the IDS before the preprocessor is
inappropriate, since solving the classification problem using the k nearest neighbors method
requires a data set with unique data that differ from each other in many criteria, which is difficult
to achieve using the augmentation method. The use of RNN as part of an IDS at the preprocessor
level is justified in the presence of a large computing resource (a special role is played by the
amount and type of RAM).

References

[1] G.Stoneburner, “Underlying Technical Models for Information Technology Security”,
NIST Special Publication 800-33, 2001.

[2] R.Atefinia, M.Ahmadi, Performance Evaluation of Apache Spark Mlib Algorithms on
an Untrusion Detection Dataset. [Online].Available:https://arxiv.org/abs/2212.05269

[3] M. Bachi, A. Harti, J. Fabini and T. Zseby, Walling up Backdoors in Intrusion
Detection Systems. [Online].Available:https://arxiv.org/abs/1909.07866

[4] National standard of the Russian Federation, “Quality of official information”,

GOST R-51170-98, (2020)// 12, Moscow, Standardinform.

[5] B.E.Zolbayar et al, “Generating practical adversarial network traffic flows using
NIDSGAN”, [Online].Available:https://arxiv.org/abs/2203.06694

[6] F. Zhong et al, “MalFox: Camouflaged adversarial malware example generation based
on Conv-GAN againist black—box detectors”,
[Online].Available:https://arxiv.org/abs/2011.01509

[7] Dominik Kus et al, “A false sense of security? Revisting the state of machine learning-
based industrial intrusion system”, [Online]. Available:https://arxiv.org/abs/2205.09199

[8] K.allad, M. Aljnidi and M.Desoki, «Big data analysis and distributed deep learning for
next-generation intrusion detection system optimization», (2022)//[Online].Available:
https://arxiv.org/abs/2209.13961

[9] A Branitsky and I. Kotenko, «Analysis and classification of methods for detecting
network attacks», Proceedings of SPIIRAS, (2016) // issue 45, pp. 207-244.

[10] Electronic resource dedicated to digital transformation technologies.
[Online].Available:https://www.osp.ru/os/2020/03/13055601

[11] T.V.Jamgharyan and V.H.Ispiryan, “Network infrastructures assessment stability”
Proceedings of 13" International Conference on Computer Science and Information
Technologies (CSIT), Yerevan, Armenia, pp. 199-203, 2021.

[12] Malware Bazaar Database. [Online]. Available:https://bazaar.abuse.ch/browse/

[13] Malware database. [Online]. Available:http://vxvault.net/ViriList.php

[14] Malware repository. [Online]. Available:https://avcaesar.malware.lu/

[15] Viruses repository. [Online]. Available:https://virusshare.com/

[16] G.Campos, A.Zimek, et al, «<On the evaluation of unsupervised outlier detection:
measures,datasets, and an empirical study».
[Online].Available:https://link.springer.com/article/10.1007/s10618-015-0444-8

[17] Professional information and analytical resource dedicated to machine learning, pattern
recognition and data mining. [Online].Available: http://www. machinelearning.ru

https://arxiv.org/abs/2212.05269
https://arxiv.org/abs/1909.07866
https://arxiv.org/abs/2203.06694
https://arxiv.org/abs/2011.01509
https://arxiv.org/abs/2205.09199
https://arxiv.org/abs/2209.13961
https://www.osp.ru/os/2020/03/13055601
https://bazaar.abuse.ch/browse/
http://vxvault.net/ViriList.php
https://avcaesar.malware.lu/
https://virusshare.com/
https://link.springer.com/article/10.1007/s10618-015-0444-8

80 Research of Model Increasing Reliability Intrusion Detection Systems

[18] T.Jamgharyan, “Research of obfuscated malware with a capsule neural network”,
Mathematical Problems of Computer Science, vol. 58, 67-83, 2022.

[19] Website for identifying, defining and cataloging publicly disclosed cybersecurity
vulnerabilities.
[Online].Available:https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-20685

[20] T.Jamgharyan, “Modernization of intrusion detection system via the generative model”,
«Haikakan Banak» («Armenian Army») Defense-Academic journal, National Defense
Research University, Ministry of Defense, Republic of Armenia, no. 2, pp.75-79, 2021.
[Online].Available:https://razmavaraget.files.wordpress.com/2022/01/hb2-final.pdf

Ukpjunidmudubph huyuntwpbpdwt hundwjupgh
huJuunhnipjut pupdpugdwt Unnbih
htwnwgnunid

hunip 9. Quuunupju

Zuyuunwtth wqquyhtt ynjhnbjuthjuijwt hwdwjuwpw, Bphwb, Zuywunwt
e-mail: t.jamgharyan@yandex.ru

Udthnthnid

znnjudnmid ubipjuyugus L Snort 2.9.18.1 ukpunidnidubph hwyntwpkpdwi
hudwlwnpgh juqunud ntliniptun tkjpntwghtt gmugh Jhpundwt hEnmwgnunnipjut
wpyniupubpp: Zbnwgnunipmniut hpwlwbwgylk) L athena, dyre, engrat, grum,
mimikatz, surtr Juwuwptp spwgpuyhtt wmywhnydwt Ejuljtnuwghtt Ynnh hhdwb Jpu
Jupnigumé njujitph hwjwpwéniubpny: Twhwgnpéyty £ CVE-2022-20685 Snort
ubpjunidnidutiph hwynbwpbpdwt hwdwljupgnid jungbjhmipniup: Uninpughtt
ppwdhyh dpowlnudp hpwwiwgyt]; E dhty frag-3 b modbus wptwpngtunpubpp:
Nputu Jwpbdwnhjujut wywpuwn oquuugnpsyt] £ k dnnnwlju hwplwbukph
Ubkpnnp: Ppulwuwgyt] t Spugpujhtt wmywhnddwt hpugnpsdwt Unpbjuwydnpnid
wnwppkp Yplunipniiutpnud b wpyniupubph wpnwugninud: ZnpJusnmd sukpundws
htwnwgnunipjut wpyniuputipp hwuwubh B https://github.com/T-JN Juypnid:
Pwbwh punkp dbipkbwjulul mumgnud, ndjuyibph hwjupwsnt, Yuwuwpkp
dpuwgpuyhtt wywhnynid, k Udnnwluw hwplwbbtph Jdbpnnyp, ubkphnidnudubph
hujntwpkpdwt hwdwlwng, CVE-2022-2068:

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-20685
https://razmavaraget.files.wordpress.com/2022/01/hb2-final.pdf
https://github.com/T-JN

T. Jamgharyan 81

HccaenoBanne Mo/1e/ 1M MOBBIILIEHUS I0CTOBEPHOCTH CHCTEMBI
00HapYy KeHUsI BTOPKEeHU I

Tumyp B. [Ixxamrapss

HanwmonansHbli nonuTexHU4ecKuil yHuBepcuTeT Apmenu, Epesan, ApMeHus
e-mail: t.jamgharyan@yandex.ru

AHHOTALINA

B craree mpexacTaBieHBl pE3yNbTATBl HCCIEAOBAHUS TPHUMEHEHHS PEKYpPEHTHOM
HEHPOHHOU ceTH ans OOHApYKEHHS BPEAOHOCHOTO IMPOTPAMMHOTO OOECIIEYEeHHUs] B COCTaBe
CHCTEeMBI OOHapy)KeHHsI BTOp)keHWi Snort. MccnemoBanme mpoBOIMIIOCh Ha Habopax IJaHHBIX
copMHPOBAHHBIX HA OCHOBE BPEJAOHOCHOTO IMporpaMMHOro obecrieuenus athena, dyre, engrat,
grum, mimikatz, surtr ¢ skcruiyaranueii B cucteMe OOHApY)KEHHs BTOpXKEHHIT SnoOrt Bepcumn
2.9.18.1 ys3BumMocTu CVE-2022-20685. OOpaboTKa JaHHBIX BXOJHOTO TpaduKa OCYyIIEeCTBIISIACH
00 npenpoyeccopos frag-3 u modbus. B kauecTBe MaTeMaTHUECKOTO armapara HCIIOJIb30BaJICs
Meron k Oaudcaiiwux cocedeu. llpoBeneHO MoAenupoBaHHE pabOThl MPOrPaMMHOIO
oOecrieyeHHs TIPU Pa3HBIX UTEPAIUAX U BU3YaJU3aIUs Pe3ylbTaToB. Pe3ynbTaThl HCCie0BaHUS
HE BHECEHHBIE B CTAThIO MPEICTaBIeHBI 10 aapecy https://github.com/T-JN

KiroueBbie cioBa: MmamuHHOe oOydeHue, BpemoHocHoe [1O, Meron Ommkalmmmx

cocejieit, cucremMa 0OHapy)XKeHHUsI BTOp KeHH, npenpoieccop, CVE-2022-2068.

https://github.com/T-JN

Yuiunuukp hinhttwljutkph hwdwp

22 QUU PUME “Undyjninbpuyghtt ghuimipjut dwpbdwnpljuljub jpunhpubp”
wuppkpujuip wwywgpynud £ 1963 pduluihg: Nwuppbhpuluinid
hpwunwpuwlynd &b updwd nnpnhtt websynn ghnwlut hnnushbp, npnup
wuwpnibwlnud o unp” shpuwunwpuwldws wpngniupubp:

ZnJusubpp ukpuyugymd Bu wigbpkl Alunpluws hudwwyunuuumb
“n&ny” (style): znpjwsh dAtwynpiwt wuwhwbeubphtt wybkih dwbpwdwut jupbkh &
Swinpubiu] wwppbpuluih uyptenid” http://mpes.sci.am/:

Rules for authors

The periodical “Mathematical Problems of Computer Science” of IIAP NAS RA has
been published since 1963. Scientific articles related to the noted fields with novel and
previously unpublished results are published in the periodical.

Papers should be submitted in English and prepared in the appropriate style. For
more information, please visit the periodical's website at http://mpcs.sci.am/.

[IpaBuna nist aBTOpoOB

XKypnan «Marematnueckue npoOieMbl KoMmmbloTepHbix Hayk» WIIMA HAH
PA m3paercs ¢ 1963 roma. B xypHane myOiauKyrOTCS HaydHbIC CTaThbU B yKa3aHHOU
o0acTy, coJiepKallue HOBbIE U paHee He OIyOJMKOBaHHbIE PE3YJIbTATHI.

CraTbM NpEACTaBIAIOTCS HA AHIJIMICKOM si3bIke M OoopMisiioTcs B
COOTBETCTBYIOLIEM CTUIIE. JIOMONHUTENBbHYI0O HH(GOPMALMIO MOXKHO IOJYYUTh Ha BeO-
caiite xypHana: http://mpcs.sci.am/.

82

http://mpcs.sci.am/

The electronic version of the periodical “Mathematical Problems of Computer
Science” and rules for authors are available at

http://mpcs.sci.am/

Phone: (+37460) 62-35-51
Fax: (+37410) 28-20-50
E-mail: mpcs@sci.am

Website: http://mpcs.sci.am/

Uwnnpugpyuws k nuugpnipjub’ 25.05.2023
Pmnpp odubip:
Zpunwpuljuws £ 22 QUU budnpdunhljuyh b wdunndwnwugdw
wpnpiEdubph htunhwnnunh §nnuhg
Owuyp 83 bo: Syyupwliulyp’ 100
22 @UU PUMNP Zudwlupgswihtt ynihgpubhuwyh jupnpunnphw
Gplhwt, 1. Ubhwlh 1
Zkn. +(374 60) 623553
Qhip wigup

ITommucano B meyats 25.05.2023 Signed in print 25.05.2023
Odcernas 6ymara. Offset paper
Ony6smkoBaHo MHCTUTYTOM TIpoOIeM Published by the Institute for
uHpopmaTuku 1 aBromatuzanud HAH PA Informatics and Automation
O6wém: 83 crpanuu. Tupax: 100 Problems of NAS RA
JTaGopaTopus KOMITBIOTEPHOMA Volume: 83 pages
nonurpaduu UTTUA HAH PA. Circulation: 100
Epesaw, I1. CeBaka 1 Computer Printing Lab
Ten.: +(374 60) 623553 of IIAP NAS RA
Ilena: 6ecraTHO Yerevan, 1, P. Sevak str.

Phone: +(374 60) 623553
Free of charge

mailto:mpcs@sci.am

	Face!
	LIX
	Yerevan

	IIAP_journal_Vol_59_new
	Sbornik_59
	Sbornik_59
	45-19-PB
	01_7-15_59
	01_NIKOGHOSYAN_59
	01

	02_16_26_59
	02_VILIK_59_16_26
	02

	03_27_34_59
	03_Chub_59_27_34
	03

	04_35_44_59
	04_Artur_59
	04_1

	05_45_56_59
	05_ՍԵդրակ_59
	05_1

	06_57-68_59
	06_Karamyan_Davit_59 (1)
	06_1

	07_69-81

	last pages_IIAP_journal_vol_59

