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Abstract

Let D be a strongly connected directed graph of order n , 4. In [14] (J. of Graph
Theory, Vol.16, No. 5, 51-59, 1992) Y. Manoussakis proved the following theorem:
Suppose that D satisfles the following condition for every triple X;y; z of vertices such
that x and y are nonadjacent: If there is no arc from x to z, then d(x) +d(y) +d™(x) +
di(z) , 3nj2. If thereis no arc from z to X, then d(x)+d(y)+di(x)+d*(z) , 3nj 2.
Then D is Hamiltonian. In this paper we show that: If D satisfles the condition of
Manoussakis’ theorem, then D contains a pre-Hamiltonian cycle (i.e., a cycle of length
n i 1) or niseven and D is isomorphic to the complete bipartite digraph with partite
sets of cardinalities n=2 and n=2.

Keywords: Digraphs, Cycles, Hamiltonian cycles, Pre-Hamiltonian cycles,
Longest non-Hamiltonian cycles.

1. Introduction

I directed graph (digraph) D ist amiltonian if it containsa! amiltonian cycle, i.e., a cycle
of length n, and is pancyclic if it contains cycles of all lengthsm, 3 ® m « n, wheren isthe
number of vertices in D. We recall the following well-known degree conditions (Theorems
1.1-1.8) which guarantee that a digraph ist amiltonian. In each of the conditions (Theorems
1.1-1.8) below D is a strongly connected digraph of order n :

Theorem 1.1: (Ghouila- ouri [12]). If d(x) , n for all vertices x 2 V (D), then D is
Hamiltonian.

Theorem 1.2: (Woodall [18]). If d*(x) +di(y) , n for all pairs of vertices x and y
such that there is no arc from x to y, then D is Hamiltonian.

Theorem 1.3: (Meyniel [15]). If n , 2 and d(x) +d(y) », 2n j 1 for all pairs of non-
adjacent vertices in D, then D is Hamiltonian.

It is easy to see that Meyniel's theorem is a common generalization of Ghouila-t ouri's
and Woodall's theorems. For a short proof of Theorem 1.3, see [5].
C. Thomassen [17] (for n = 2k+1) and S.! arbinyan [7] (for n = 2k) proved the following:
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Theorem 1.4: (C. Thomassen [17], S. | arbinyan [7]). If D is a digraph of order n , 5
with minimum degree at least n j 1 and with minimum semi-degree at least n=2 j 1, then D
is Hamiltonian (unless some extremal cases which are characterized).

For the next theorem we need the following:

Deflnition 1: ([14]). Let k be an arbitrary nonnegative integer. A digraph D satisfles the
condition Ay if and only if for every triple x;y;z of vertices such that x and y are nonadja-
cent: If there is no arc from x to z, then d(x) +d(y) +d*(x) +di(z) , 3n j 2+ k. If there
is no arc from z to x, then d(x) +d(y) +di(x) +d*(z) , 3nj 2+Kk.

Theorem 1.5: (I . Manoussakis [14]). If a digraph D of order n , 4 satisfles the con-
dition Ag, then D is Hamiltonian.

Each of these theorems imposes a degree condition on all pairs of nonadjacent vertices
(or on all vertices). The following three theorems impose a degree condition only for some
pairs of nonadjacent vertices.

Theorem 1.6: (Bang-Jensen, Gutin, | .Li [2]). Suppose that minfd(x);d(y)g , n i 1 and
d(x) +d(y) , 2n j 1 for any pair of nonadjacent vertices x;y with a common in-neighbour,
then D is Hamiltonian.

Theorem 1.7: (Bang-Jensen, Gutin, { .Li [2]).Suppose that minfd™(x) + di(y);d¥(x) +
d*(y)g , n for any pair of nonadjacent vertices x;y with a common out-neighbour or a
common in-neighbour, then D is Hamiltonian.

Theorem 1.8: (Bang-Jensen, Guo, | eo [3]). Suppose that d(x) +d(y) , 2n j 1 and
minfd*(x) +di(y);d"(x) +d*(y)g , n j 1 for any pair of nonadjacent vertices X;y with a
common out-neighbour or a common in-neighbour, then D is Hamiltonian.

| otethat Theorem 1.8 generalizes Theorem 1.7.

In[11, 16, 6, 8] it was shown that if adigraph D satis esthe condition of one of Theorems
1.1, 1.2, 1.3 and 1.4, respectively, then D also is pancyclic (unless some extremal cases which
are characterized). It is natural to set the following problem:

Characterize those digraphs which satisfy the conditions of Theorem 1.6 (1.7, 1.8) but
are not pancyclic.

In many papers (in the mentioned papers as well), the existence of a pre-t amiltonian
cycle (i.e., a cycle of length n j 1) is essential to the show that a given digraph (graph) is
pancyclic or not. This indicates that the existence of a pre-i amiltonian cycle in a digraph
(graph) in a sense makes the pancyclic problem signi cantly easier. For the digraphs which
satisfy the conditions of Theorem 1.6 or 1.7 or 1.8 in [9] and [10] the following results are
proved:

(1) if the minimum semi-degree of a digraph D at least two and D satisfles the conditions of
Theorem 1.6 or a digraph D is not a directed cycle and satisfles the conditions of Theorem
1.7, then either D contains a pre-Hamiltonian cycle (i.e., a cycle of length n j 1) or n is even
and D is isomorphic to the complete bipartite digraph Kf:z;mz or to the complete bipartite
digraph K7 _,.,-, minus one arc

(i) if a digraph D is not a directed cycle and satisfles the conditions of Theorem 1.8, then
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D contains a pre-Hamiltonian cycle or a cycle of length n j 2.
In [14] the following conjecture was proposed:
Conjecture 1.9: Any strongly connected digraph satisfying the condition Az is pancyclic.

In this paper using some claims of the proof of Theorem 1.5 (see [14]) we prove the fol-
lowing theorem:

Theorem 1.10: Any strongly connected digraph D on n , 4 vertices satisfying the con-
dition A, contains a pre-Hamiltonian cycle or n is even and D is isomorphic to the complete
bipartite digraph K _,. _,.

The following examples show the sharpness of the bound 3n j 2 in the theorem. The
digraph consisting of the digjoint union of two complete digraphs with one common vertex
or the digraph obtained from a complete bipartite digraph after deleting one arc show that
the bound 3n j 2 in the above theorem is best possible.

2. Terminology and | otations

We shall assume that the reader is familiar with the standard terminology on the directed
graphs (digraph) and refer the reader to [1] for terminology not discussed here. In this paper
we consider nite digraphs without loops and multiple arcs. For a digraph D, we denote by
V (D) thevertex set of D and by A(D) theset of arcsin D. Theorder of D isthe number of its
vertices. Often we will write D instead of A(D) and V (D). The arc of a digraph D directed
from x toy isdenoted by xy. For disjoint subsets A and B of V(D) wede neA(A ¥ B) as
theset fxy 2 A(D)=x 2 A;y 2 Bgand A(A;B) = A(A I B)[A(B T A). Ifx 2V (D) and
A = fxg we write x instead of fxg. If A and B are two disjoint subsets of V (D) such that
every vertex of A dominates every vertex of B, then we say that A dominates B, denoted
by A ¥ B. The out-neighborhood of a vertex x isthe set N*(x) = fy 2 V(D)=xy 2 A(D)g
and Ni(x) = fy 2V (D)=yx 2 A(D)g is the in-neighborhood of x. Similarly, if A V (D),
then N*(x;A) = fy 2 A=xy 2 A(D)g and Ni(x;A) = fy 2 A=yx 2 A(D)g. The out-
degree of x is d*(x) = jN*(x)j and di(x) = jNi(x)j is the in-degree of x. Similarly,
d(x;A) = JNT(x;A)j and di(x;A) = jNT(x;A)j. The degree of the vertex x in D is
de ned as d(x) = d*(x) +di(x) (similarly, d(x; A) =d*(x;A) +di(x;A)). The subdigraph
of D induced by a subset A of V(D) is denoted by hAi. The path (respectively, the cycle)

(respectively, XiXi+1, 1 2 [1;m j 1], and XX1), is denoted by X;X,(¢¢X,, (respectively,
X1 X 000 XnX;). We say that XX, 666X, isa path from X; to X, or is an (Xg; Xm)-path. For
a cycle Cy := X1 X, 006X, X; of length Kk, the subscripts considered modulo k, i.e., X; = X for
everysandisuchthati - s(modk). | cyclethat containsall theverticesof D (respectively,
all the vertices of D except one) isat amiltonian cycle (respectively, is a pret amiltonian
cycle). The concept of the pre-i amiltonian cycle was given in [13]. If P isa path containing
asubpath from x toy we let P[x;y] denote that subpath. Similarly, if C isa cycle containing
vertices X and y, C[x;y] denotes the subpath of C from x toy. | digraph D is strongly
connected (or, just, strong) if thereexistsa path from x toy and a path fromy to x for every
pair of distinct vertices x;y. For an undirected graph G, we denote by G~ the symmetric
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digraph obtained from G by replacing every edge xy with the pair Xy, yx of arcs. K
denotes the complete bipartite graph with partite sets of cardinalities p and g. Two distinct
vertices x and y are adjacent if xy 2 A(D) or yx 2 A(D) (or both). For integers a and b,
a =D, let [a;b] denote the set of all integers which are not less than a and are not greater
than b. Let C be a non-t amiltonian cycle in digraph D. | n (x;y)-path P is a C-bypass if
JV(P)] » 3, x&yandV(P)\V(C)=Tx;yg.

3.  Preiminaries

The following well-known simple Lemmas 3.1-3.4 are the basis of our results and other the-
orems on directed cycles and paths in digraphs. They will be used extensively in the proofs
of our results.

Lemma 3.1: [11]. Let D be a digraph of order n , 3 containing a cycle C,, m 2 [2;n j 1].
Let x be a vertex not contained in this cycle. If d(x;C,,) , m+ 1, then D contains a cycle
Cy for all k 2 [2, m + 1].

The following lemma is a slight modi cation of the lemma by Bondy and Tomassen [5].

Lemma 3.2: Let D be a digraph of order n , 3 containing a path P = X1Xz:::Xm,
m 2 [2n j 1] and let x be a vertex not contained in this path. If one of the following
conditions holds:

(i) d(x;P) , m+2;

(i) d(x;P) , m+1and xx; 2 D or Xxu,X 2 D;

(iii) d(x;P) , m, xx; 2 D and xuzx 2 D, then there is an i 2 [1;m j 1] such that
XiX; XXj+1 2 D, i.e., D contains a path X; X, : :: XjXXj+1 : :: Xm Of length m (we say that x can
be inserted into P or the path X;X, :::XjXXj+1:::Xm IS an extended path from P with X).

If in Lemmas 3.1 and 3.2 instead of the vertex x consider a path Q, then we get the
following Lemmas 3.3 and 3.4, respectively.

Lemma 3.3: Let Cy = X1Xo:::XkX1, K , 2, be a non-Hamiltonian cycle in a digraph
D. Moreover, assume that there exists a path Q = yiy>:::y,, ¥ , 1, in D j Cy. If
di(y1; Cx) +d*(yr; Ck) » k+1, then for all m 2 [r + 1; k + r] the digraph D contains a cycle
Cm of length m with vertex set V(Cn,) 1 V(Cx) LV (Q).

Lemma 3.4: Let P = XiX:::Xx, K 5, 2, be a non-Hamiltonian path in a digraph
D. Moreover, assume that there exists a path Q = yiy2::iy,, ¥ , 1, in D jP. If
di(y;;P) +d*(yr;P) , k+di(ys; fxg) + d*(yr; FX10), then D contains a path from x;
to xx with vertex set V(P) LV (Q).

For the proof of our result we also need the following:
Lemma 3.5: ([14]). Let D be a digraph on n , 3 vertices satisfying the condition A,.

Assume that there are two distinct pairs of nonadjacent vertices x;y and x;z in D. Then
either d(x) +d(y) , 2n j 1ord(x)+d(z) , 2nj 1.
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4. The Proof of Theorem 1.10
In the proof of Theorem 1.10 we often will use the following de nition:

Deflnition 2: Let Py := X3X5:::Xm, M , 2, be an arbitrary (X;;Xny)-path in a digraph
D and let y;;y2;:::yk 2 V(D) § V(Po). For i 2 [1;k] we denote by P; an (X;; Xm)-path in
D with vertex set V (Pi;1) L fy;g (if it exists) such that P; is an extended path obtained from
Pi;1 with some vertex y;, where y; 2 V (Pj;1). If e+ 1 is the maximum possible number of

of length m+1i j 1

Proof of Theorem 1.10: Let C := X;Xy:::XkX; be a longest non-i amiltonian cycle in
D of length k, and let C be chosen so that hv (D) j V(C)i has the minimum number of
connected components. Supposethat k ® n j 2and n , 5 (thecase n = 4 is trivial). It
is easy to show that k , 3. We will prove that D is isomorphic to the complete bipartite

of hRi (i.e, if g , 2, then for any pair i;J, i & j, there is no arc between R; and R;j). In
[14] it was proved that for any R;, i 2 [1;q], the subdigraph hV (C) [V (R;)i contains a
C-bypass. (The existence of a C-bypass also follows from Bypass Lemma (see [4]), since
hvV (C) LV (Rj)1 is strong and the condition A, implies that the underlying graph of the
subdigraph hV (C) LV (Ri)1 is 2-connected). Let P := XmY1Y2 ::: Yy Xm+,; D€ a C-bypassin
hv (C) LV (R)1 (i 2 [1;q] isarbitrary) and ,; is considered to be minimum in the sense that
there is no C-bypass XaUiUs @ @ U, Xa+r; IN NV (C) [V (Ri)1 such that r; < ,; and Xa; Xa+r;0

We will distinguish two cases, according as thereisa ,j, i 2 [1;q], such that ,; = 1 or
not.

I ssume rs that ,; , 2 for all i 2 [1;q]. For this case one can show that (the proofs
are the same as the proofs of Case 1, Lemma 2.3 and Claim 1 in [14]) if ,; , 2, then
ti = jRij = 1, in hV (C)i thereis an (Xm+_,; Xm)-path (say, P?) of length k j 2 with vertex

(note that y; and z; are nonadjacent). From jRj , 2 and jR;j = 1 (for all i) it follows that
q, 2 Ifu2R,, then d(u) =d(u;C) = k (by Lemma 3.1) and d(z;; R) = 0 (by minimality
of q), in particular, the vertices z; and u are nonadjacent. Therefore, d(z;) = d(z;;C) = k
and d(z;) +d(u) = 2n j 2. Thisin connection with d(y;) +d(z;) = 2n j 2 contradicts Lemma
3.5.

I ssume second that ,; = 1 for all i 2 [1;q]. It isclear that ¢ = 1. Put t ;= t; and
», =, =1

Observethat if viv, :::vj (maybe, j = 1) isapath in hRi and X;v1 2 D, then vjxi+j 2 D
since C isthe longest non-t amiltonian cyclein D and k = n j 2. We shall use this often,
without mentioning this explicitly.

The following claim follows immediately from , = 1 and the maximality of C.

hRiandif l=i<j jletjl thenyy; 2D.
From Claim 1 it follows that

d"(yyR) =d'(ysR) =1 andif i2[Ltj 1], then d"(yi;R) = i; (2)
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d(y;;R); d(iy;R) ®*njk andif i2[2tj1l]; then d(yiR)=*njk+1 (2

(iii). d(y1;C) = k, d(y;C) = k and d(y;;C) = k j 1 for all j 2 [2t j 1] (by Lemma
3.2(iii) and Claim 2(ii) since , = 1). o

Claim 3: Assume that hRi is strong. If d*(xi;R) , 1, di(x;;R) , 1and jC[xi;X;]j » 3
for some two distinct vertices x;; X; (i;J 2 [1;K]), then the following holds:

(1) di(xj;1;R) & 0 or A(R; C[Xi+1;Xj;2)) & ;;

(ii) d*(Xi+1; R) & 0) or A(R; C[Xi+2;Xj;1]) & ;.

(Here if jC[x;; Xj]] = 3, then C[Xi+1;Xj;2] = 5 and C[Xi+2; Xj;1] = 3)-

Proof of Claim 3: Suppose that Claim 3(i) is false. Without loss of generality, assume
that Xkye;ygxi 2D (1 2 [2k § 1])

d'(x;;1;R) =0 and A(R;C[xs;Xi;2]) = ;- (3)

The subdigraph hRi contains a (y¢; Yg)-path (say P (ys;Yg)) since R is strong. We extend

otherwise, it isnot dix cult to seethat by ! e nition 2 there is an (Xx;; xx)-path P;, i 2 [0; €],
which together with the path P (y¢;yg) and the arcs XxYs; ygXi formsanon-i amiltonian cycle
longer than C). Therefore, by Lemma 3.2(i), for all s 2 [1;d] the following holds

d(zs;C) = k+d j L (4)
From (3) it follows that y;%;;1 2 D and y:x,;1 2 D. | ence, by Lemma 3.2(ii), we have
diy;;C) =k jl+2 and d(y;C)=k jl+2

since neither y; nor y; cannot be inserted into C[x;;1; Xk]. This together with (2) implies
that
dly) =nil+2 and d(y)enil+2 (5

If there exists a zs such that d(zs;R) =0, thenby d = | j 1, (4) and (5) we obtain that
d(zs) +d(y1) =2n j2 and d(zs) +d(yy) = 2n j 2

which contradicts Lemma 3.5 since zg;y; and zg;y; are two distinct pairs of nonadjacent
vertices. | ssume, therefore, that there is no zg such that d(zs;R) = 0. Then from (3) it
follows that d = 1, z; = x;;1 and d*(x;;1;R) - 1. Therefore, D contains an (X; Xk)-path,
say Q, with vertex set V(C) i x;;19. Since hRi is strong, it follows that in hRi thereis a
(Yr: Yg)-path, say T. This path T together with the path Q and the arcs xkys, ygxi forms a
cycle C! which does not contain x;; ;. From the maximality of C it followsthat jTj =1 (i.e,
Yf =Y,) and

d*(x; R i fyrg) =d?(xi;R i fyfg) =0 (6)
So, the cycle C" has the length k and V(C") = V(C) [ fyeg i fxi;10. It is not dif-
“cult to see that the vertices x;;1, ¢ are nonadjacent (for otherwise x;;1y¢ 2 D and
Xii1YeXii i XeX i X1 IS a cycle of length k + 1, a contradiction). From this and
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di(xi;1;R) = 0 (by (3)) we have d(x;;1;R) = n j k i 1. Thistogether with d = 1 and (4)
impliesthat d(x;;1) = nj 1

I ssume rst that yf 6 y;.
Let Xi;1y1 2 D. Then y¢ = y; (by Claim 2(i)) and for the triple of vertices yi; Xi;1;Y1
condition A, holds, since y1x;;1 2 D and y;; X;;1 are nonadjacent. Since y.x; 2 D, from
(3) and Claim 2(ii) it follows that d(x;;1;R i fy19) =0, i.e,, d(X;;1; R) = 1. This together
with (4) and d = 1 gives d(x;;;) = k+ 1. Since D contains no cycle of length k + 1,
it follows that for the arc x;1y; and the cycle C', by Lemma 3.3, the following holds
di(x);1;C% +d*(y1; C" =« k. Thistogether with d*(y;;R) = 1 and di(x;1; R) = 0 implies
that di(x;;1) +d*(y1)) = n j 2 (here we consider thecasessk = nj2and k = nj 3
separately). Therefore, using condition A, (5), d(x;;1) = n j 1and | , 2 we obtain

3n i 2=d(y) +d(x;1) +di(x;1) +d (y1) = 3n i 3;

a contradiction.

Let now X;;1y1 2 D. Then by (3) the vertices x;;1, y1 are nonadjacent. From thist , 3
since y¢; Xi;1 are nonadjacent and d*(x;;1; R) , 1. Thus, we have xxy; 2 D, y;x 2 D (by
(6)) and d(ys; C[xs; Xi;1]) = O. Therefore, since y; cannot be inserted into C[x; Xx], using
Lemma 3.2(iii) and (2) we obtain d(y,;) = n j I. | oticethat (by (2) and (4))

d(xi;1) =d(Xi;1;C) +d(Xi; ;R i fy;;ye0) = kK+d(x;5R i fy;y¢0) = ni 2
and (by Lemma 3.2(i) and d(ys; C[X1; X1;1]) = 0),
d(ys) = d(ys; C) +d(ys; R) = k i I +2+d(ys; R):
From the last three inequalities we obtain that
d(ys) +d(xi;1) =2n i li2

and
d(ye) +d(xi;1) = 2k i 1 +2+d(x;1;R i fyi;ye0) +d(ys; R):

| otice that
dxi; R i fyyeg) +dlyesR)®=njki2+njk=2nj2kj?2

since if x;;1y; 2 D, then yjyr 2 D, where y; & yi;y¢. The last two inequalities give
d(ye) +d(Xi;1) = 2n j | = 2n j 2. Thistogether with d(y;) +d(X;;1) = 2n j | i 2 contradicts
Lemma 3.5 since X;;1; Y1 and X;;1; ¢ are two distinct pairs of nonadjacent vertices.

I ssume next that yr = yi. If X;1;Y: are nonadjacent, then d(x;;1; fy:; y:g) = 0 and
dixi;1;R) = njkij2 ! ence by (4 and d = 1 we have d(x;;1) = n j 2. Thistogether
with (5) implies that

dly:) +d(xi;1) =2n § 2 and d(yy) +d(X;1) = 2n j 2

which contradicts Lemma 3.5, sincey;; X;;1 and Yi; X;;1 aretwo distinct pairs of nonadjacent
vertices. So, we can assume that x;1y: 2 D. Since C' is a longest non- amiltonian cycle,
di(x;;;R) =0, (3) and d"(y;R i fy1g) = n j k j 2, from Lemma 3.3 it follows that
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di(X;;1) +d"(yr) = nj 2 | owusing (5, d(xi;;1) = n j 1 and the condition Ao, for the
triple of the vertices X;1; y1; Yt we obtain

3n i 2=d(ys) +d(Xi;2) +dT(ye) +d¥(xi;1) = 3n i lil=3nj3

which is a contradiction. Claim 3 is proved.

In particular, from Claim 3 immediately follows the following

Claim 4: Assume that hRi is strong and d*(x;;R) , 1, di(x;;R) , 1 for some two
distinct vertices X; and x;. Then the following holds:

(i) if jCxi; Xjli » 3, then A(R; C[Xi+1;Xj;1]) & 3;

(ii) if jC[xi; xj]i = 3, then d*(Xi+1; R) , 1and di(x;;1;R) , 1.

| ow we divide the proof of the theorem into two parts. k ®*n j3andk =n j 2

artl. kenj3ie,t, 3
For this part ~rst we will prove the following Claims 5-10 below.

Claim 5: Let t , 3 and yty: 2 D. Then the following holds

(i) if xjy1D, then di (Xj+2; R) = 0; (ii) if yx; 2 D, then d*(Xi;2; R) = O, where i 2 [1; K].

Proof of Claim 5: (i). Suppose, on the contrary, that for somei 2 [1; K] x;y; 2 D and
di(Xj+2;R) & 0. Without loss of generality, we assume that x; = Xx; and di(x3;R) & 0.
Thendi(x3;R j fy;g) =0and y;x3 2 D. It iseasy to seethat y,;, X, are nonadjacent and

d¥(x2; Fy1iy2i o0 Ye410) = d7 (X2 Fya;yaiyariiniv0) =0, e, d(x;R) =2 (7)

Since neither y; nor X, can be inserted into C[x3;X1], using (2), (7) and Lemma 3.2, we
obtain that

d(y1) =d(y;;C) +d(y1;;R) = k+n jk=n and d(xz) =d(x;;C)+d(X:;R) = k+2:

On the other hand, by Lemma 3.3 and (1) we have that d#(y;) + d*(y;) = k + 2 since the
arc yy, cannot beinserted into C. Therefore, by condition Ag, the following holds

3n § 2= d(y;) +d(x) +di(yy) +dT(y1) = n+ 2k + 4

since yi; X, are nonadjacent and y;y; 2 D. From thisand k « n j 3 it followsthat k = n j 3,
XoY2; ¥oY1 2 D and hence, the cycle X,y,y1X3X4 @ @ Xk X1 X, has length k + 2. This contradicts
the suppaosition that C is a maximal non-i amiltonian cycle.

To show that (ii) is true, it is sux cient to apply the same arguments to the converse
digraph of D. Claim 5 is proved.

Claim 6: Ift , 3 and the vertices y;, y; are nonadjacent, then t = 3 and ysy>, y2y1 2 D.

Proof of Claim 6: Without loss of generality, we can assumethat Xy, yiX, 2 D (since
, =1).

I ssume rstthat t , 4and yy; 2 D for somei 2 [2;t j 2]. Sincethe arc y.y; cannot be
inserted into C, using Lemma 3.3, we obtain

di(y; C) +d™(yi; C) =k (8)
From Claim 1 and the condition that y;;y; are nonadjacent it follows that

dy;R)*nikil and dys;R)=nikil
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This together with Claim 2(iii) implies that d(y;) and d(y;) = n j 1. Since y;;y; are
nonadjacent and y;y; 2 D, using (1), (8) and applying the condition Aq to the triple of the
vertices yi; Yy, Yi, We obtain

3n j 2=d(y1) +d(yy) +d*(y;C) +d"(yi;C) +d* (y;R) +d"(yi;R) = 3n j 3,

which is a contradiction.

I ssume second that t , 4and yyy; 2 D for all i 2 [2;t § 2]. We also can assume that
yiy1: 2 D for all 1 2 [3;t j 1]. Therefore, d(y;; R) = 2 and d(y; R) = 2. This together with
Claim 2(iii) impliesthat d(y;) = k + 2, d(y:) = k + 2 and hence

d(y.) +d(y) = 2k + 4 (9)

From t , 4 and the above assumptions it follows that y;;y: and yi;y:;1 are two distinct
pairs of nonadjacent vertices. From (9) andk = n j4it followsthat d(y;)+d(y;) = 2n j4. On
theother hand, sinced(y;) = k+2, d(y¢;1;C) = k i 1 (by Claim 2(iii)) and d(y¢;1; R) = njk
(by Claim 1), we have

d(ys) +d(ye;1) =2n j 3
Thistogether with d(y;) +d(y:) = 2n j 4 contradicts Lemma 3.5. We, thus, proved that the
caset , 4 isimpossible,

Il ssume nally that t = 3. | ow we will show that ysy, 2 D. | ssume that this is not
the case, i.e, y3y, 2 D. Then we can apply the condition A, to the triple of the vertices
Y1;Ya; Y2, Since the vertices y;;ys are nonadjacent and ysy, 2 D. | otice that the arc y,y3
cannot be inserted into C and hence di (y,; C) +d*(ys; C) = k (by Lemma 3.3). Therefore,
by Ao and Claim 2(iii), we obtain

3n j 2= d(y:) +d(ys) +di(y:) +d*(ys) ® 3k +4=3nj 5

which is a contradiction. Therefore ysy, 2 D.

Similarly we obtain a contradiction if we assume that y,y; 2 D. Therefore, y,y; 2 D.
Claim 6 is proved.

Claim 7: If t , 3, then yyy; 2 D.

Proof of Claim 7: Suppose, on the contrary, that t , 3 and yiy; 2 D, i.e, yi;y; are
nonadjacent. Then by Claim 6, t = 3 and y3y»;Yy.y1 2 D. Without loss of generality, assume
that x;y; and y3x, 2 D (since , = 1). | oticethat d(y;);d(ys) = n j 1 (by Lemma 3.1) and
hence, d(y;) +d(y3) = 2n j 2. We will distinguish two cases, according as there is an arc

If | = 3, then from di (Xxs; fy,; y30) = Ot followsthat y;x3 2 D. From thisit iseasy to see
that d(xy; fy1;y209) = 0. Since neither y; nor y; and X, can be inserted into C[Xs; X;] using
Lemma 3.2 we obtain that d(y,), d(ys) and d(x;) = n j 1. | ence d(yi) +d(y3) = 2n j 2and
d(y1) +d(xz2) = 2n j 2, which contradicts Lemma 3.5 since y;;y3 and y;; X, are two distinct
pairs of nonadjacent vertices.

| ssume, therefore, that | , 4. If d"(x;;1;R) = O, then d(x;;1; R) = 0 by minimality
of I. Therefore, Claim 4 implies that there is no x; 2 C[xz; ;2] such that d*(x;;R) , 1.
Therefore, by the minimality of | we have

A(R;C[x3;X;1]) =; and d"(x2;R) =0;
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which contradicts Claim 3(ii) since x;y; 2 D and di(x;;R) , 1. | ssume, therefore, that
d*(x1;1;R) » 1. Without loss of generality, we may assume that yyx; 2 D and x;;1y¢ 2 D.
It is easy to see that yr & Vg, Vr; Yy 2 Ty1;y30 (i.e, X;1y2 2 D and y,x; 2 D) and the
vertices X;1; Xy are nonadjacent.

I ssume rst that | = 4. If y; = y; (i.e, Y3X4 2 D), then X1y1y2YsXs::: Xn;3X:1 iSacycle
of length n j 1, a contradiction. | ssume, therefore, that y, =y; and yf = s, i.e., y1X4 and
X3ys 2 D. Then the vertices x,;y, are clearly nonadjacent and X,y; 2 D. Since y1x4 2 D
and di(xs; R) = 0, Claim 4(ii) impliesthat x,y; 2 D. Therefore, d(x;; fy1;y.g) = 0. | otice
that x, cannot be inserted into the path C[xy4; X;] (for otherwise in D there is a cycle of
length n §j 3 which does not contain the vertices y,; y3; X3 but this contradicts Claim 6 since
Y2; X3 are nonadjacent and ysx; 2 D). | ow by Lemma 3.2 and the above observation we
obtain that

d(xz) = d(X2; C[X4; X1]) + d(X2; R) +d(x2; fX3g) = n i L.
Therefore, d(y;) +d(xz) = 2n j 2, which together with d(y;) + d(ys) = 2n j 2 contradicts
Lemma 3.5, since y;; X, and y;;y; are two distinct pairs of nonadjacent vertices.

I ssume next that | , 5. From the minimality of I, di(x;;1; R) = 0 and Claim 4(ii) it
follows that d(x;;2;R) = 0. Therefore, thereis no x; 2 C[Xz;X;;2] such that d*(x;; R) , 1,
in particular, x,y3 2 D. Therefore

A(C[Xs;X1;2;R) =; and d(x2;R) =1,

(only ysx, 2 D). Sinceyy & y, and X;;1;Yy are nonadjacent, we have d(x;;1; R) = 1 (only
Xi;1Ys;4 2 D). By the above observation we have

d(y1; C[X2; Xi;52]) = d(ys; C[Xs; Xi;32]) = O (10)

Since y; cannot be inserted into C, xoy3 2 D and di(x;;1; R) = 0, using (10) and Lemma
3.2 we obtain that d(y;;C) = k j | + 3. This together with d(y:;R) = 2 implies that
d(y;) =k i 1 +5.

extended path P.. Therefore, d(zi;C) = k+d j 1 and hence, d(z;) = k+d for all i 2 [1;d].
Thus we have d(y;) + d(zj) = 2n j 3 and d(ys) +d(zj)) = 2n j 3 since there is a vertex z;
which is not adjacent to y; or y;. This together with d(y;) + d(y3) = 2n j 2 contradicts
Lemma 3.5 since yy; z; (or ys;zi) and y;;ys aretwo distinct pairs of nonadjacent vertices. In
each case we have a contradiction. The discussion of Case 7.1 is completed.

Without loss of generality, we may assume that A(fXs;Xs; ::5;%g ¥ R) = ; (for
otherwise, we consider the converse digraph of D for which the considered Case 7.1 holds).

ys. | otice that
d(y;) = d(yy; R) +d(y1;C) = 2+ d(y1; FX1;X20) = 5;

d(ys) = 5 and d(xx) = d(x;C) = 2n j 8 Therefore d(xx) + d(y;) = 2n j 3 and
d(xk) +d(ys) = 2n j 3, which contradicts Lemma 3.5. Claim 7 is proved.
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Claim 8: If t , 3 and for some i 2 [1; k] Xjy1, then A(R ¥ C[Xi+2; Xi;1]) = ;-

Proof of Claim 8: Suppose that the claim is not true. Without loss of generality, we
may assume that x;y; 2 D and A(R ¥ TXx3;X4;:::;Xc0) & ;. Then there is a vertex x.
with | 2 [3;K] such that di(x;;R) , 1and if | , 4, then A(R X3 Xq5 0005 X1510) =
We have that y;y; 2 D (by Claim 7). In particular, yiy1 2 D implies that hRi is strong
On the other hand, by Claim 5(i), d¥(x3;R) = 0 and hence, | , 4. From x;y; 2 D it
follows that there exists a vertex x, with r 2 [1;] j 1] such that d*(x;R) , 1. Choose
r with these properties as maximal as possible. Let x.yf and yg,x; 2 D. | otice that in
hRi there is a (Yr;Yy)-path since hRi is strong. | sing Claims 4(i) and 3(ii) we obtain
that r =1 j 1. Then yf &y, and in hRi any (ys;Yy)-path is at amiltonian path. Since
hRi is strong, from d*(x; 1,R) =0, di'(x;R) , 1 and from Claim 3(i) it follows that
A(Fxz2; X300 %1;20 ¥ R) = ;, in particular, d*(xz; R) = 0. By the above observations we

Po := C[x;X1] with the vertices Xz;Xs;:::;X1;1 @ much as possible. Then some vertices
21;22;:00,2q 2 TX2;X3;:00, %1310, where d 2 [1 | § 2], are not on the extended path P,
(for otherwise, since in hRi there is a (Yr; Yg)-path, using the path P.;, or P, we obtain a
non-t amiltonian cycle longer than C). By Lemma 3.2, for all i 2 [1; d] we have

d(zi;C) =k+d j1 and d(z)=d(z;C)+d(z;R) =k+d j1+d(z;R): (12

I ssume that there is a vertex z; & X;1. Then, by (11), d(z;;R) = 1 (since d(Xz; R) = 1).
| otice that y;, z; and y,, z; are two distinct pairs of nonadjacent vertices (by (11)). Since
neither y; nor y, can be inserted into C[x;;1;X1] and yi1X;;1 2 D, y»X1;1 2 D, by Lemma
3.2(ii) and (11) for j = 1 and 2 we obtain

d(y;; C) = d(yj; Clxizuixa]) = k i I +3: (13)
In particular, by (2),
d(y:) =d(y;;C) +d(y,R) =k jI1+3+njk=njl+3
This together with (12) and d(z;; R) = 1 implies that
d(y:)) +d(zi) = 2n § 2

sincek®*nj3andde=l j2 Therefore by Lemma 3.5, d(y,) +d(z;) » 2n j 1. | ence, by
(2) and (12) we have

2n j 1=d(y;) +d(z;)) = n+d+d(z;R) +d(yz; C):

From this, d = | j 2and (13) it follows that d(y,;C) =k j 1 +3,d(zi;R) =1andk=nj 3.
Then z; = X, and yix; 2 D (by (11) and d*(Xz; R) = 0). Therefore, X1y, 2 D. From this,
YoX;1 2 D and d(y,; C) = k j | + 3, by Lemma 3.2(iii), we conclude that y, can be inserted
into C, which is contrary to our supposition that C is a longest non-i amiltonian cycle.

| ow assume that thereisno z; & Xx;;1. Thend = 1, z; = x;;1 and there is an (X; X1)-
path with vertex set V (C) j X;10. Therefore di(x; fy2;ys;: ::;ytg) 0 (since X1y, 2 D)
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and y;x; 2 D. From this we have, d(x;;1; R i fy.g) = 0 sincey;y; 2 D and | is minimal,
in particular, the vertices y; Xj;1 are nonadjacent. This together with (12) implies that
d(xi;1) = k+ 1 (only X;;1y2 2 D ispossible). | otice that neither y; nor the arc y;y; can be
inserted into C, and therefore, by Lemmas 3.2, 3.3 and by (1), (2) we obtain that d(y;) = n
and di(y;) +d*(y;) = k+ 2. Sincey,y; 2 D and y;; X;;1 are nonadjacent we have that the
triple of the vertices yi; X;;1, y1 satis es condition Ag. Therefore

3n § 2= d(xi;1) +d(y) +d¥(y) +d"(y2) = 3n i 3

sincek = n j 3, which is a contradiction. Claim 8 is proved. 4

Claim 9: If t , 3, X1y; and y;X, 2 D, then di(x;;R) = 0.
Proof of Claim 9: | ssume that di(x;;R) , 1. By Claim 7, yty; 2 D. | ow using
Claims 5(ii) and 8, we obtain that d*(xx;R) = 0 and

AR ¥ TX3;X4;:005%Q) = ;- (14)

d(y2; C) = 1 (only y,x; 2 D is possible) and d(xs; R) = 0. Therefore, by (2),
d(yz) +d(x3) = d(yz; C) +d(y2;R) +d(x3;R) +d(x3;C) ®=n+k«2nj 3

and d(y,) + d(x,) = 2n j 2, which contradicts Lemma 3.5 since y,; X3 and y,; X, are two
distinct pairs of nonadjacent vertices. This completes the proof of Claim 9. 4

and di(x;;R) = 0 by Claim 8 and Claim 9, respectively. This together with yix, 2 D
contradicts Claim 3(i). Claim 10 is proved.

| ow we are ready to complete the proof of Theorem 1.10 for Part 1 (when k « n j 3,
i.e, t, 3). By Claim 7, y;y; 2 D. Without loss of generality, we may assume that x;y; and
yiX2 2 D since , = 1. Then from Claims 8, 9 and 10 it follows that

AR ¥ X3 Xq;: 00 Xk X19) = A(TX3; X500 xkg ¥ R) = 5
From this and
we obtain that x4;y, and X;; y; aretwo distinct pairs of nonadjacent verticesand d(y,;C) = 1,
d(y C) = 2, d(x1;R) = 1. Therefore, d(y2) = n j k+2 d(y) = nj k+2 (by (2)
and d(x;) = 2k j 1. The last three inequalities imply that d(y,) + d(x;) = 2n j 2 and

d(yy) + d(x1) = 2n j 2, which contradicts Lemma 3.5 and completes the discussion of Part
1

art2. k=nij2 ie,t=2
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For this part ~rst we will prove Claims 11-16 below.

Claim 11: If xjyf 2 D and y,y; 2 D, where i 2 [1;n j 2] and T 2 [1; 2], then there is

contains no cycle of length n j 1, using Lemmas 3.2 and 3.3, we obtain that

di(yr) +d"(y2) =ni2 and d(yf) =nijl+2 (15)

path P.. Therefore, by Lemma 3.2, d(z;) = d(z;;C) +d(z;; fys;¢9) = n+d j 1. | ow, since
the vertices ys; z; are nonadjacent and y,y; 2 D, by condition Ay and (15) we have

3nj 2=d(ye) +d(z1) +di(yr) +d¥(y2) =3n i 3;
a contradiction. Claim 11 is proved.

Claim 12: y,y; 2 D (i.e., if k =n j 2, then hv (D) j V(C)i is strong).

Proof of Claim 12: Suppose, onthecontrary, that y,y; 2 D. Without loss of generality,
we may assume that x;y; 2 D and the vertices y;; X, are nonadjacent. Then y,x3 2 D and
since D contains no cycle of length n j 1, using Lemma 3.3 for the arc y,y, we obtain that

di(y) +d"(y2) = ni 2 (16)
Case 12.1. d*(y1; C[Xs; Xn;2]) » 1.
Let x5, | 2 [3n j 2], be chosen so that y;x;, 2 D and | is minimum, i.e,

d*(y1; C[Xz2;x1;1]) = 0. It is easy to see that the vertices y; and X;;; are nonadjacent.
By Claim 11, we can assume that | , 5 (if | = 4, then d(y1; C[X2; Xi;1]) = O, a contradic-
tion to Claim 11) and d*(y;; C[Xs; Xi;2]) » 1. It follows that there exists a vertex x, with
r 2 [3;1 j 2] such that x,y; 2 D and d(ys; C[Xr+1;Xi1;1]) = 0. Consequently, for the vertices
y1, Xr and x; Claim 11 is not true, a contradiction.

Case 12.2. d*(ys1; C[Xs;Xn;2]) = 0.

Then d*(y;; C[X2; Xn;2]) = 0 and either y;x; 2 D or y;x; 2 D.

Subcase 12.2.1. y;X; 2 D.

Then Xn;2y1 2 D and hence, theverticesys; Xn; 2 arenonadjacent. Therefore, thetriple of
theverticesys; Xn;2, Y2 Satis esthecondition Ag. Claim 11 impliesthat d¥ (y;; C[X2; Xn;2]) =
0. This together with d*(y;;C[X2;Xn;2]) = 0 and y,y; 2 D gives d(y;) = 3. Clearly,
d(x,) = 2n j 4 and hence, for the verticesy;;y»; X, by condition A, and (16) we have,

3n j 2=d(y) +d(x2) +di(y;) +d"(y2) =3n i 3

which is a contradiction.

Subcase 12.2.2. y;X; 2 D.

Then d*(y;;C) = 0, d*(y1) = 1 and d*(y,;C) , 1 since D is strong. Without loss of
generality, we may assume that di (y,; C) = O (for otherwise for the vertex y, in the converse
digraph of D we would have the above considered Case 12.1 or Subcase 12.2.1). Since the
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triple of the vertices y;;y»; X3 satis es the condition Ag, d(y:) = n j 2, d(xX;) = 2n j 5and
(16), it isnot dix cult to show that n , 7.

Suppose rst that yo,x; 2 D. Then Xn;2y1 2 D and hence, the vertices X,;2;y1 are
nonadjacent.

Let for some | 2 [3n j 3] xiy1 2 D and di(y;;C[Xj+1;Xn;2]) = 0.  Then
d(y1; C[Xi+1; Xn;2]) = 0 and d(y:) = | since d*(y;;C) = 0 and X,;y; are nonadjacent.

are not on the extended path P.,. For a vertex z; & x; by Lemma 3.2 we obtain that
d(z;) = d(z;;C) + d(z;; fy.g) = n+d j 1. Therefore, since y,y; 2 D and the vertices z;;y;
are nonadjacent, by condition Ay and (16), we get that

3nj2=d(y;) +d(zi) +di(ys) +d(y2) = 3n i 4

which is a contradiction.

Let now x;y; 2 D for all | 2 [3;n j 2], i.e, di(y;;C[Xs;Xn;2]) = 0. Then from
d*(y1;CX2; Xn;2]) = 0, yixs 2 D and Xn;2y2 2 D (since di(y,; C) = 0) it follows that
d(y1) =2 and d(xn;2) = 2n § 5. From this, since the verticesy;, Xn;2 are nonadjacent and
y,y1 2 D, by condition A, and (16) we have that

3n i 2= d(ys) +d(Xn;2) +dF(ys) +d*(y2) = 3n i 5;
which is a contradiction.

Suppose next that y,x, 2 D. Then d(y;; fXo; X3g) = 0, sincedi(y,;C) = 0.
Let for somel 2 [4;n§ 2] y,x 2 D and d*(y2; C[X2; Xi1;1]) = 0. Thend(yz; C[X2;X1;1]) =0
and the vertices y;, X;;2 are nonadjacent since d*(y;; C[Xz; Xn;2]) = 0. It is easy to see that

Thus, we have that A(R;C[Xr+1;Xi;2]) = ;. | otice that d(y.) = n j | + 1 since
di(y2;C) = 0 and d(y,;C[Xz;Xi;1]) = 0. We extend the path Py := C[x;;X,] with
the vertices X,41; Xr+2;:::;X1;1 @ much as possible. Then some vertices z;;z;;:::;24 2

Lemma 3.2 for z; & x;;1 we have, d(z;) = n+d j 3. | ow by condition A, and (16) we obtain
3n i 2=d(yz) +d(zi) +d*(y) +d"(y2) <3n i 3;

a contradiction.

X2; Y2 are nonadjacent. By condition Ay we have
3n i 2= d(y2) +d(x2) +di(ys) +d"(y2) <3n i 3;

a contradiction. Claim 12 is proved. o

Claim 13: Forany i 2 [L;n j 2] and T 2 [1; 2] the following holds

i) di(ye; TXi;15%i09) = 1 and ii) d*(ye; FXi;1;%i9) = 1.

Proof of Claim 13: The proof is by contradiction. By Claim 12, y,y; 2 D. Without
loss of generality, we may assume that X,;sYy1, Xn;2Y1 2 D and y;; X; are nonadjacent. It is
easy to see that d™(yz; fX1;X20) = 0, Y1Xn;2 2 D and y;x, 2 D (for otherwise, if y1x; 2 D,
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then Xn;2Y1X2X3: 11 Xn;3 Xnj2 ISacycle of length n j 2 for which hfy,; x;gi isnot strong, a
contradiction to Claim 12). Therefore, A(R ¥ fx;;X,g) = ;. | gain using Claim 12, it is
not di+ cult to check that n , 6.

I ssume rst that A(R ¥ TX3;X4;::0;Xn;39) & ;5. | ow let x,, | 2 [3;n j 3], bethe

it follows that y,Xn;2 2 D. Then Xn;3y2 2 D and Xn;4y1 2 D. | ow using Claim 12 we
obtain that d(y2; fXn;4; Xn;39) = 0. Sincedi(Xn;3; R) = 0and y2Xn;2 2 D, from Claim 3(i)
it follows that d*(Xn;4;R) = 0. Therefore, d(Xn;4;R) = 0. If A(FXy;Xz;::0;Xn;50 ¥

that A(fX1;Xz; 1115 Xn;49; R) = 5 and di(Xn;3;,R) = 0. Then d(y1) = 4, d(y2) = 4 and
d(X;) = 2n j 6. From thisit follows that d(y;) +d(X;) = 2n j 2and d(y,) +d(X;) = 2n j 2
which contradicts Lemma 3.5. This contradiction proves that di(y¢; fXi;1;Xig) = 1 for all
i2[Lnj2and f 2[1;2]. Similarly, one can show that d*(ys; fXi;1; Xig) = 1. Claim 13 is
proved. o

Claim 14: If x;y¢ 2 D (respectively, yex; 2 D), then d(ys; TXi+29) 6 O (respectively,
d(ys; TXi;20) & 0), where 1 2[1;n j 2] and T 2 [1; 2].

Proof of Claim 14: Suppose that the claim is not true. By Claim 12, y,y; 2 D.
Without loss of generality, we may assume that Xn;2y1 2 D and d(y:; fx.g) = O, i.e,
the vertices y; and x, are nonadjacent. Claim 13 implies that the vertices y;;x; also are
nonadjacent. Thus, d(y;; fX1;X20) = 0. | otethat y,x, 2 D and hence, di(x;;R) =0. | ow
it is not dix cult to cheek that if n = 5, then d(y;) +d(x;) = 8 and d(y;) +d(x;) = 8, a
contradiction to Lemma 3.5.

I ssume, therefore, that n , 6 and consider the following cases.

Then there is a vertex x; with I 2 [3;n j 3] such that di(x;;R) , 1 and A(R I

and the case | , 4 separatély.

I ssumethat | = 3. Then y,x3 2 D or y;x3 2 D.

Let yox3 2 D. Then the vertices y,; X, are nonadjacent. Since the vertices y;; X, are
nonadjacent Claim 12 implies that xi;y, 2 D (for otherwise Xn;2X1Y2X3::: XnjaXnj2 IS @
cycle of length n j 2 which does not contain the vertices y;; X, and hfy;;X,gi is not strong,
a contradiction to Claim 12). This contradicts Claim 3(ii) because of d(x,;R) = 0 and
d*(xy;R) =0.

Let now y1x3 2 D and y,x3 2 D. Then it is easy to see that X1y, 2 D and y,x; 2 D.
From this and Claim 12 implies that neither x; nor X, can be inserted into C[Xs; Xn ;2]
| otice that if Xy, 2 D, then Xn;2%2 2 D, and if y,x; 2 D, then x;x3 2 D. | ow using
Lemma 3.2, we obtain that d(y;), d(xX;) and d(x,) = n j 1sinced(y;; fXi;X,g) = 0. Therefore

d(y:)) +d(X1) =2n i 2 and d(y:) +d(x2) = 2n i 2;
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which contradicts Lemma 3.5 since y;;X; and y;; X, are two distinct pairs of nonadjacent
vertices. This contradiction completes the discussion of Case 14.1 when | = 3.

I ssume that | , 4 Let yox; 2 D, where g 2 [1;2]. Then, by the minimality of I,
the vertices yg; X1;1 are nonadjacent, ys;¢Xi;1 2 D and Xj;2Y¥3;4 2 D. 1 ence, by Claim
12 we get that X;2yy 2 D. From the minimality of | and di(x,; R) = 0 (for | = 4) it
follows that X;, is not adjacent to y; and y,, i.e, d(X;;2;R) = 0. This together with
di(x2; R) =di(x1;1; R) =0, the minimality of | and Claim 3(i) implies that

A(R; FXxp; X3;::1;%1;20) =5 and d*(x;;R) =0

(ifd*(x1;R) 5, 1, thenl , 5andthereisan x, withr 2 [1;1 j 3] such that d*(x;1; R) = Oand
A(R; C[Xr+1;X153]) = ; but this contradicts Claim 3(i)). If di(x;; R) =0or d*(x;;1;R) =0,
then d(x;; R) = 0 or d(x;;1; R) = O, respectively. This together with A(R; C[X2; Xi;2]) =
contradicts Claim 3 since d*(Xn;2;R) -, 1 and di(x;;R) , 1. | ssume, therefore, that
di(x;;R) , 1and d*(x;;1;R) » 1. It followsthat y,x; 2 D sincey;x; 2 D.

I ssume rst that yg =Yy,. Then X;;1y1 2 D. Sincey;x;;1 2 D, X1y, 2 D and

d(y1; C[Xa; Xi;32]) = d(y2; C[X2; X1;1]) =0
using Lemma 3.2(ii) we obtain that
d(y1) = d(y1; fy29) + d(y1; C[Xi1; Xnz2]) = n j 1 +2 and

d(yz2) = d(yz; fy19) +d(y2; C[xi;xq]) = nj 1 +2 (17)

extended path P, since otherwise P.;; or P. together with the arcs X,;2y1;y1y2 and y,X;
forms a cycle of length n §j 1. Therefore, by Lemma 3.2, we have that d(z;;C) = n+d j 3.
If thereisa z; 2 fXy;X1;10, then d(z;) = n+d j 3 and by (17),

d(zi) +d(y1) =2n j 2 and d(z;) +d(y:) =2nj 2

which contradicts Lemma 3.5 since z; is not adjacent to y; and y,. Therefore, assume that
Tz1;2,0 = £X1;%;10 (d = 2). Then P, (e = 1§ 3 , 1) is an (X;; Xn;2)-path with vertex
set V(C) i fX1;X1;19. Thus, we have that y,Pcy1Y, is a cycle of length n j 2. Therefore,
by Claim 12, x;X;;1 2 D, and hence, X;X;;1Pe;1Y1Y2X1 is a cycle of length n j 1, which
contradicts the initial supposition that D contains no cycle of length n j 1.

I ssume second that y; = y;. Then by the above observation we conclude that x;;1y, 2
D and d(y:;C[x1;X1;1]) = 0. | sing Lemma 3.2, we obtain that for this case (17) also
holds, since x;y, 2 D and y,X;;1 2 D. | gain we extend the path C[x; Xn;2] With vertices

that C’:=y;Pey; isacycleof length n j d j 1 with vertex set V (C) [ fy.g i fz1;z¢g. From
Claim 12 it follows that d = 2, i.e., z;; 249 = X3;X;;10 (since X1y, 2 D and yx;;; 2 D).
I owfroml , 4,d=2, (17) and d(z;) = n+d j 2 we obtain that

d(yp) +d(x1) = 2n § 2 and d(y1) +d(Xi;1) = 2n j 2
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which contradicts Lemma 3.5, since y1; X3 and y1; X;;1 are two distinct pairs of nonadjacent
vertices.

Then A(R ¥ fXn;2:X10) & ; since di(x2; R) = 0 and D is strong, and yi; Xn;3 are
nonadjacent (by Claim 13). For this case we distinguish three subcases.

Subcase 14.2.1. y,Xn;2 2 D.

Then, using Claim 13, it is easy to see that X,;s3;y. are nonadjacent. There-
fore, d(Xn;35R) = 0.  This together with y,Xn;2 2 D and Claim 3 implies that
A(fX1; %2000 %0339 T R) = ;5. Therefore, d(R;fXz;Xs;:::;Xn;39) = ; and d(yi),
d(y2) = 4 (since y,x; 2 D by Claim 13) and d(Xn;3) = 2n j 6. From this it follows
that d(y1) + d(Xn;3) = 2n j 2 and d(y2) + d(Xn;3) = 2n j 2, which contradicts Lemma 3.5.

Subcase 14.2.2. y,Xn;2 2 D and y,x; 2 D.

Then using Claim 13 it is easy to seethat y, and X,;» are nonadjacent.

Let Xn;3y2 2 D. Then yiXn;2 2 D (by Claim 12). | sing Claims 12 and 13 we obtain
that X, ;4 is not adjacent toy; and y,. Sincedi(X,;3;R) = 0 and y;Xn;2 2 D, from Claim

d(y1) =d(y2) =4 and d(xz) = 2n j 6. From these it follows that
d(y:) +d(Xz) =2n j 2 and d(y;) +d(x2) =2nj 2

which contradicts Lemma 3.5 since X, y; and X,;y, are two distinct pairs of nonadjacent
vertices.

Let now Xn;3y2 2 D. Then y,; Xn;3 are nonadjacent and hence, d(xn;3;R) = 0.
| ow, since yi1Xn;2 2 D or di(Xn;2;R) = 0 and y,x; 2 D, from Claim 3 it follows that

d(ys; C[X1; Xnj3]) = d(y2; C[X2; Xnji2]) = 0;

d(y1) = 4, d(y,) = 4and d(x,) = 2n j 6. This contradicts Lemma 3.5 since X, y; and X»; Y-
are two distinct pairs of nonadjacent vertices.

Subcase 14.2.3. y2Xn;2 2 D and y,x; 2 D.

Then y;1X,;2 2 D (since D is strong), the vertex y; is not adjacent to the vertices X,; s,
Xnja @nd Xn;4y2 2 D, i.e, the vertices y,; Xn; 4 also are nonadjacent. | sing Claim 3, we can
assume that A(C[X1;Xn;4] ¥ R) = ;. Therefore, d(y;:) = 4, d(y2) = 3and d(x;) = 2n j 6.
This contradicts Lemma 3.5 since x; is not adjacent to y; and y,. This completes the proof
of Claim 14.

Claim 15: If xjy¢ 2 D and the vertices y¢; Xj+1 are nonadjacent, then the vertices
Xi+1;Y3; ¢ are adjacent, where 1 2 [1;n j 2] and T 2 [1; 2].

Proof of Claim 15: Without loss of generality, we may assume that X; = Xn;2 (i.€,
Xi+1 = X31) and yf = y;. Suppose, on the contrary, that X;;y, are nonadjacent. From
Claims 12 and 14 it follows that y;x, 2 D and x;y; 2 D. Therefore, A(R ¥ X3;X20) = ;.
If n = 5, then xxy1;X3y; 2 D which contradicts Claim 13. | ssume, therefore, that n
6. | s D isstrong, there is a vertex x; with | 2 [3;n j 2] such that di(x;R) , 1 (say
ygXi 2 D) and A(R ¥ C[xy;X;1]) = ;. Then the vertices x,;1;Yy are nonadjacent and
d(Xi;2;R) = 0 (by Xi;2Y3;¢4 2 D and by Claim 12). | ow, since X,;2y:1 and X;y;, 2 D, there
exists a vertex Xy 2 C[Xn;2; Xi;3] (if 1 =3, then Xn;2 = Xj;3) such that d*(x; R) , 1 and
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A(R; C[Xr+1;X1;2]) = ;. This contradicts Claim 3 since di(x;;1;R) =0and di(x;R) , 1.
Claim 15 is proved.

Claim 16: If xjy; 2 D, where i 2 [1;n § 2] and j 2 [1; 2], then y;Xi+2 2 D.

Proof of Claim 16: Without loss of generality, we may assume that x; = Xn;2 and
Yj = y1. Suppose that the claim is not true, that is X,;2y1 2 D and y;x, 2 D. Then, by
Claims 13 and 14, the vertices y;; X; are nonadjacent, x,y; 2 D (hence, n , 6) and y;; X3
are also nonadjacent. From this, by Claim 15 we obtain that the vertex y, is adjacent to the
vertices X; and x3. Therefore either y,x3 2 D or Xzy, 2 D.

Case 16.1. y,x3 2 D.

Then X;;y, are nonadjacent (by Claim 13), x,x; 2 D and x;y, 2 D by Claim 12 (for
otherwise D would have a cycle C° of length n j 2 for which hv (D) i V (CYi isnot strong).
| oticethat y,x; 2 D (by Claim 15). Since neither y; nor y, can beinserted into C, y;x, 2 D
and y;; X; are nonadjacent (respectively, x;y, 2 D and y,; X, are nonadjacent) using Lemma
3.2(ii), we obtain that

dly) *=nil and d(y)) =nil (18)

It is not di+ cult to see that Xn;2X2 2 D and x;x3 2 D (for otherwise D contains a cycle
of length n j 1). Therefore, since neither x; nor X, cannot be inserted into C[Xs; Xn;2]
(otherwise we obtain a cycle of length n j 1), again using Lemma 3.2(ii), we obtain

dx;) ®*njl and d(xy) =nijl (19)
It iseasy to check that n , 7.

Remark: Observe that from (18), (19) and Lemma 3.5 it follows that if x; & x; and
y1; Xj are nonadjacent or X; & X, and X;; Yy, are nonadjacent, then d(x;) , n.

I ssume “rst that d*(y;;C[Xs4;Xn;2]) » 1. Let xi, | 2 [4n j 2], be the rst vertex
after x3 that y;x; 2 D. Then the vertices y; and Xx;;1 are nonadjacent. Therefore, y;
and X;, are adjacent (by Claim 14) and hence, X;;2y1 2 D because of x,y; 2 D and
minimality of | (I § 1 & 4 by Claim 14, since x,y; 2 D). Since x;;; cannot be inserted
into C[x; Xi;2], using Lemma 3.2 and the above Remark, we obtain that d(x;;;) = n and
hence, d(y:) = n j 1 (by Lemma 3.5). This together with d(y;; X1; X2; X3;¥29) = 3 implies
that d(y:; C[Xs; Xn;2]) = n i 4. 1 gain using Lemma 3.2, we obtain that y;x4 2 D (since
JC[Xa; Xn;2ll = n i 5). Thus, y;C[X4; X,]y1 is a cycle of length n j 2. Therefore, xzy, 2 D
(by Claim 12), y;xs 2 D and the vertices y,; X, are nonadjacent (by Claim 13). From
y1Xs 2 D (by Lemma 3.2) we obtain that d(y;; C[Xs; Xn;2]) = n i 6. Therefore x,y; 2 D and
d(y1; C[Xs; Xn;2]) =N i 6. | ow it is easy to see that y;;xs are nonadjacent (by Claim 13)
and y,; Xs are adjacent (by Claim 14). Therefore, d(ys1; C[Xs;Xn;2]) = n i 6 and y1xs 2 D
(by Lemma 3.2), y,Xs; Xsy, 2 D (by Claim 12), y;x; 2 D (by Claim 13). One readily sees
that, by continuing the above procedure, we eventually obtain that n is even and

From Claim 12 it follows that x;ixi;1 2 D for all i 2 [4,n j 2] and X;x; 2 D. It iseasy to
see that x;x3 2 D and X3xs 2 D. Therefore, since X3 cannot be inserted into C[Xs; X1], by
Lemma 3.2, we have d(xs3; C[Xs;X1]) = n j 6. Thistogether with d(x3) , n (by Remark)
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implies that d(xs; TX2; X4;Y29) = 6. In particular, Xsx, 2 D. | ow we consider the vertex
Xnj2- | otethat d(Xn;2) » n (by Remark), Xn;2%2 2 D and Xn;4Xn;2 2 D. From this it
is not dix cult to see that d(Xn;2; C[X2; Xnz4]) = N i 6 and Xi1Xn;2 2 D. It follows that
Xni2Xni3 . XaX3Y2X1Xn;2 IS @ cycle of length n j 2, which does not contain the verticesy,;
and X,. This contradicts Claim 12, since y;X, 2 D (by our supposition), i.e., hfy;; X,gi is
not strong.

I ssume next that d*(y1; C[Xs; Xn;2]) = 0. Then from Claims 13 and 14 it follows that

N i(y1) = fys; %o, Xa; 155 Xn520  and  N™(y;) = fy.0: (20)

It is easy to seethat Xn;3y2 2 D and hence, y.Xn;3 2 D (for otherwise if X,;3y2 2 D, then
Y2C[X1; Xn;3]y2 IS a cycle of length n j 2, but hfxn;2;y101 is not strong, a contradiction to
Claim 12). By an argument similar to that in the proof of (20) we deduce that

Thus we have that y;y,C[Xs; X,]y: is a cycle of length n j 2 and x3 cannot be inserted into
C[Xs; X2]. Therefore, by Lemma 3.2(ii), d(X3;C[Xs;X2]) = n j 4 since XzXs 2 D. Thisto-
gether with d(xs; fX4;Y1;Y29) = 3 implies that d(x3) = n j 1 which contradicts the above
Remark that d(x3) , n.

Case 16.2. y,x3 2 D.

Then, as noted above, X3y, 2 D. Therefore d(y,; tX2;X4g) = 0 (by Claim 13 and y,x, 2
D), yiX4 2 D (by Claim 12), x4y; 2 D (by Claim 15), the vertices xs;y; are nonadjacent
and the vertices y,; X5 are adjacent (by Claim 15). Since X3y, 2 D, y1X4 2 D and y,; X5 are
adjacent, from Claim 12 it follows that y,xs 2 D and Xxsy, 2 D. For the same reason, we
deduce that

which contradicts that D is strong. This contradiction completes the proof of Claim 16.

We will now complete the proof of Theorem by showing that D is isomorphicto K ,. _,.
Without loss of generality, we assume that X,;2y: 2 D. Then using Claims 12, 13, 14 and
16 we conclude that y;; x; are nonadjacent (Claim 13), y;1x, 2 D (Claim 16), X;Y,; Y.X; 2 D
(Claim 12), x,;y, also are nonadjacent (Claim 13), y,x3 2 D (Claim 16) and xyy; 2 D
(Claim 12). By continuing this procedure, we eventually obtain that n is even and

it follows that D is isomorphic to K;._,..,. This completes the proof of Theorem 1.10.
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5. Concluding Remarks

|

It amiltonian bypass in a digraph is a subdigraph obtained from at amiltonian cycle of D
by reversing one arc.

| sing Theorem 1.10, the rst author has proved that if a strong digraph D of order n , 4
satis es the condition Ag, then D contains at amiltonian bypass or D is isomorphic to one
tournament of order 5.
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O npeAraMUABTOHOBBEIX KOHTYPaX B FaMUABTOHOBEIX
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C. Aap6unsan u U. Kapanersan

AHHoTanus

OpueHTUPOBAHHBIN KOHTYP, KOTOPHIM COAEP’KUT BCE BEPIIUHBI OPUEHTUPOBAHHOT'O
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Abstract

A tree with at most k leaves is called a k-ended tree. Let tx be the order of a
largest k-ended tree in a graph. A tree T of a graph G is said to be dominating if
V(G j T) is an independent set of vertices. The minimum degree sum of any pair
(triple) of nonadjacent vertices in G will be denoted by %, (%3). The earliest result
concerning spanning trees with few leaves (by the author, 1976) states: £) if G is a
connected graph of order n with %, , n j k+ 1 for some positive integer k, then G has
a spanning k-ended tree. In this paper we show: (i) the connectivity condition in £)
can be removed; (ii) the condition %, , n j k+ 1 in ) can be relaxed by replacing
n with te4q; (iii) if G is a connected graph with %3 , tc+; i 2k + 4 for some integer
k , 2, then G has a dominating k-ended tree. All results are sharp.

Keywords: Hamilton cycle, Hamilton path, Dominating cycle, Dominating path,
Longest path, k-ended tree.

1. Introduction

Throughout this article we consider only nite undirected graphs without loops or multiple
edges. The set of vertices of a graph G is denoted by V (G) and the set of edges by E(G).
I good reference for any unde ned termsisin [1].

For a graph G, we use n, + and ® to denote the order (the number of vertices), the
minimum degree and the independence number of G, respectively. For a subset S g V(G)
we denote by G[S] the subgraph of G induced by S. If ® , k for some integer k, let %, be
the minimum degree sum of an independent set of k vertices, otherwise we let ¥, = +1..

If Q isapath or acyclein agraph G, then the order of Q, denoted by jQj, is jV (Q)j.
Each vertex and edge in G can beinterpreted as simple cycles of orders 1 and 2, respectively.
The graph G ist amiltonian if G contains at amilton cycle, i.e. a cycle containing every
vertex of G. | cycle C of G issaid to be dominating if V(G j C) is an independent set of
vertices.

We write a cycle Q with a given orientation by 5 For x;y 2 V(Q), we denote by x5y
the subpath of Q in the chosep direction from x toy. For x 2 V (Q), we denote the successor
and the predecessor of x on Q by x™ and x ¥, respectively.

I vertex of degree one is called an end-vertex, and an end-vertex of a tree is usually
called a leaf. The set of end-vertices of G is denoted by End(G) . For a positive integer k, a

~"G.G. Nicoghossian (up to 1997)
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tree T issaid to be a k-ended tree if JEnd(T)j = k. |  amilton path is a spanning 2-ended
tree. | t amilton cycle can be interpreted as a spanning 1-ended tree. In particular, K; is
t amiltonian and a 1-ended tree. We denote by tx the order of a largest k-ended tree in G.
By the de nition, t; isthe order of a longest cycle, and t, is the order of a longest path in
G.

Our starting point is the earliest sux cient condition for a graph to be! amiltonian due
to! irac [2].

Theorem A ([2]): very graph with + , 5 is Hamiltonian.
In 1960, Ore[3] improved Theorem | by replacing the minimum degree + with the arith-
metic mean %%2 of two smallest degrees among pairwise nonadjacent vertices.

Theorem B ([3]): very graph with ¥%, , n is Hamiltonian.
The analog of Theorem B for i amilton paths follows easily.

Theorem C ([3]): very graph with %, , n j 1 has a Hamilton path.

In 1971, Las| ergnas [4] gave a degree condition that guarantees that any forest in G of
limited size and with a limited number of leaves can be extended to a spanning tree of G
with a limited number of leaves in an appropriate sense. | s a corollary, this result implies
a degree sum condition for the existence of a tree with at most k leaves including Theorem
B and Theorem C as special cases for k = 1 and k = 2, respectively.

Theorem D ([4], [5], [6]): If G is a connected graph with %, , n j k + 1 for some positive
integer k, then G has a spanning k-ended tree.

t owever, Theorem | was rst openly formulated and proved in 1976 by the author [6]
and was reproved in 1998 by Broersma and Tuinstra [5]. Moreover, the full characterization
of connected graphs without spanning k-ended trees was given in [7] when %, , n j k
including the well-known characterization of connected graphswithout { amilton cycleswhen
Y%, , n j 1. This particular result was reproved in 1980 by | ara Chie [8].

The next two results on this subject are not included in the recent survey paper [9]. We
call agraph G hypo-k-ended if G has no spanning k-ended tree, but foranyv 2 V(G), G jVv
has a spanning k-ended tree.

Theorem | ([10]): For each k , 3, the minimum number of vertices (edges, faces, respec-
tively) of a simple 3-polytope without a spanning k-ended tree is 8 + 3k (12 + 6k, 6 + 3k,
respectively).

Theorem F ([11]): For each n , 17k and k , 2, except possible for n = 17k + 1, 17k + 2,
17k + 4 and 17k + 7, there exist hypo-k-ended graphs of order n.

In this paper we prove that the connectivity condition in Theorem | can be removed,
and the conclusion can be strengthened.

Theorem 1: If G is a graph with %, , n j k + 1 for some positive integer k, then G has a
spanning k-ended forest.

| ext, weshow that Theorem! can be improved by relaxing the condition %, , n j k+1
to¥% , teer 1 K+ 1
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Theorem 2: Let G be a connected graph with %, , t«+1 j k+ 1 for some positive integer k.
Then G has a spanning k-ended tree.

The graph (z + k)K; + K, shows that the bound tx+; j k+ 1 in Theorem 2 cannot be
relaxed to t j k + 1. Finally, we give a dominating analog of Theorem | .

Theorem 3: If G is a connected graph with %3 , tc.1 § 2k +4 for some integer k , 2, then
G has a dominating k-ended tree.

Thegraph (++k j 1)K, +K,;; showsthat the bound ty.; § 2k +4 in Theorem 3 cannot
berelaxed tot, j 2k + 4.

The following corollary follows immediately.

Corollary 1: If G is a connected graph with ¥%; , n j 2k + 4 for some integer k , 2, then
G has a dominating k-ended tree.

The graph (x +k j 1)K, + K,;1 shows that the bound %3 , tx+1 § 2k +4in Theorem 3
cannot be relaxed to %s , te+r § 2K + 3.

2. Proofs

Proof of Theorem 1: Let G be g graph with %, , n j k+ 1 and let Hy;::;;H,, bethe
connected components of G. Let = xPy bealongest path in Hy;. IfjPj , njk+2
then jG § Pj = n j jPj = k j 2, implying that G has a spanning k-ended forest. | ow
let jPj = njk+1 SinceP isextreme we have N(x) [ N(y) ¢ V(P). Recalling also
that %, , n j k+ 1, we have (by standard arguments) N(x) \ N*(y) & ;, implying that
G[V (P)] ist amiltonian. Further, if jV (P)j <}V (H1)j then we can form a path longer than
P, contradicting the maximality of P. t ence, jV (P)j = jV (H4)j, that is H; ist amiltonian
as well. By a similar argument, H; is{ amiltonian for each i 2 f1;:::; mg and therefore, has
a spanning tree with exactly one leaf. Thus, G has a spanning forest with exactly m leaves.

It remains to show that m « k. If m = 1 then G has a spanning 1-ended tree and
therefore, has a spanning k-ended tree. Let m , 2and let x; 2 V (H;) (i = 1;::;;m). Clearly,
X415 X253 Xm0 IS an independent set of vertices. Since d(x;) = jV (Hj)j i 1, we have

= - ¢ )
Yip @ Yoy = d(X)) = JV(H)jim=njim:
i=1 i=1
On the other hand, by the hypothesis, %, , n j k+ 1, implying that m = k j 1. [

Proof of Theorem 2: Let G be a connected graph with %, , tx.+; §j k+ 1 for some positive
integer k.

Case 1: G is Hamiltonian.
By the de nition, G has a spanning 1-ended tree T,. Since k , 1, T, is a spanning
k-ended tree.

Case 2: G is not Hamiltonian.
Let T, bea longest path in G.

Case 2.1: % , t,.
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By standard arguments, G[V (T,)] ist amiltonian. If t, < n then recalling that G is con-
nected, we can form a path longer than T,, contradicting the maximality of T,. Otherwise
G ist amiltonian and we can argue asin Case 1.

Case 2.2: ¥, = t, j 1.

If kK = 1 then by the hypothesis, %, , t,, implying that G is{ amiltonian and we can
argue asin Case 1. Let k , 2. Extend T, to a k-ended tree Ty and assume that Ty is as
large as possible. If Ty is a spanning tree then we are done. Let Ty be not spanning. Then
JENd(Ty)j = k since otherwise we can form a new k-ended tree larger than Ty, contradicting
the maximality of Ty. | ow extend Ty to a largest (k + 1)-ended tree Ty.;. Recalling that
Tk isa largest k-ended tree, we get JENd(Tk+1)j = k + 1 and therefore,

tkr1 » JTkw1) = JTo) +Tus1 § ToJ:
Observing that jT,j =t and jTx+1 § T2) » JENd(Tk+1)j § 2=Kk § 1, we get
1 » LK1, % +k;

contradicting the hypothesis. ]

Proof of Theorem 3; Let be a connected graph with %3 , tx+1 i 2k + 4 for some
integer kK , 2, and let T, = xT,y be alongest path in G. If T, is a dgminatigg path then
we are done. Otherwise, since G is connected, we can choose a path Q = wQz such that
V(T,\Q) =fwg and jQj , 3. | ssume that jQj is as large as possible. Put T; =T, [ Q.
Since T, and Q are extreme, we have N(X) [ N(y) p V(T2) and N(z) p V(T3). Let w*
be the successor of w on T,. If Xy 2 E then T; + xy j ww is a path longer than T,, a
contradiction. Let xy @ E. By the same reason, we have xz;yz  E. Thus, fXx;y;zg is an
independent set of vertices.

Claim 1: Ni(xX) \N™"(y) \N(2) = ;.
Proof: | ssume the contrary.

Case 1: v2 NT(x) \N™(y).

If v=wthen xv™ 2 E and T3 +xv™ j vv' iga path longer than T,, a contradiction.
Suppose without loss of generality that v 2 V(W™ T,y). If v=w] then T3 +xv*™ j wv j w*
isa path longer than T,, a contradiction. Finally, if v 2 V (w*2T,y) then

—+

Ta+xvi+yvi jwi jw' jww
isa path longer than T,, a contradiction.

Case 2: v2 Ni(x) \ N(z).
If v2V(xT,wi?) then
To+xvh+2zvjwh jwwi
isa path longer than T,, a contradiction. | ext, if v=wi then T, + zwi j wwi is a path
longer than T,, a contradiction. Further, if v = w then T, + xv* j ww™ is a path longer
than T,, a contradiction. Finally, if v 2 V (w*T,y) then

To+xvi+2zv i ww' jw*
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is a path longer than T,, a contradiction.

Case 3: v2 N*(y) \ N(2).
By a symmetric argument, we can argue as in Case 2. Claim 1 is proved. [

By Claim 1,
ty 5 JTaj 5 INT(X)] +INT(y)j + |N(2)] + jfzg
=d(x) +d(y) +d(z) +1 , %+ 1 (D

If K = 2 then by the hypothesis, %3 , tc+1 i 2k +4 = t3, contradicting (1). Let k , 3. If T3
is a dominating 3-ended tree then clearly we are done. Otherwise G j Tz contains an edge
and we can extend T3 to a largest 4-ended tree T, with jT4j , jT3j +2. If k = 3, then by the
hypothesis, %3 , tx+1i2k+4=14j2 Ontheother hand, by (1), t; , jT4) » JT3j+2 , ¥3+3,
a contradiction. t ence, k , 4. If T, is dominating, then we are done. Otherwise we can
extend T, to a largest 5-ended tree Ts with jTsj , jT4j +2 , jT3j + 4. This procedure may
be repeated until a dominating (r + 1)-ended tree T,,; isfound. If r + 1 « k then we are
done. Let r , k. Then
tk+1 5 ka+1j > jT3j + 2(k i 2)

o I+ 2Kk i3, tker1 +1;

a contradiction. The proof is complete. ]
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Gnudnid k-wjuwpn Ydwfupwjhl b npnihGwln owntiph dwuhG
d. LhynnnujwaG

Udthnthnid

Ownh dhy wuwmhdwl mGhgnn ququpp Yngynd b wmbpl:  QGpudmd k-hg ny wyby
wmbtpl niGtgnn ownp Yngynid £ K-wjuwpn own: Qpudmd witGuwiko K-wjwpn ownh
ququpltph pwlwyp GuGwyymui Lt te-ny: G qpudh T ownp Ynyynd E nnihGuluwm,
tipti V(G-T)-G ququwpGtph wGuwju pwqinpmb L: “thgnp, ¥%-n (%5 -n) qpupnmd ny
hwplwG qniyq (tnjuly) ququpltph wunmhdwGGiph hGupwynp wikGuihnpp gnudwnpG k:
£hy wmbplltpny Yuwjupwjhl dwnbphlG wnlsynn wikGwywn wpyniGpp (npp unnwgyty k
htinhGwyh Yynnihg 1976-hG) wlnmd £° £7J tpt n ququpwlh G Juywlygquo gqpupp
pwjwpuwpnd E % , n j K+ 1 yguwjiwGhG hGs- np dh K gpuijul wdpnne pyh hwdwn,
wyw G-G mGh k-wjuwpn YdwfupwjhG own: Lbpjuw wfuwmwlpnid wywgnmgymy L,
np £J-md Juuyuwlygquompjul wyuwjdwlp Jupbth b pwg pnnGh;: Gpypnpn wpryniGpp
£)-h nudtnugnuiG t° n-p thnfuwphGhny te+i-nd (pGnhwGpuwytiu tee; = n): Gppnpn
wpynilpp tpypnpnh wwppbpuyl £ gnihGulum K-wjupn ownbph hwdwp:  Repquo
pnnp wpynilpGhpp Gpwyw s66 pwpbuwydiwd:

O k-BUCSAYUX OCTOBHEIX U AOMHWHAHTHEIX A€PEBBIAX
XK. Hukorocsx

AHHoTanus

Aepeso c He 60aee yeM K-BrucSumMy BepIiimHaMy Ha3bIBaeTcCs K-BUCSIMM AepeBOM.
YrcAo BepIIMH MaKCUMAABHOTO K-BUCsS9ero pepeBa o6o3HadaeTcs uyepes ty. Uepes ¥,
(¥:3)0003HaYaeTCcsT MUHMMAABHAsA CyMMa CTelleHeM ABYX (TpeX) IIOIIapHO HeCMEe>KHBIX
BepuiuH. AepeBo T B rpade G Ha3biBaeTcs AOMUHAHTHBIM, ecAau V(G-T) saBasieTcsa
He3aBUCUMBIM MHOKECTBOM BepiimH. B 1976 roay AOKazaHO (@BTOPOM): £ €CAM n
BEPIIMHHBIN CBA3HBIN rpad G yAOBAETBOPSET YCAOBUIO Y1 , N j K+ 1 AAsT HEKOTOpPOTO
1eaoro uncaa K, To G copeprut K-Bucsiuoe ocToBHOe AepeBo. B HacTosieln paboTe
AOKAa3BLIBAaeTCs, YTO YCAOBHE CBS3HOCTU B 4] MOJKHO OIIyCKaTb. BTOpoil pe3yAbTaT
SIBASIETCS YCUAEHUEM ) C TIOMOIIBIO 3aMeHHI N uepe3 tyy; (HamoMHWM, 4TO tii; =
n). TIpmBOAMTCS TaKKe BepCHUsS BTOPOTO pe3yAbTaTa AAS AOMHUHAHTHBIX K-BUCSYMX
AepeBbeB. Bce pe3yabTaThl HEYAYUIIIaeMHbI.
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Abstract

The notion of positive arithmetical formula in the signature (0,=,S), where
S(x) =x+1, is defined and investigated in [1] and [2]. A multidimensional arithmetical
set is said to be positive if it is determined by a positive formula. Some subclass of the
class of positive sets, namely, the class of strongly positive sets, is considered. It is
proved that for any n =3 there exists a 2n-dimensional strongly positive set such that
its transitive closure is non-recursive. On the other side, it is noted that the transitive
closure of any 2-dimensional strongly positive set is primitive recursive.

Keywords: Arithmetical formula, Transitive closure, Recursive set, Signature.

1. Introduction

The classes of recursive sets having in general non-recursive transitive closures have been
investigated in the theory of algorithms since the first steps of this theory ([3]-[8]). The works
[9]-[13] are dedicated mainly to algebraic problems, however, some examples of recursive sets
having non-recursive transitive closures are actually given also in these works. In [14] it is noted

that there exists a two-dimensional arithmetical set belonging to the class X, and having a non-
recursive transitive closure (the classes X, for n >0 are defined in [14] as some classes of

arithmetical sets determined by formulas in M. Presburger’s system ([4], [15], [16])). Below the
class of strongly positive arithmetical sets is considered (the definition will be given in Section
2) such that the sets belonging to this class have a more simple structure than the sets noted
above, and have the following properties: (1) for any n >3 there exists a 2n-dimensional
strongly positive set such that its transitive closure is non-recursive; (2) any 2-dimensional
strongly positive set has a primitive recursive transitive closure (see below, Theorem 1 and
Theorem 2).

! This work was supported by State Committee of Science, MES RA, in frame of the research project NeSCL 13-
1B321.
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2. Main Definitions and Results

By N we denote the set of all non-negative integers, N ={0,1,2,...} . By N" we denote the set of
n-tuples (x,,x,,....x,), where n21, x,e N for 1<i<n.

An n-dimensional arithmetical set, where n > 1, is defined as any subset of N".

An n-dimensional arithmetical predicate P is defined as a predicate which is true on some

set Ac N" and false out of it; in this case we say that Ais the set of truth for P, and P is the
representing predicate for A .

The notions of primitive recursive function, general recursive function, partially recursive
function, primitive recursive set, recursive set are defined in a usual way ([3]-[8]). The
corresponding terms will be shortly denoted below by PmRF, GRF, PtRF, PmRS, RS.

We will consider arithmetical formulas in the signature(0,=,S), where S(x)=x+1, for

xe N (see [1]-[8]). Any term included in a formula of the mentioned kind has the form
S(S(..S(x)..)) or S(S(..S5(0)..)), where x is a variable. Such terms we will denote

correspondingly by S*(x) and S*(0), where k is the quantity of symbols S contained in the
considered term. We replace S°(x) and S°(0) with x and 0. Any elementary subformula of a

formula of this kind has the form ¢, =¢,, where f, and 7, are terms. Any arithmetical formula of
this kind is obtained by the logical operations &,v,>,—,V,3 from elementary formulas. We say

that a formula is semi-elementary if it has the form 7, =¢, or —(t, =¢,), where ¢, and ¢, are
terms.

The deductive system of formal arithmetic in the signature (0,=,S) is defined as in [4], [6];
we will denote this system by Deds (cf. [1], [2]). As it is proved in [4], this system is complete.
We say that formulas F and G in the signature (0,=,S) are Deds-equivalent (or simply
equivalent) if the formula (F > G)& (G o F) is deducible in Deds. Below we consider
formulas of the mentioned kind up to their Deds-equivalence.

An arithmetical formula of the mentioned kind is said to be positive if it contains no other
symbols of logical operations except 3,&,v,—, and all the symbols — of negation relate to
elementary subformulas containing no more than one variable (see [1], [2]). An arithmetical
formula of this kind is said to be strongly positive if it can be obtained by the logical operations
& and v from semi-elementary formulas of the following forms: x =a, where x is a variable,
a is a constant, ae N; x=y, where x and y are variables; x=S(y), where x and y are
variables; —(x =0), where x is a variable. An arithmetical predicate is said to be positive
(correspondingly, strongly positive), if it can be expressed by a positive (correspondingly,
strongly positive) formula. An arithmetical set is said to be positive (correspondingly, strongly
positive) if its representing predicate is positive (correspondingly, strongly positive).

The notion of one-dimensional creative set is given in a usual way ([3], [5], [7], [8]). We
will slightly generalize this notion. We use a PmRF c, (x,,x,,...,x, ), where n =2, establishing a

one-to-one correspondence between N" and N (for example,
C, (X, Xy,00X,) =y (¢, (cy (0y (X, X,),X5)0, X)), X, ), Where ¢, (x,y)=2"-2y+1)—-1). We

say that a set B < N" is an n-dimensional image of a set Ac N when c, (x,,X,,....x,)€ A if

and only if (x,,x,,...,x,)€ B. The set Be N" is said to be creative in the generalized sense if it

is an n-dimensional image of some one-dimensional creative set. Clearly, the properties of
creative sets in the generalized sense are similar to the properties of one-dimensional creative
sets (for example, all sets creative in the generalized sense are non-recursive).
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Transitive closure A” of an arithmetical set A having an even dimension 2k is defined in a usual
way by the following generating rules (cf. [1], [2], [13]): (1) if (x,,x,,...,x,, )€ A, then

(X)5 Xy 5eres Xpp ) E A, () if (X5 Xy e X s Vys Voo Vi ) E A", and (D15 Voseers Yis 215 ZpsenZy ) € A,

.
then (x,,X,,..,X;,2,,2,5--2, )€ A .

Theorem 1: For any n=>3 there exists a 2n-dimensional strongly positive set such that its
transitive closure is creative in the generalized sense.

Theorem 2: Transitive closure of any 2-dimensional strongly positive set is primitive recursive.

The proof of Theorem 1 will be given below. The proof of Theorem 2 will be published later.

3. Auxiliary Notions and Statements

We will use some class of operator algorithms ([8], [17]) having a special structure. The
algorithms belonging to this class we will call Q -algorithms. Any Q -algorithm consists of finite

number of elementary Q. -algorithms, which will be called below Q -operators”. The set of all

Q -operators included in the considered Q -algorithm we call “scheme” of this Q -algorithm. We
suppose that some non-negative integer is attached to any Q -operator in the scheme of a given
Q -algorithm in such a way, that different integers are attached to different Q -operators. The
integer attached to some Q -operator we call “an identifier” of this Q -operator. In this case we
say that this Q -operator has the mentioned identifier. Any Q -operator implements one step of
the process of computation realized by the considered Q -algorithm. The objects transformed in
the process of computation are non-negative integers. The state of the mentioned computation
process is defined as a pair (&, w), where @ is the identifier attached to the Q -operator which is

working on the considered step of the process, and w is the number obtained by the previous
steps of the process. Q -operators are algorithms having one of the following forms (where & is
the identifier attached to the considered Q-operator, S and y are identifiers attached to Q-
operators which should work after the working of this Q -operator):

(1) (a,end). This Q-operator is called below ‘““a final operator”; it finishes the process of

computation.
(2) (ax2,p). This Q-operator transforms the state (a,w) to the state (3,2w) .

(3) (ax3,p). This Q -operator transforms the state (a,w) to the state (£,3w).
4) (a,:6,8,y). This Q-operator transforms the state (a,w) to the state (ﬁ,%) if the

number w is divisible by 6; in the opposite case it transforms the state (&, w) to the state

(7.w).

Note that such forms of operators are considered actually in [17] (see also [8], p. 292, p. 312).
We suppose that any scheme of Q -algorithm contains only a single final Q -operator which
has the identifier & =0. Among the operators contained in the scheme of the considered Q -
algorithm we distinguish the initial Q -operator having the identifier & =1; the working of this
operator begins the process of computation. The whole process of working of the given Q-
algorithm is described by the sequence of states (¢,,w,), (@&,,w,),..., (&,,w,),....,(Where
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o, =1) obtained during the working of this Q -algorithm. The process is described by a finite
sequence (L,w,), (&,,w,),..., (O,w, ) if it is finished by the working of the final Q -operator.

In this case we say that the considered Q -algorithm transforms the state (I, w,) to the state
(0O,w, ), and is applicable to the state (1,w,). If the final Q -operator does not work during the
process of computation, then the mentioned sequence (1,w,), (&,,w,),... is infinite. In this case
we say that the considered Q -algorithm is not applicable to the state (L, w,).

The following theorem is proved in [17] (see also [8], pp. 312-315) in some other terms.

Theorem 3 ([17]): For any PtRF f(x) there exists an Q -algorithm which transforms the state
(1,2%") to the state (0,22M) when the value f(x) is defined, and is not applicable to the state

(1,2%") in the opposite case.

If some Q-algorithm has the property described in Theorem 3, then we say that this Q-
algorithm realizes the PtRF f(x). For example, the following Q -algorithm:

(0,end), (1,x3,2), (2,:6,1,3), (3,x2,0)

realizes the GRF f(x)=0.
We will use also another classes of algorithms, namely, I', -algorithms for n >1.

These algorithms are actually special cases of graph-schemes with memory ([18]), though
they will be described below in some other terms than the descriptions in [18].
Any I’ -algorithm consists of finite number of I', -operators. The set of all I',-operators

included in the considered I', -algorithm we call “scheme” of this I', -algorithm. The index »n in
the notation I', denotes that the objects transformed by the considered I', -algorithm are n-
tuples (x,,x,,...,x,), where x,e€ N for 1<i<n. The notion of identifier attached to the
considered I, -operator is defined similarly to the notion of “identifier attached to the considered
Q -operator” which is given above; we suppose that different I' -operators have different
identifiers attached to them. If some identifier is attached to a I', -operator, we will say that this
I, -operator has the mentioned identifier.

The state of the computation process realized by a I' -algorithm is defined as an (n+1)-
tuple (&, x,,x;,...,x,,,), where & is the identifier attached to the I', -operator which is working
on the considered step of the process, and (x,,x;,...,x,,,) 1s the n-tuple of numbers obtained by
the previous steps of the process. I, -operators are algorithms having one of the following forms

(where the notations &, B, y have the same sense as &, [, y in the description of Q-
operators given above):

(1) (a,end). This I' -operator we call “a final operator”; it finishes the process of

computation.
(2) (a,x;+1,5), where 2<i<n+l1. This I -operator transforms the state

(O, Xy s Xy yeas Xy X Xpyy s X, ) tO the state (B, X, Xq,e, X X + L4 e X)) -
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(3) (a,x,- 1,5), where 2<i<n+1; we denote by the symbol —~ the PmRF such that x -
y=x—y when x>y, and x— y=0 when x<y (cf. [3]-[8]). This I', -operator

transforms the state (&, x,,X;,..., X, |, X;,X x,,,) to the state (5,x,,X;,....X,_,X; —

i+12000 i—1°7"i

Lx, X, ).
4) (a,x; =0,8,y) ,where 2<i<n+1. This T -operator transforms the state
(a,x,,%3,..,X,,,) to the state (f,x,,x;,....x,,,) when x, =0, and to the state

(7. %y, %5,...,%,,,) when x; #0.

We suppose that any scheme of I', -algorithm contains only a single final I', -operator which has
the identifier & =0. Among the I, -operators contained in the scheme of the considered T, -
algorithm we distinguish the initial I", -operator having the identifier & =1 the working of this
operator begins the process of computation. This process is described by a sequence of states
(@,0), (,,0,),..., (&,,0,),... where @, =1, and any Q, is an n-tuple (x{’,x{",....x\)).
Such a sequence is finite if the final I', -operator works during the mentioned process, and is
infinite in the opposite case. If the sequence of states is finite, then we say that the considered I",
-algorithm is applicable to the state (1,Q,); in this case we say also that I", -algorithm transforms
the state (1,Q,) to the state (0,0, ), where (0,0, ) is the last state in the considered sequence. If
the sequence of states (L,Q,), (2,0,),... is infinite, then we say that the considered I, -
algorithm is not applicable to the state (1,0,).

We say that a I, -algorithm (where n=>2) realizes a PtRF f(x), if for any xe N it
transforms the state (1,27,0,0,...,0) to the state (0,2f .0,0....,0) when the value f(x) is defined,
and is not applicable to the state (1,2%,0,0,...,0) when the value f(x) is not defined. For
example, the following I' -algorithm realizes the PtRF f(x) which is nowhere defined:

(0,end), (1,x, = L1).

Lemma 3.1: If the initial state in the process of computation realized by some Q -algorithm has
the form (1,2"3"), where ue N, ve N, then any state («,,w,) included in this process

m

satisfies the condition w, =2'-3", where t,s€ N .
The proof is easily obtained from the definitions.

Lemma 3.2: For any Q -algorithm ¢ realizing some PtRF f(x) there exists a I',-algorithm y
realizing the same PtRF f(x).

Proof: We will consider the process of computation realized by the Q -algorithm ¢ . Any initial

state in such a process has the form (1,2*') that is (1,2> -3%). As it is proved in Lemma 3.1 any
state included in such a process has the form (e,,,2'-3") where ¢,s€ N . For any Q -operator
included in the scheme of Q-algorithm ¢ we will construct some subscheme of the supposed
I', -algorithm y which has the following property: if the considered Q -operator transforms the

state (a,2"-3") to the state (£,2"-3") then the corresponding subscheme of the supposed T, -
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algorithm y transforms the state (a,u,v) of I,-algorithmy to the state (f,z,5). We will
consider the following cases.

Case 1. The considered Q -operator has the form (o, x2, ) . In this case the required subscheme
of the supposed I, -algorithm y consists of the single I, -operator (&, x, +1,5) .

Case 2. The considered Q -operator has the form (a,x3, £) . In this case the required subscheme
of the supposed I, -algorithm y consists of the single I, -operator (&, x, +1,).

Case 3. The considered Q -operator has the form (a,:6,0,7). In this case the required
subscheme of the supposed I, -algorithm y consists of the following I,-operators:
(a,x,=0,7,0,), (,,x,=0,7,6,), (0,,x,-1,8,), (5,,x,-1,8). Here 6, 0,, I, are
identifiers attached to additional I, -operators which are included in the scheme of the supposed

I', -algorithm for modeling the working of the considered € -operator. Of course, these
identifiers should be different in different subschemes of this kind.

Case 4. The considered Q -operator has the form (0,end). This Q -operator does not transform
the states of Q -algorithm. So, the corresponding I, -operator has the same form (0,end) .

The scheme of the supposed I, -algorithm is obtained as the union of subschemes of the
mentioned forms constructed for all Q-operators included in the scheme of the given Q-
algorithm. It is easily seen that such I, -algorithm satisfies the conditions of Lemma 3.2. This
completes the proof.

Corollary 1: For any PtRF f(x) and any n=>?2 there exists a I, -algorithm realizing the PtRF
f(x.

The proof is based on Theorem 3 and is similar to that of Lemma 3.2.

Note: The statements established in Lemma 3.2 and in its Corollary 1 are similar to Theorem 7.1
in [18], where it is proved that any PtRF may be realized by some graph-scheme with memory
constructed on the base of the functions x+1, x =~ 1 and of the predicate x=0. However,
graph-schemes with memory corresponding to 1 -algorithms are essentially simpler than the
graph-schemes considered in Theorem 7.1 in [18]. Besides, the definition of realizability of PtRf
by I -algorithm differs from the corresponding definition in [18].

Now let us define for any I, -algorithm, where n =1, the predicate describing one step of
computation process realized by this I' -algorithm. Such a predicate we will call “a step
describing predicate”, or, shortly, “SD-predicate” for a given I’ -algorithm. Namely, if 7 is the
SD-predicate for a given I', -algorithm, then 7(x,,x,,...,x,,,,) is true if and only if the given I, -

algorithm transforms the state (x,,x,.,...,x,,,) to the state (x

n+2’x

n+3%°°"?

X,,.,) by one step of the
corresponding computation process. Let us note the following property of the predicate 7: if
(x,,x,,...,x,,,) 18 a state of the computational process realized by the considered I', -algorithm,
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such that x,# 0, then there exists a single (n+1)-tuple (x,,,,x,,5,....%,,,,) such that
(X, x,,.... X,,,,) 18 true.

The set of truth for the mentioned predicate 7 we will call “SD-set” for the considered I, -
algorithm. Clearly, such a set 7 has the following property: (x,,x,.,...,X,,,,)€ 7 if and only if
(x,,%,,...,x,,,) 1s a state of computation process realized by the considered I, -algorithm, and

this I', -algorithm transforms the state (x,,x,,...,x,,,) to the state (x_,,x

n+32°*

.X,,,,) by one step

n+2°
of the computation process.
Now let us define the forms of SD-predicates and SD-sets for I', -algorithms. We suppose

that some I', -algorithm y, where n2>1 is fixed. We will define the forms of SD-predicates for

any I' -operator included in the scheme of y .

Case 1. The considered I, -operator has the form (a,x, +1,). Such I, -operator transforms the

state (a’ x2’x3 ""’xi—l’xi’xi+1"“’xn+l) to the state (IB’ 'xn+3’xn+4 """xn+i"xn+i+l"xn+i+2""’x2n+2) 4

where X3 =X, X, =X X, =X 0 X =X H L X0 S X X0 =X

The SD-predicate for such a I -operator is expressed by the following formula:
(=) & (x,,, =) & (x,,, =x,) & (x,,, =x;,) & ... & (x,,, = x,_,) & (x =S(x)) &

&(x =x,)& .. & (x5,,, =%,,,)-

Case 2. The considered I', -operator has the form (&, x, - 1, 8). Such I, -operator transforms the

n+i n+i+l

n+i+2

state (&, Xy, Xypeees Xp_p 5 X, X, ,X,,) to the state (f,x,,;,x X ... X

n+3° 7 n+42°00 Tn+i® n+i+1’x

. Xy,,,) s Where

i+1o°° n+i+2°°"

X

n+3 x2’ X

b = Xz X T X s X =X = L X S X e Xy =X,

The SD-predicate for such a I -operator is expressed by the following formula:
(x, = a) & (x =pF)& (x,,, =x,) & (x =x)& .. & (x,,;, =x,_,)& (x =x.,,)&..

n+2

& (X5, = %,,)) & ((x,,,,, =0) & (x;, =0)) v (=(x; =0) & (x;, = S(x,,;.,)))

n+4 n+i n+i+2

Case 3. The considered T, -operator has the form (&, x, =0, 3,7). Such I, -operator transforms

the state (&, x,,x;,...,X,,,) to the states (B,X, 5,%,, 45 X5,15) OF (VX ,3,X »X,5,.,) (where

n+d o
X3 =Xys X4 =X3,...,%,,,, =X,,;) 10 the cases, when, correspondingly, x, =0 or x, #0. The
SD-predicate for such a I -operator is expressed by the following formula:
(x, =a)& (x,,;, = x,) & (x =x)& .. &(x,,,,=x,,)& ((x,,,=0)& (x;,=0)) v
((x,., =7) & = (x; = 0)).

n+4

Case 4. The considered I, -operator has the form (0,end). Such I', -operator does not transform
the states of I', -algorithm, so, an SD-predicate is not considered for such I', -operator.

The SD-predicate for I -algorithm y is expressed by the formula obtained as the
disjunction of formulas expressing SD-predicates constructed above for all I, -operators
contained in the scheme of y and different from the operator (0,end). The SD-set for I’ -

algorithm  is obtained as the set of truth for the corresponding SD-predicate. Clearly, such SD-
set is a (2n + 2)-dimensional arithmetical set.
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Lemma 3.3: SD-predicate and SD-set constructed for any I -algorithm, where n2>1, are

strongly positive.

The proof is obtained evidently from the definitions.

Lemma 3.4: (cf. [13], p.72). If A is a 2k-dimensional set, AC N**, then 2k-tuple
(Xys Xyseees Xp s Vy» Youeen ¥, ) Delongs to the transitive closure A" of the set A if and only if there
exists a sequence (Q,,0,.....0,) of k-tuples, such that m=22, Q, =(x,X,,....X,),
0, =, ¥y ¥,) and any 2k -tuple (Q,,0,,,) for 1<i<m—1 belongs to A.

The proof is easily obtained using the definition of the transitive closure A".

4. Proof of Theorem 1

Let M be any one-dimensional creative set ([3], [S], [7], [8]). We consider the PtRF f(x) such
that f(x)=0 when xe M, and the value f(x) is indefined when x¢ M . For any fixed n>2
we construct (using Corollary of Lemma 3.2) a I, -algorithm y realizing the PtRF f(x);
clearly, ¥ transforms the state (1,2%,0,0,...,0) to the state (0,1,0,0,...,0) when xe M and is not
applicable to the state (1,2%,0,0,...,0) when x& M . Now, let us consider the SD-predicate 7 and
SD-set & for y. Clearly, n is true for (2n+2)-tuple (X,X,,...; %, 15 Vs Vsees Vo) (and the
statement  (X;,X,,..., X5 V|5 Yase-s Y,y )€ Z holds) if and only if w transforms the state
(x,,%,,...,x,,,) to the state (y,,y,,....¥,,,) by one step of the process of computation. Let us
consider the transitive closure 7~ of the SD-set 7.

Using Lemma 3.4 we conclude that (x;,X,,..., X,,;» Y;»Y s Vi )€ Z  if and only if there
exists a sequence (0,,0,,...0,) of (n+1)-tuples such that Q =(x,x,,..,X,,),
0, =Yy V), and (Q,,0,,,)€ 7 for any i such that 1<i<m. But in this case the
sequence (Q,,0,.....0,,) is a sequence of states of the I' -algorithm y which describes some
part of a process of computation implemented by the I' -algorithm i .

Hence, the (2n+2)-tuple (1,2,0,0,...,0,0,1,0,0,...,0) belongs to z°if xe M . Ttis easily seen
that the mentioned (271 +2)-tuple does not belong to 7~ if x& M . Let us consider the set
77 eN such that its (2n +2) -dimensional image is . Then
¢,,.,(1,2%,0,0,...,0,0,1,00.,...,0) € £~ if and only if xe M . So the set M is m-reducible to the set
7" . Using the corresponding theorem concerning m -reducibility (see, for example, [8], p. 161),

we conclude that the set 7~ is creative, the set 7z~ is creative in the generalized sense, and the
set 7 is strongly positive (see Lemma 3.3). This completes the proof.

Note: It is seen from Theorem 1 that the transitive closures of some strongly positive sets having
the dimensions 6, 8, 10, ... are creative in the generalized sense. On the other side (Theorem 2)
the transitive closure of any 2-dimensional strongly positive set is primitive recursive. Similar
problem concerning 4-dimensional strongly positive sets remains open.
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huwn ynqhwnhy puquuswth pyupwiwljub puqunipniuubph
dwuhl

U. Uwlnijjul
Udthnthnd

[1]-nid b [2]-nid uwwhdwiynid b hbwwgnuynid £ wnqhwnhy pdupwbuljui
puwtwdlh  qunuthwpp 0,=,5)  uhquwwunipuynid,  (npnbkny  S(x)=x+1):
Puquuswthpyupwbiuljut puqunipiniup Ynsynid £ ynqhwnhy, tph wjt npnoynd k
nplk ynghwnhy pwtwdlh dhongny: thunnwplynid £ ynghnhy pwqunipinitutph nuup
nplk Eipunwu, wjuhtpt® juhun wnghwnhy puqunipniuubph nuup: Uywugnigynud E,
np gwulwugwé n-h hwdwp, npnbn 723, gnmipnit mbh 2z-swhwih juhuwn
wynqhwnphy pwqunipini, nph wpwbqhwnhy thwlnudp ntlnipupy sk Ujniu Ynnuhg
wynud k, np gumujugws 2-swthwtth fpthun wynghwnhy puqunipinit nith wwupqugnyu
nkinipuhy nnpwtghwunhy thwlnid:

O CTPOIro NO3UMTUBHBLIX MHOI'OMEPHBIX apﬂ(l)MeTquCKHX
MHOKECTBaAX

C. Manyxksx

AHHOTanus

[TonsiTe no3utuBHON apudmerndeckoil popmynsl B curnarype (0,=,5), rme S(x)=x+1,
ompezneneHo u wucciaenoBano B [1] u [2]. MuoromepHoe apudmerrdyecKkoe MHOXECTBO
Ha3pIBaeM IIO3UTHBHBIM, €CJIM OHO 3aJaéTcA IO3HUTHBHOM dopmysoi. Paccmarpusaercs
TOJKJIacC KJIacca IMOSUTHUBHBIX MHOXECTB, 3 HIMEeHHO, KJIACC CTPOTO IMO3UTHBHBIX MHOXECTB.
JlokaspIBaeTcsa, 4TO Mg BCAKOTO 1 =3 CyleCcTByeT CTPOrO IIO3UTHBHOE MHOXECTBO
pasMepHOCTH 21, TaKoe, YTO €ro TPaH3UTHBHOe 3aMbIKaHHe HepeKypcuBHO. C mpyroit
CTOPOHBI, YKa3bIBaeTCH, YTO TPAaH3UTUBHOE 3aMbIKaHUE BCAKOIO CTPOrO IOSUTUBHOIO
MHOXeCTBa Pa3MepHOCTH 2 IPUMHUTUBHO PeKyPCUBHO.
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On Generalized Primitive Recursive String Functions'

Mikayel H. Khachatryan

Institute for Informatics and Automation Problems of NAS RA
e-mail: mikayel.khachatur @ gmail.com

Abstract

The notion of generalized primitive recursive string function is introduced and
relations between such functions and primitive recursive string functions in the
usual sense ([1], [2]) are investigated. It is proved that any generalized primitive
recursive string function is everywhere defined if and only if it is a primitive
recursive string function in the usual sense.

Keywords:String function, Primitive recursive string function, Superposition,
Alphabetic primitive recursion.

1. Introduction

The notion of primitive recursive string function ([1], [2]) is generalized in the following sense:
string functions are considered which are defined similar to the definition of primitive recursive
string functions, however, such functions are in general not everywhere defined. Namely, the
definition of generalized primitive recursive string function is obtained from the definition of
primitive recursive string function in the usual sense by adding the everywhere undefined one-
dimensional string function to the set of basic functions. It is proved that any generalized
primitive recursive string function is everywhere defined if and only if it is a primitive recursive
string function in the usual sense.
Similar problems concerning arithmetical functions are considered in [3].

2. Generalized Primitive Recursive String Functions

The notion of many-dimensional primitive recursive string function is given in [1], [2]. For the
convenience of the reader let us recall the corresponding definitions.

Let A be an alphabet, i.e. a list of different symbols, 4 = {ay, ay, ... ,ap} (p > 1).By
A" we denote the set of all words in A (including the empty word A). The symbols a4, ay, ... , a,

' This work was supported by State Committee of Science, MESRA, in frame of the research project Ne SCS 13-
1B321.
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we call [etters in A. The length of a word a; , a;,, ... , a;, is the number k (the length of the empty

word A is 0).

We say that the function F is an n-dimensional string function (n = 1) in the alphabet A
if for any n-tuple (Py, P5, -+, P,) where all P; are words in A, the value F(Py, P,, -+, B,) is either
undefined, or is a word in A. By !F(P4,P,-+,P,) we denote the statement: the value
F(P;, Py, , B,) is defined.

Below we consider only the string functions in the fixed alphabet A.
Basic string functions are defined as functions of the following kinds.
One-dimensional function D (P)such that D(P) =A for any word P in A.
2. One-dimensional function S;(P), where 1 < i < p such that S;(P) = Pa;, for any word P

in A.

3. n-dimensional  functions I} (P;, P,,--,B,) where n>1, 1<m<mn, such that

I (Py, Py, -+, B,) = By, for any n-tuple (P;, P,, -+, B,) of words in A.

The operator S of superposition is defined as follows. If G is an n-dimensional string
function, G4, G, -*+, G, are m-dimensional string functions, then the m-dimensional string
function f = §(G, G4, Gy, -+, Gy) is defined by the following equality:

f—

f(Pl'PZ""er) = G(Gl(PerZJ""Pm); GZ(Pl;PZJ""Pm);"" Gn(Pl;PZr"')Pm))'

where Py, P,, -+, P,, are any words in A.

The operator R of alphabetic primitive recursion is defined as follows. If G is an n-
dimensional string function, Hy, Hy, -+, H, are (n+2)-dimensional string functions, then the
(n+1)-dimensional string function f = R(G,H,, Hy,-++, Hp) is defined by the following
equalities:

f(Pl'PZ""rPn'A) = G(P1'P2"”1Pn):

f(P11P21.”iPanai) = HI:(P1’P21..-IPn’PIf(PllPZI--.)Pnlp)))

where 1 < i <pand Py, P,, -, P, P are any words in A.

We say that a string function is a primitive recursive string function (PRSF), if it can be
obtained from basic functions by the operators of superposition and alphabetic primitive
recursion.

The notion of generalized primitive recursive string function (GPRSF) is defined similar to
the notion of PRSF with the only difference: one-dimensional everywhere undefined U(P)
function is added to the set of basic functions.

Below the statements “F is a primitive recursive string function in the usual sense”, “F is a
generalized primitive recursive string function”, will be denoted correspondingly by F €
PRSF and F € GPRSF. As it is known ([1]. [2]) every function F € PRSFis everywhere
defined.

Clearly, any primitive recursive string function in the usual sense is a generalized primitive
recursive string function, and, on the other side, the set of generalized primitive recursive string
functions is wider than one of primitive recursive string functions in the usual sense. However,
the following theorem (which will be proved below) takes place.

Theorem 1: Any everywhere defined string function is a generalized primitive recursive string
Sfunction iff it is a primitive recursive string function in the usual sense.
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The proof of Theorem is based on Lemma 1 which will be considered below. We will use
primitive recursive string functions which are defined by the following equalities (where
Py, Py, -+, Py, Py, P, Q are any words in A).

1. The function P—a; is defined as follows:

A—a; = A,

Pa;—a, = P,

Pa;—a; = A, (where 2 <i < p).

2. The function Sg(P) is defined as follows:

Sg(A) = A,

Sg(Pa;) = a, (where 1 <i < p).

3. The function Sg(P) is defined as follows:
Sg(A) = ay,
Sg(Pa;) = A, (where 1 <i <p).

4. The functions I[1x(Py, Py, -++, Py ) for k > 2 are defined as follows:
Hz(Pl,A) = A,
I1,(P;,Qa;) = P; (wherel <i <p),

H}(Pl,Pz,A)ZA,
H3(P1, P2, Qal) = HQ(Pl, Pz) (Whel‘e 1 S l S p),

i1 (Py, Py, -+, PyyA) = A (Where m > 1),
Mina1(Py, Py, -+, Py, Qa;) = Iin(Py, Py, -+, Py) (wherel < i < p),

It is easily seen that [Ty (P;, Py, **+, Pr) = A when one of the words P,, -*-, P, is equal to the empty
word A: otherwise [1x(Py, Py, -, P;) = Py.

A generalized primitive recursive string functionBR (P, Q)(“Branching function™) is
defined by the following conditions: (1) BR(P, A) = P:(2) BR(P, Q) is undefined when Q # A. .
Such a function is obtained by the operator of alphabetic primitive recursion using the
everywhere undefined basic function U(P):

BR(P, A) =P,
BR(P,Qa;) = U(I3(P,Q,BR(P,Q)))(where 1 <i < p).

Now let us introduce the notion of standard image (or S-image) of string function F in A.
Namely for any n-dimensional string function F in A its S-image is defined as a function F* such
that for any words Py, P,, -+, P, in A:

SI(F(PI’PZI.“'PTI))' When !F(Pl,Pz,"',Pn),

F*(Py, Py, By) = { A otherwise.

(let us recall thatS; (Q) = Qa,for any word Qin A). Obviously, for any string function F in A the
function F* is an everywhere defined string function.

Lemma 1: Any string function F in A is a generalized primitive recursive string function if and
only if its S-image F* is a primitive recursive string function in the usual sense.
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Proof: Let F be an n-dimensional generalized primitive recursive string function. We will prove
that its S-image F™* is a primitive recursive string function in the usual sense. The proof will be
implemented using the induction on the process of constructing F from the basic functions by the
operators of substitution and alphabetic primitive recursion.

If F is a basic function then it has one of the forms D(P), I} (P, P,,:+, P,), (where
n=>1,1<m<n)S;(P)(where 1 <i < p), U(P) which is everywhere undefined. It is easily
seen that in these cases F* has correspondingly the following forms
D*(P) = a4, (I2)"(Py, Py, -+, By) = Ppaq, S;(P) = Pa;aq, U'(P) =A.So F* is a primitive
recursive string function in the usual sense.

Now if a function F € GPRSF is obtained by the operator S of superposition from
functions G, Hy, Hy, -+, Hy, and the functions G*, H{, H;, -+, H), are primitive recursive string
functions in the usual sense, then the S-image F* of the function F satisfies the following
equation:

F*(PerZI“"Pn) =
1 (G*(H{ (P, Py, ) —ay, Hy(Py, Py, oo, By)=ay, -+, Hp(Py, Py, oo, By) —aq),
Hy(Py, Py, o, Py)=aq, Hy(Py, Py, oo, Py) =y, , He(Py, Py, o+, By)—a4)),

where Iy, is the function described above. It is easily seen that F* € PRSF.

Finally, if a function F € GPRSF is obtained by the operator R of alphabetic primitive
recursion from functions G, H,, Hy, -, H,, and the functions G*,H{,H;‘,---,H{; are primitive
recursive string functions in the usual sense, then the S-image F* of the function F satisfies the
following equalities:

F*(Py, Py, -, By A) = G* (P, Py, -+, By),
F*(Py, Py, v, P, Pay) = Hy"(Py, P, P, P F7(Py, Py, o, By, P)),

F*(Pl,Pz,"',Pn,Pap) = H;*(Pl,Pz,"‘,Pn,P,F*(Pl,Pz,"',Pn,P)),
where for any i such that 1 <i <p,

H;*(PIJ PZ""'PnJ P, Q) = HZ(H;(PIJ PZ"":PnJP' Q;a1); Q)'

and G*, H, 1 <i <p, are S-images correspondingly, of G, H;;the function II, is defined
above. It is easily seen that F* € PRSF.

So, it is proved that S-image of any generalized primitive recursive string function is a
primitive recursive string function in the usual sense.

Now let us suppose that the S-image F* of some n-dimensional string function F is a
primitive recursive string function in the usual sense. Clearly, F* € GPRSF. Then the function F
satisfies the following equality:

F(PIJ Py, - 'Pn) = BR(F*(PI'PZI Y Pn);al'g(F*(Pl'PZ' ,Pn))),
were BR is the function defined above. This completes the proof of Lemma.

The proof of Theorem 1 is obtained now as follows. If F is an n-dimensional everywhere
defined string function such that F € GPRSF. then F* € PRSF. and F(Py,P,,--,B,) =
F*(Py, Py, -+, B))—a,, for any words P, P,,-:-, P, in A. Hence, F € PRSF. On the other side, if
F € PRSF. then clearly F is an everywhere defined string function such that F € GPRSF. This
completes the proof of Theorem.
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Cunhwipwgyws ywupqugniyyt jupgplipug punuwht
dniuljghwibph dwmupte

U. vuswnpjutt
Udthnihnid

Uwhdwiynd  E pugphwipuguwé wuwpqugnyu  Jupgpipwug punwjht
dnmujghuyh hwuljugnipinip, htsywhu  twb  hEknwgnuynd Bt wynuhuh
dniujghwibph  thnppwntympmnitutpp  unynpujut dbind uwwhdwidws (1], [2])
wupquqgnylt Jupgplpwug pwnwjhtt  $niuljghwttiph htn: Uwygwugnigymd E, np
gutjuguws punhwbpugws wwpqugnytt  Jupgpupwg  pwnughtt  Pniuljghw
wdktunipbp npnodws £ wytt b dhuytt wy phypnud, Epp wytt unynpuljumtt hdwuwnny
wwpqugnyl jupgppwug punuyht $nibljghw t:

O6 06001IeHHBIX TPUMUTUBHO PEKYPCUBHBIX CIOBAPHBIX QYHKIIMAX
M. XauaTpsau
Annoranus

Ompepensercs mNOHATHE OOOOIEHHON NPUMUTUBHO PEKYPCHUBHOM CJIOBapHOI
GYyHKIMM ¥ HCCIeLYIOTCS  B3aMMOOTHOUIEHMS TaKUX (QYHKIUH C IPUMUTUBHO
PEKypPCHUBHBIMU CIOBapHbIME (PYHKIuAMHu ([1], [2]) B OOBIYHOM CMBICIE STOTO HOHATHA.
JloxassIBaeTcs, 4TO 00OOLIEHHAs IPUMHTHBHO PeKypCHUBHAs CJIOBapHas (PYHKIHUSA BCIOLY
olpeziesleHa TOTZAa M TOJBKO TOTAA, KOTJA OHA SABIAETCA IPUMUTHUBHO PeKypPCHBHOU
CJIOBapHO# QYyHKITHel B 0GBIYHOM CMBICJIE STOTO IIOHATHA.
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Abstract

In this paper a new “Fuzzy Vault” scheme is proposed, which improves
the False Rejection Rate of the original scheme. When constructing the vault
of the original scheme there was a need to trim the biometric data, which is an
information loss and affects the performance of the system. This was resolved
in the suggested version of this construction. The schemes were implemented
for fingerprint data, and the comparisons are brought in the last section of this
paper.

Keywords: Biometrics, Fuzzy Vault, Fingerprints.

1. Introduction

Conventional passwords are usually simple and, as a rule, easy to guess or to break. People
remember only short passwords. What is more, they tend to choose passwords, which are easily
cracked by dictionary attacks [1, 2, 3]. Thus, there was a suggestion to use some biometric
properties of a user to provide an access to the personal data. The biometric characteristics of a
person, such as DNA, palm vein, fingerprints, face and iris features can be used to generate
passwords or lock secrets.

Such schemes were introduced by A. Juels and M. Wattenberg [4], which was not order
invariant, and this was the weakest point of the algorithm described in [4] as the data extracted
from the biometric template is not in the same order each time. Thereafter A. Juels and M. Sudan
presented a new scheme called “A Fuzzy Vault Scheme”[5], which already had a property of
order invariance. The notion of fuzzy vault was first given by Juels and Sudan. For analysis of the
concepts False Acceptance Rate (FAR) and False Rejection Rate (FRR) are used.

FAR is the probability that a random vector is accepted as valid biometric data at the
authentication phase.

FRR is the probability that the observed genuine biometric data has too many errors and is
rejected at the authentication phase.

The scheme in [5] can be modified for decreasing the False Rejection Rate (FRR) while
keeping the FAR of the system the same.
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The rest of this paper is organized as follows. Section 2 gives a review of the fuzzy vault
construction. Section 3 outlines the modified construction of Fuzzy Vault. In section 4 the
experimental results of the two schemes are introduced. Section 5 gives the summary of the

paper.

2. Review of Fuzzy Vault

The fuzzy commitment scheme is presented by Juels and Wattenberg [4], which as it was already
mentioned is not order invariant. Order invariance is a very important property, because not
always we can obtain biometric data of a user in the same order. Then Juels and Sudan presented
their new Fuzzy Vault construction [5]. The brief description of the scheme is given below.

Let F be a finite field of size n. The biometric template of the user can be written as follows:
w = (x1,%3, .., Xg), WhereVi=1,..,s:x; € Fandletr € {s+1,..n}.

A. Enrollment Phase
1. Take the secret polynomial p(x) of degreek = s —t—1, t € {1, ..., s} and evaluate it on the
points of the biometric data. Let y; = p(x;), i = 1,2...,s.

2. Add r — s distinct random points from the set F — w. Let them be x5,4, ..., X,-. These points
are called chaff points.

3. Choose y;, €F ,i = s + 1..rsuch thaty, # p(x;).
4. Store ss(w) = {(x1,y1), .-, (x, ¥»)} as a reference. The ss(w) is called a vault.

B. Authentication Phase

Let the new biometric be w' = (x';, x5, ..., x'g). If it has at least s — t common points with the
original biometric using Lagrange interpolation or Reed Solomon codes the secret polynomial
can be reconstructed.

3. The Proposed Scheme

Again F is a finite field of size n. The biometric template for enrollment is w = (x, x5, ...,
Xs), however, in this scheme the condition x; € F is not mandatory. The secret polynomial is the
p(v). The degree of p(v)isk = s —t—1,t < s, and the coefficients belong to F. The enrollment
and authentication phases are the following.

A. Enrollment Phase

1. Take the secret polynomial p(v), generate s random values ¢ = (vq, V5, ..., Vg), Where v; € F
and evaluate the p(vjong. Lety; = p(v;), i = 1,2...,s.

2. Add r —s distinct random points from the set F — q. Let them be vg,q,..., V.. Add 7 — s
distinct random points, which are not in the set of w, but are within the possible set of the points
of the considered biometric data. Let them be xg, 1, ..., X;-.

3. Choose y; €F ,i = s + 1 ...r such that y; # p(v;).

4. Store  {(x1,y1,V1), -, (6, ¥, 1)} as a reference in database. Let’s denote this
vault by ms(w).
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B. Authentication Phase

Now suppose the new biometric measurement is w = (x';,x5, ..., x's) and we want to recover
the secret polynomial p(v). Thus, in case the w'coincides with at least s — t points with original
biometrics, the corresponding triplets(x;, y;, v;) can be chosen from the vault ms(w) and using
the pairs (y;, v;) the secret can be recovered.

The advantage of this scheme is that in this case there is no need to concatenate the biometric
template, as it should be done with the most types of biometrics for the fuzzy vault [6, 7, 8]. In
addition, the user is free to choose the Galois Field he wants to use in this system. As a result of
these modifications there is no information loss in the enrollment stage, which leads to the
increased accuracy of verification.

4. Experimental Results for Fingerprints

The experiments were conducted on GF(2'®). In the case of the original scheme the minutiae
point descriptors are formed by concatenating some parts of x, y coordinates and some part of
the minutiae angle 6. In order to form a 16 bit value, 5 bits were taken for x coordinate, 5 bits for
y and 6 bits for 8 angle.

In the case of the new scheme, the coordinates are kept in the original form and the 16 bit
values are random. In all experiments FVC 2000 DB2 pre-aligned database of fingerprints was
used. The results of the experiments are illustrated in the Tablel.

Table 1
Juels-Sudan scheme The Proposed scheme

FAR (%) 0.2% 0.2%
FRR (%) 20.4% 13.8%
secret size 128 bit 128 bit
reference size 960 Byte 1700 Byte

r 240 240

(the size of vault)

5. Conclusion

In this paper an improvement was suggested for increasing the performance of a well-known
scheme for biometric key binding. It was shown that during the vault construction the
concatenation of biometric data affects the accuracy of the system. To overcome this issue, in the
new scheme the reference data were kept as triplets; first is the biometric data in its original
form, the second is a random value and the third is the evaluation of the value. The scheme was
implemented for fingerprints and the experiments have shown that it provides better FRR, while
maintaining the FAR of the system the same.
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MopayduiinpoBaHHbIH BapUaHT CXeMbl 'HEYeTKOTO XpaHUIMNIIA" A1
yBeJIMYeHUs TOUHOCTHU

O. Xacukau

AHHOTAUA

B sToit paboTte mpeasaraercs MOAU(UIIMPOBAHHEIN BAPUAHT CXeMBI 'HEYETKOTO XPaHMJINIIA",
B KOTOpPOM YyJydiaeTca KodQ(UIMeHT JOXHOTO OTKaza B gocTyme. IIpu mocrpoenun
OPUTHHAJIBHOU CXeMblI OblIa HEOOXOAUMOCTh B COKpAIlleHHN OMOMeTPUYECKUX NAHHBIX, YTO
camo 1o cebe moreps MHGOPMALUM U BIHAeT HAa 5()(EeKTUBHOCTh CHCTEMBI. JTa IIpobieMa
paspellleHa B HOBOM IIpe[JIOXKEHHOM BapuaHTe cxeMbl. CxeMbl OBLIM peaju30BaHBI I
M3BECTHBIX 6a3 OTIeYaTKOB IaIbIeB, a CPABHEHHUA IIPUBEIeHbI B ITOCIeHEM paszeie.
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Abstract

The non-focused images quality arising algorithm based on
Winer filtration is presented in the paper. Filtration is realized in
spectral domain of image.

Keywords: Filter, Image, Spectrum, Wiener.

1. Introduction

During the image registration there often appear distortions of different types depending on
registering devices characteristics (permission), technical situation of location and also
peculiarities of the area being registered. On images obtained by optical devices there can be
violations of focal distance; there can appear diffusions when moving objects are being
registered, etc.

We consider the image as a function of two variables f(x,y) which is the projection of
two or three dimensional fields of view, where (x,y) is a coordinate of any point of plane and
f(x,y) is the light intensity in the point (x,y).

We’ll consider a problem of optically [1] registered distorted images reconstructon in spectral
area, because optical systems focus the falling light and that can be expressed by Fourie
transform, so the image reconstruction problem reduces the solving of integral equations of
second order.

2. Image reconstruction

Let g(x,y) be the given image and f(x,y) be the reconstructing image. Then the following
equation [2] takes place:

906y = f £ R, y, 1, v)dudv, )

where the function h(x, y,u, v) is called an image registering system’s impulse response (output
value corresponding to unit impulse).
To solve this equation we’ll give some assumptions.
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Definition 1: The system is called space-invariant, if its impulse function response depends on
the difference between the input(x,y) and output(x,y) planes coordinates:

h(x,y,u,v) = h(x —u,y — v).

For such system the equation (1) will be represented as

g(x,y) = f f(u, v)h(x —u,y — v)dudv, (2)
which is usually called a convolution. Equation (2) can also be represented as

g, y) = f(x,y) * h(x,y). (3)

Since f(x,y) is a function of image describing the range of vision, and g(x,y) is a function of
registered image, we can see that h(x, y) is a noise describing function.

In general case linear filtration algorithms are realized by transforms of type (2) having the
following discrete representation

i+r/2  j+r/2

9= DD Fathecrstryigersy L€ [T ML € TN 4TS (0
k=i-r/21=j-1/2

M is the number of image rows, N is the number of image columns, the sum includes the points
of rectangular with centre(i, j) and 2r + 1 sides. Before calculation of transform (4) all sides of
image should be already widened by rectangular layers of width r/2.

In spectral domain the linear filtration algorithm is also based on convolution theorem, so instead
of calculating by formula (4) it can be realized by the following formula:

G(u,v) = F(u,v)H(u,v), (5)

where G, F, H are Fourier transforms of functions g, f, h. Note, that complex multiplication is
realized by all u, v frequencies.

Now we’ll represent the mathematical model of the system:

f (x,y) -input image function ( undistorted),

h(x,y) - noise causing function,

n(x,y) - total noise,

g(x,y) - distorted image (fuzzified, unfocused).

So we have the following representation of the process:

gx,y) = f(x,y) * h(x,y) + n(x,y). (6)

It is required to find the impulse characteristic function which will be for the system the best
reconstruction function by mean square deviation
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m—-1 n—-1

1 A
o= %Z ( l-,j_fl-,j)z - min.
i=0 j=0

S

-
I

The problem solution for linear stationary processes was given by Wiener, the detailed proof is
given in [3]. The best approximating filter’s spectral representation of function
f(x,y) is represented as [3]

|H (u, v)|?

Fluv) = '
H(u,v) |H(u,v)|? + Sn v)/sf(u. V)

G(u,v), (7)

where S,,(u.v) is the spectral density of additive noise and Sf(u.v)- f(x,y)is the spectral
density of the function. Generally these values are unknown. The ratio S, (u. v)/S¢(u.v) is the
inverse value of signal-noise value. Its value in time domain is considered acceptable if it is in
the interval of 30-40 decibels.

The noises induced by focal distance violations on the images registered by the optical devices
mainly depend on the light dispersion problem described by the following two functions:

_x24y?
e 202

2mo? ’
—1 if x2 +y?<r?
nr2’

h(x,y) =

h(x,y) =
0, ifx*+y2=>ri

If the image doesn’t include an additive noise then n(x,y) = 0and the formula (7) is
represented as

Fu,v) = G(u,v)/H(u,v), (8)
and is called an inverse filter.

3. Inverse Filters

Indeterminacy appears when because of some device errors during image registering
under some frequencies the value of denominator H(u, v) of equation (8) is equal to 0. In such
cases the value of spectrum corresponding to this value of image is set equal to zero. As a
result, on the filtered image there appear obvious horizontal or vertical (sometimes curved)
phenomena.

To reduce such occurrences we offer to realize the low- frequency interpolation in spectral

domain:
Fan= ) ) s, ©

where
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sin(27fi) sin(27fj
F(i,j) (l, D) (], D irisoj>o0
1 T 2nfF G, )), ifi=0o0rj=0,
0, ifi<0orj<o.

Incase ofi = w,j =w, F(u,v) = 2nf, f € (0; 0,5).

There are many internet investigations and program realizations of this problem.

I think, the system SmartDeblur-1.27-win is one of the best program realizations, but its
mathematical apparatus is not presented in the work.

The program realization of the method(5)-(9) presented in this paper has been fulfilled.

The result of the system work and comparison with system SmartDeblur-1.27-win [4] are given
below.

§ isgshio S 5 eseties

[heyg et oo Sopg

Fig. 1.

a) input image including gauss noise with domain of dispersion ¢ = 3 and radius r =
5 f = 0.45;

b) the result of program realization of developed system;

c) the result of SmartDeblur-1.27-win system work.
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Adnlnrumgusd yuwwnlkpukph npwlh pupdpugnid
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Abstract

From practical point of view the codes over Z,,, or Z,,,,, are interesting,
because they can be used in 22" —QAM (Quadrature amplitude modulation)
schemes. In this paper a construction of encoding and decoding procedures for
double %1 error correcting optimal(12,8) linear code over ring Zs is presented.

Keywords: Error correcting codes, Codes over the ring Zs, Encoding and
Decoding procedures.

1. Introduction

Codes over finite rings, particularly over integer residue rings and their applications in coding
theory have been studied for a long time. Errors happening in the channel are basically
asymmetrical; they also have a limited magnitude and this effect is particularly applicable to
flash memories.There are many constructed codes capable to correct up to two errors of value
+1 .The earliest paper discussing the codes over the ring Z, of integers modulo A are due to
Blake [1], [2].

The optimality criteria for the linear code over fixed ring Z,, was considered in 2 ways in
[3]. First of all, recall that the code of the length n is optimal-1 if it has a minimum possible
number of parity check symbols. Secondly, optimality-2 criteria for the code is that for a given
number of parity check symbols it has a maximum possible length. Here, we propose to
construct encoding and decoding algorithms for the optimal codes. The code presented in this
paper satisfies the optimality criteria-1([3]). At this point we do not know any codes that satisfy
the optimality criteria-2. There have been encoding and decoding procedures for the (4, 2) code
over ring Zy in [4]. Implementation of codes over large alphabets is much more difficult
compared with small alphabets. In this paper a construction of encoding and decoding
procedures of (12, 8) linear code over ring Z5 correcting double +1 errors is presented.
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2. Presentation of the Code
Let a linear (12, 4) code over ring Zs be given by the following parity check matrix H:

111110123 411
H:012342222211
32 4 4 2 3 2 4 4 2 11
1 11113 2 4 4 2 0 4

A linear code over Zs given by the parity check matrix H can correct up to two errors of the type
11, because H has a property according to which all the syndromes resulting from adding and
subtracting operations between any two columns of the matrix H are different (+hit hj and
hi#hj)(proof of this you can see in [3]).

In this case the number of combinations for each code word that can be corrected is (1 + 12 *
2 + (12 choose 2) * 4) = 289.

For encoding every vector in Zs we should have the generator matrix G. For this we should
construct a combinatorial equivalent matrix H' from matrix H.

10 003 10 3 4 3 40
H’=0 1 0 0 2 2 4 4 0 2 4 3
0 01 000 2 42131
0 00113 2 0 4 4 3 3

In this matrix all 289 possible syndromes will be different, too.
From [5] we know, that

GH'" =0. @))
If H' = [—PT|I,_y], then G = [I;|P] (the reverse statement is also true), where I, is a k * k

identity matrix and P is a k * (n — k) matrix[5].
Thus, we can construct the generator matrix G:

2 3 041 0 0 0 0 0 0 O
4 3 02 01 0 0 O0O0OO0OO
0133001 0O0O0TO0TO0
G = 21100 001 0000
10 3100 0 0 1 0 0O
23 4100000100
112 2 00 0 0 0 O0 1O
0 2 4 2 0 0 0 0 0 0 0 1
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3. Encoding and Decoding Procedures

3.1 Encoding Procedure

In our scheme the message was presented by 8-tuples in Zs. Let G be a generator matrix for
(12,8) linear code. v = (a4, a,, as, ..., ag) is an arbitrary 8-tuple, and consider the vector u that
is the linear combination of columns G with q; is the i* coefficient.

u =v6 = (cq1,Cy,C3,Cq,04,05,0a3, ..., Ag),

where the first 4 components of the code vector are the check symbols, the next 8 components
are information symbols and

¢ = (Z{-"’zl aipij)modS. 2)

Example.
Let (3400211 4)bethe message vector in Zs. From (2) we can obtain check symbols.
For example, the first check symbol is ci:

g = B3*2)+ 44+ (0x0)+ (0+2)+ 2*xD+ (1+2)+ A+ + (4%0) =

=6 +16+0+0+2+2+1+0 = 27mod5 = 2.

Similarly, we can find other 3 check symbols:

C2=3, C3=3, C4_=3.

After performing other multiple operations with matrix G we obtain this encoded vector:
(233334002114).

3.2 Decoding Procedure

In this section we describe the decoding procedure:

1.

Receiver multiplies the vector with every column of matrix H' and gets the syndrome
S =vH'".If S = (0,0,0,0) then there were not any errors in the received vector.

2. If the calculated syndrome S is a nonzero vector, then there are some errors. This

(12,8) code can correct only up to two errors with magnitude 1. We know that all
possible syndromes of matrix H' are different (+h;, 2h;andh; # h;) (the number of
them is 288 and syndrome (0,0,0,0)). After calculating the syndrome the receiver knows
from which two columns of the matrix H’ the syndrome was resulted, consequently, he
can find the two corresponding components of the vector, where the error was occurred
and the direction of the error (if +h;, then upward direction or if = —h; downward
direction). On the other hand, if in the table of syndromes we do not have the resulted
syndrome, then we cannot correct this kind of errors.

After finding the error components the receiver adds or subtracts 1 from them
(he adds if downward, else subtracts) and obtains the sent code vector
(€1,€2,€3,€4,a4,a5,as3,...,ag). So (aq,a,, as, ..., ag) is our message vector.
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Example.

(233334002114) is an encoded vector from the previous example. Let there
occur 2 errors in the channel, and the receiver get the vector (23333404221 4).
After performing multiple operations with rows of matrix H' the receiver obtains the
syndrome (0 3 2 4). Next from the table of syndromes he finds the corresponding columns,
now they are -8 and 10. Hence, the syndrome (0 3 2 4) was resulted from adding a negated
column 8 of matrix H to column

-3 43 0
—4 42 -2 _

T4 11 = _g(mods) = (0324),
0 +4 4

(becausein Z5,0 = 5, =1 =4, =2 =3, =3 = 2, =4 = 1).

Hence, the error positions of encoded vector are 8 and 10 (in 8" downward direction and in
10" upward).

So, he adds 1 to 8" component and subtracts 1 from 10" of vector
(233334042214) and obtains the sent encoded vector(233334002114).
Consequently, the message vectoris (3400211 4).

Conclusion

In this paper a construction of encoding and decoding procedures of optimal-1 (12,8) linear code
over ring Zg correcting double +1 errors is presented. We propose that this approach can be
extended for constructing similar procedures for the optimal codes over other rings Z,, and the
research in this direction will follow.
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Abstract

We study competition problems defined in the class where Space of
Solutions is a Reproducible Game Tree (RGT). Personalized Planning and
Integrated Testing algorithms were developed for searching optimal strategies
in RGT problems. Hereinafter we develop structures for plans and goals in
PPIT, construct strategy searching algorithms by plans and demonstrate their
adequacy for chess endgame examples.
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1. Introduction

1.1. In [2] the variety of problems was identified as a class where Space of possible Solutions
can be specified by Reproducible combinatorial Game Trees (RGT) and unified algorithms and
software were developed, RGT Solver, for elaborating optimal strategies for any input specified
problem of the class.
The RGT is a spacious class of problems with only a few following requirements to belong to:
- there are (a) interacting actors ( players, competitors, etc.) performing (b) identified
types of actions in the (c¢) specified moments of time and (d) specified types of situations
- there are identified benefits for each of the actors
- the situations the actors act in and transformed after the actions can be specified by
certain rules, regularities.
Many security and competition problems belong to RGT class. Specifically, these are network
Intrusion Protection (IP), Management in oligopoly competitions and Chess-like combinatorial
problems, many other security problems such as Computer Terrorism Countermeasures, Disaster
Forecast and Prevention, Information Security.
1.2. Unified RGT specification of problems makes possible to design a unified Solver for the
problems of the class.

Solver of the RGT problems is a package [7] aimed to acquire strategic expert knowledge to
become comparable with a human in solving hard combinatorial competing and combating
problems. In fact, the following three tasks of expert knowledge acquisition can be identified in
the process:
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- construction of the package of programs sufficient to acquire the meanings of the units
of vocabulary (UV) of problems
- construction of procedures for regular acquisition of the meanings of UV by the
package
- provision of means measuring the effectiveness of solutions of RGT problems.
The limitations in designing effective package were formulated as follows:
- be able to store typical categories of communalized knowledge as well as the
personalized one and depend on them in strategy formation
- be able to test approximate knowledge-based hypothesis on strategies in questioned
situation by reliable means, for example, using game tree search techniques.
The second task of acquisition of complex expert knowledge was planned to solve in the
following two stages:
- proving the sufficiency, i.e. proving that Solver, in principle, can acquire the meanings
of expert knowledge of an intensive RGT problem, e.g., for the kernel RGT chess game
- ensuring regularity, i.e. to develop procedures for regular acquisition of RGT problems
and meanings of UV of those problems.
1.3. Regular improvement of Solver by expert knowledge is studied for chess, where the
problems of knowledge representation and consistent inclusion into the programs stay central
since the pioneering work by Shannon in 1950.
Players indicate and communicate chess knowledge by units of vocabulary and are able to form
corresponding contents. Whether it is possible to form equal contents by computers remains
questionionable.

The approaches to regular inclusion of chess knowledge into strategy formation process are
described in [5]. Then try to bring common handbook knowledge to cut the search in the game
tree. The frontiers of those approaches can be revealed by understanding the role and proportion
of the personalized chess expertise compared with the common, communicable one.

1.4. Studies of knowledge-based strategies in the Institute for Informatics and Automation
Problems of the National Academy of Sciences of the Republic of Armenia have been started in
1961 and noticeable results were published in the Laboratories of ‘“Mathematical Logic”
and “Cognitive Algorithms and Models” led by I. Zaslavski [1] and E. Pogossian [2, 3, 6].
Designed and developed PPIT (Personalized planning and integrated testing) [2, 6] algorithms
indicate the optimal strategy by effective usage of expert knowledge. The algorithms had been
tested for a variety of problems, for chess, Reti and Nodarishvili etudes [6], for intrusion
protection problems [3]. In the PPIT algorithms predefined set of knowledge was used which
was strongly specific to the solving problem and did not provide a generic and regular way to
define knowledge and reveal strategies from them. This approach reduced the abilities of
algorithm execution, since it required writing a new program to solve each certain situation and
each of them was useful only for the given situations, so the program developed for Reti etude
could be used only to solve this etude.

In the RGT Solver strategy searching algorithms were not yet suggested to provide general
solution while plans used in PPIT algorithms are only generic descriptions of strategies.

In the following we describe planning-based strategy searching algorithms within the frame of
Solver package.

In the first section we consider structuring of plans and goals. We need these structures for
strategy generation algorithms. In the second one the algorithm that searches for a strategy to
accomplish the plan and in the last section an example demonstrating adequacy of structures and
strategy searching algorithm are described.
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2. Contributing to Personalized Planning and Integrated Testing (PPIT)
Algorithms

2.1. State of the Art
2.1.1. The Basics of PPIT

For the strategy construction we use PPIT algorithm, which creates strategies using plans. Plans
are certain general descriptions of strategies. For some positions in chess plans might be
occupying the center or the corners of the board. Each plan represents a hierarchy of goals.
Those are the goals which a player tries to achieve in current situation while playing by the plan.
The essences of the plans are to select the goals which get the maximal profit.
The PPIT program was designed as a composition of the following basic units:

Reducing Hopeless Plans (RHP)

Choosing Plans with Max Utility (CPMU)

Generating Moves by a Plan (GMP)

Given a questioned position P1 and a store of plans, RHP recommends to CPMU a list L1 of
plans promising by some not necessary proved reasons to be analyzed in P1. The core of the unit
is knowledge in classification of chess positions allowing identifying the niche in the store of
knowledge the most relevant for analysis the position. If the store of knowledge is rich and P1 is
identified properly it can provide a ready-to-use portion of knowledge to direct further game
playing process by GMP unit. Otherwise, RHP, realizing a reduced version of CPMU, identifies
L1 and passes the control to CPMU.

CPMU recommends to GMP to continue to play by current plan if L1 coincides with list LO of
plans formed in the previous position PO and changes in P1 are not essential enough to influence
the utility of current plan.

If changes in P1 are essential, CPMU analyzes L.1 completely to find a plan with max utility and
to address it to GMP as a new current plan. Otherwise, CPMU forms a new complementary
list L1/ L1*L0 from the plans of L1 have not been analyzed, yet, in L0, finds a plan with the best
utility in that list and comparing it with the utility of the current plan recommends one of them
with a higher utility.

To calculate utilities of the attribute, goal and plan type units of chess knowledge, we represent
them as operators over the corresponding arguments as follows:
» for basic attributes the arguments are characteristics of the states of squares in the

questioned positions, including data on captures of pieces, threats, occupations, etc.;

» for composed attributes, including concepts and goals, the arguments are subsets of values
of basic attributes relevant to the analyzed positions;
» for plans the arguments are utilities of the goals associated with the realization of those
plans.
Utilities of arguments of basic attributes are calculated by the trajectory-zones based technique
(TZT) [4, 6] originally suggested to estimate utilities of captures only of the opponent pieces. For
example, to choose capture with max utility TZT chains the moves to each piece of the opponent
(trajectories) without accounting possible handicaps for real capturing then using all available
knowledge “plays the zones” of the game tree induced by the trajectories followed by estimation
of their values to choose the best.
The utility of units of knowledge the operators assemble from the utilities of the corresponding
arguments in some predetermined ordering. Thus, each operator can provide by a request the
arguments which are analyzed at the moment.
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For example, realizing the current plan the shell can determine the goal in the agenda which in
turn determines basic attributes to be considered followed by indication of the arguments of
those attributes.

Utility estimation operators rely on the principle of integration of all diversity of units of
knowledge the shell possesses at the moment. In fact, the operators represent a kind of expert
knowledge with a variety of mechanisms and leverages to make them better. Along with
dynamically changed parametric values of pieces they can include rules, positions with known
values and strategies to realize them, other combinatorial structures. To estimate expected
utilities the operators take into account the cost of resources necessary to get them.

2.1.2. What has been done

In the initial C++ realization the units of knowledge are realized as OO classes with specialized
interfaces for each type of knowledge and one common for the shell itself.

e - &
i
w i | ]
i L wif
i
£ 1
&

Fig 1. Reti and Nodareishvili etudes.

The Solver is experimented in solving Reti and Nodareishvili etudes (Fig 1.) required by
Botvinnik[4, 5] intensive expert knowledge-based analysis not available to conventional chess
programs.

Experiments with these etudes proved that the shells, in principle, can acquire the contents of
units of vocabulary used by chess players and allow tuning them properly to solve expert
knowledge intensive chess problems.

The initial implementation of the PPIT algorithm used knowledge units that were hardcoded as
C++ language classes. The approach didn’t allow adding expert knowledge in a regular way —
there wasn’t any regular method for formalization and representation of the expert knowledge.
To achieve a regularity of expert knowledge acquisition for RGT problems a graphical language
similar to the UML, using which experts have possibility to formalize and insert meanings of the
communicable knowledge into the Solver.

The constituents of the Interface have been designed for specifying both game attributes and
rules. It was designed to acquire an expert knowledge in a form of patterns (abstracts). Abstracts
are used to define classes as well as operations, thereby providing a considerable uniformity of
the structure of the language [7, 10].

2.1.3. What We are Going to Do

We are developing algorithms and structures of strategy construction in the Solver package by
putting the stress on GMP module of PPIT algorithms first. So for the current state of
development we suppose that we already have plans defined in the Solver and we just need to
execute the defined plan. Plans are being defined by experts.

In PPIT Plan is defined as a set of Goals. We will describe their definitions below.
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As mentioned above the third module of PPIT GMP chooses the best move from a plan. We
meet the following issues

1.

2.

2.2,

Goals’ and Plans’ structures need to be generic and need to allow definition of the goals
independent of the problems they relate to.

An algorithm needs to be developed to search for strategies using defined plans and
goals. The algorithm needs to be generic and allow constructing strategies for any of
defined plans.

Structuring Goals and Plans

As we used to do before in our research, now we’re going to apply all the defined and developed
to the chess as a classical example of RGT game.
The goal in general needs to have the following structure.

A. It needs a preCondition situation, for which this goal is applicable, because there are

situations where a goal is not achievable, e.g., if the situation contains only two kings and
a pawn, a goal like “make check with the queen” can’t be applied. This basically defines
the pattern of situations where goal is meaningful. Note that for some goals the
preCondition can be any situation, so this is not obligatory to define some pattern in
preCondition.

It needs to have a postCondition situation. This is the situation which appears when the
goal is achieved, e.g., if the goal is “make check with the queen”, after it is achieved the
opponent king is under check of queen in the given situation, this describes the
postCondition situation. This defines the pattern of achieved by the goal situations.
Similar to preCondition, postCondition also can be any situation.

For some goals the depth of game tree needs to be more than one move, e.g., if the goal is
“make perpetual check”, we need to construct a tree and make several moves to see if this
goal can be achieved.

. Goals need to have some evaluation. There are goals like “put mate” or “avoid stalemate”

where there are only two evaluation states, which indicate whether the goal is achieved or
not, but there are some goals which do not show “an achieved” or “not” result, they show
how good the goal is achieved, e.g., a goal “keep king closer to the opponent king” goal
does need some criterion to define that the lesser distance between kings is, the better is
the goal evaluation. For that purpose we define evaluator, which is a set of prioritized
criteria that are being defined to evaluate the goal. For the above example only one
criterion exists and it is the distance between two kings.
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Fig 2. The structure of goals, their inputs and outputs.

From the described above we reveal that the goal consists of preCondition and postCondition,
which are situations (in the Solver we define these situations as composite abstracts), depth of
three, which is a number that defines how deep the tree can be constructed for checking if the
postCondition is achieved (by default it is 1) and the evaluator which evaluates how good the
goal is achieved.

Also one important point we need to define the concept of absolute goal (which is just a flag on
the goal), like mate in chess and indicates that the game is over.

The plan structure is basically defined in previous works of our team and nothing more is
required. It consists of prioritized goals.

2.3. Searching Strategies by Plans

Now when we have the structures of goals and plans, we can define how the algorithm should
work to find the best move from the given plan.

As described above the goal and the plan are completely generic in their structures regardless of
the problem they solve in RGT class and can be defined by a user, not only injected initially for a
certain problem.

The algorithm we have developed to execute the plans and to choose the best action by the
defined plan is the following.

As said above plan is a set of prioritized goals, we need to run over the goals and find the move
which best satisfies the highest priority goal.

The algorithm initially requires input situation (IS). For IS Solver does matching and finds the
list of active abstracts [8], where there are also actions active in that situation (the actions that are
possible to perform in IS), let’s call the list of active in IS actions <A>. Let’s assume we have
Plan P1 which has G1 to Gn goals in it (G1 has the highest priority and Gn has the lowest
priority). For the given P1 plan, the algorithm will take goals from the highest to the lowest
priority and do the following procedure.
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Passing list of actions <Ai.1> (for G1 <A> is passed instead of <Ai.1>). If the list is empty
then nothing can be done for this goal, just returning, else if the list has only one action,
then the list is returned and the procedure is stopped, as nothing to do if only one action
can be done, no need of further processing, we just do the action.

preCondition of the goal is checked against IS. If IS satisfies the pattern defined in the
preCondition all actions in the action set <Ai.1> are applied to the IS situation and
postCondition of current Giis checked to be achieved. The goal is being evaluated by the
criterion defined in the evaluator if there are any and the actions which satisfy the goal
best are being returned in the list <Ai> (this list will be used in the next goal processing).
An important point here is that if the goal is absolute and the list of actions achieving this
goal is not empty, then the procedure is stopped after this step and the list of actions is
returned.

If the returned list <Ai> is empty, <Ai1> list is being used instead, otherwise if the
returned list has only one item in it, the list is just returned and the procedure is stopped.
New Actions list is passed to the next goal and the procedure is being done for it from the
beginning (1 to 4).

When the procedure is done for all goals or stopped somewhere while performing 1-4
steps, it returns the list of actions, which indicate the best actions to achieve the plan in
the current situation. Any of those actions brings to the best move selection and thus
brings to the best strategy for the given P1 plan.

Any action from the returned list of actions is being selected (we just select the first one) and
applied to the IS. New situation is achieved after opponent’s action, so we already have a
changed situation, a new input situation. The plan execution starts again for the new situation
and a new best move is selected for the plan. The algorithm is stopped when the highest priority
goal is achieved or is not achievable at all (e.g., we have already put mate or no mate can be
achieved), which means that either the strategy for the given plan already worked or cannot be
achieved anymore.

Plans

The initial
The plan situation \
Matching the situation
to abstracs
\ 4
The list of permitted
actions
v,
Goalli]
| <Ai> |
<Ai>returned
‘ <Ai> list processing H best moves list

Fig 3. The schema of searching the best moves.
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3. Testing Adequacy of PPIT for Chess Endgames

3.1. Planning Chess Endgames
3.1.1. Planning “rook against king’’> endgame

Previously the strategy description language was defined in [9], where exact algorithms were
used to define each plan and its realization. For the demonstration of the language adequacy
“rook against king” chess endgame was described. For the demonstration of our algorithms we
will also consider chess endgames, like “rook against king” or “two rooks against king”.
To simplify the definitions we just assume our color is predefined and is white. We will try to
define only the mate on one direction to make it simpler, the same is done in [9]. Let’s take
vertical direction only for our future definitions. Similarly we will be able to define putting mate
on horizontal direction. Which one to choose vertical or horizontal is a job for another module in
PPIT algorithms expected to be developed in the scope of Solver during the future steps of our
research. Currently it will just construct strategy with the given certain plan.
A plan for the “rook against king” endgame will have the below goals

1. Put mate

2. Avoid stalemate (note that this is quite important because some situations can appear
with stalemate and we need to avoid it)
Escape rook from attack
Push king to the edge (without putting rook under attack)
Make a waiting move when preOpposition appears
Bring white king closer to the black king
The def1mt10n of each goal is described in details.

1. Putting mate - preCondition is any situation, and postCondition is a situation where
there’s mate, the depth is 1, this is absolute goal. There is no evaluator defined for this
goal.

2. Avoid stalemate - preCondition is again any situation and the postCondition is a situation
where no stalemate appears. The depth is 1 and no evaluator again.

3. Escape rook from attack - the preCondition is “rook under kings attack™ abstract, so the
goal is applicable only for situations where the rook is under the opponent king’s attack.
The postCondition is a situation where rook is not under attack and the vertical
coordinate of the rook is not changed. It has a depth value 1 and the evaluator will have
one criterion defined which calculates the distance of the rook and opponent king by
vertical direction.

4. Push king to the edge- preCondition can be any situation and postCondition is “rook is
not under attack”™ situation and depth is 2. The evaluator has two criteria. First is: moves
of opponent king are closer to the edge are better (this basically means the horizontal
distance of opponent king from the edge is calculated and for each action the value of
criterion is calculated as the highest value of king’s distance from the edge). The second
criterion for this goal evaluator is the number of actions opponent king can do, and the
better action is the action which allows fewer number of actions by opponent king.

5. Make a waiting move when preOpposition appears - preCondition is preOpposition
situation. PreOppositionByVertical abstract in the Solver can be defined as below.

This is a virtual abstract which has two attributes — black and white kings. It must have 4
specifications

o v W
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A. Whiteking.cordX = BlackKing.cordX + 2
whiteking.cordY = blackking.cordY + 1
B. Whiteking.cordX = BlackKing.cordX + 2
whiteking.cordY = blackking.cordY — 1
C. Whiteking.cordX = BlackKing.cordX - 2
whiteking.cordY = blackking.cordY + 1
D. Whiteking.cordX = BlackKing.cordX - 2
whiteking.cordY = blackking.cordY — 1

which is complete enough to define the precondition of preOpposition.

The postCondition is a situation where the king position is not changed and the rook vertical

coordinate is not changed. Depth of goal is 1. The evaluator again has one criterion, which

shows the distance of the rook from the opponent king.

6. Bring white king closer to the black king, but avoid opposition — preCondition and is any
situation and postCondition is a situation where no opposition appears, depth is 1. The
evaluator has one criterion, which defines the distance of the king from the opponent king
to be minimal. We can calculate this by the following formula
“(king.cordX-opponentKing.cordX)? + (king.cordY-opponentKing.cordY)*".

3.1.2. Planning “two rooks against king”’ Endgame

A winning plan for chess endgame “two rooks against king” will be

1. Put mate

2. Avoid stalemate

3. Escape rook from attack

4. Push king to the edge, where postCondition will be two rooks on the board and the
criterion of evaluator will be only opponent king’s distance from edge is minimal.

5. Escape rook which vertical coordinate is different from opponent king’s coordinate by 1
(rook.y = king.y + 1 or rook.y = king.y - 1).

3.2. Searching for Winning Strategy of ‘‘rook against king”

Chapter 3.1 describes how chess endgames can be brought into Solver and this chapter describes
the execution of the plans by the designed algorithm for “rook against king” example. For other
plans its work is similar. Let’s see how the algorithm works for a situation.

'ﬂ-

l.l IEI

Fig 4. K., R. vs. B.K., An initial position.
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Algorithm tries to find moves which bring to mate, and returns the empty list.

2. Since the returned list of the 1% goal is empty it takes the initial list of moves and returns
the whole list of possible moves since all of them brings to situations where there is no
stalemate, so the whole list of moves is passed to the 3™ step

3. “Escape rook from attack™ goal is not applicable for this situation, so it just does nothing

4. “Push king to the edge” for all the moves that does not put rook under attack it calculates
the first criterion value. Let’s see what values it assigns to three of moves.

a.1. Rc2... this puts check to the black king, for all king moves it calculates the
distance from the vertical edge. King moves can be Kd4, Kd3, Kb4... for Kd4
and Kd3 it assigns will assign the highest value of 4 (the distance from edge is 4).
Kb4 will have value 2, so the value assigned to move Rc2 is 4.
b.1. Rd2... king can do moves Kc3, Kc5, Kb4... for Kb4 again value as mentioned
above is 2, for Kc3 and Kc5 is 3, so the value for Rd2 move is 3.
c.1. Rg3... in this case also black king can move to d4 position, so the value will be
4.
Similarly all moves other than Rd2 will have 4 value, the minimum value is 3, and
only Rd2 has that, so after processing the 4" goal the algorithm will return move Rd2
Since only Rd2 move is returned the algorithm is not processed anymore and this move is
applied.
Let’s assume black does Kc3 move (attacking rook).

Fig 5. The left: the position after Rd2. The right: the position after Kc3.

After Kc3 move algorithm works again
1. For mate goal again empty list is returned
2. For stalemate all moves list is returned
3. “Escape rook from attack” goal’s preCondition is matched to the situation and rook
moves are considered to achieve the goal where rook is not under black king’s attack
since postCondition is “rook not under attack”. The criterion to evaluate the move is
vertical distance of rook and black king, so Rd8 move is chosen since it has the highest
vertical distance from black king. Since the list has only one move in it, the procedure is
stopped here and Rd8 move is returned
Rd8 is applied to the situation. Let’s assume black makes Kc4 move.
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Fig 6. The left: the position after Rd8. The right: the position after Kc4.

Algorithm works again and now with the following result.

1

2.
3.
4.

For goal mate again empty list is returned

For stalemate all moves list is returned

No rook under attack so this is just omitted

“Push king to the edge” for all the moves where rook is not under attack it checks the
evaluator, which have two criteria, the 1* is kings distance from the edge is minimum. So
for moves Rd1, Rd2, Rd6, Rd7,Ke7, Ke5, Kf7, Kf6, Kf5 the distance of king from the
edge will be calculated as it was done for the 1*' move, and the value will be 3, which is
selected as the minimum value. Then the second criterion (which is the number of moves
opponent king can make) is checked for the moves which are best for criterion 1. Number
of moves of black king is always 5 for all the mentioned moves. So the whole list is
returned from this goal processing procedure.

The situation is not a preOpposition, so preCondition is not matched, this goal is just
omitted.

“Bringing king closer” preCondition is any situations, and postCondition is a situation
where no opposition appears. The list of moves is [Rd1, Rd2, Rd6, Rd7, Ke7, Ke5, Kf7,
Kf6, Kf5], which does not bring to opposition, so all of them satisfy postCondition. The
evaluator criterion is that distance between two kings needs to be minimum. For the
moves by rook distance value will be 8 ((5 -3)* + (6-4)%). For king moving by f vertical
the value will be rising, e.g., after Kf6 criterion returns 13 ((6 -3)* + (6-4)). The best
move will be Ke5, which will have evaluation value 5 ((5 -3)> + (5-4)%). Ke5 will be
returned.

Since only Ke5 is returned this is applied to the situation. To make the example shorter let’s
consider Kd5 move for black.

Fig 7. The left: the position after Ke5. The right: the position after Kc5.
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After Kc5 move similar to the 1% move for “push king to the edge goal” Rc8 move will be
selected. Again we will assign black king moves which finish the game sooner, we will consider
the move Kb4. So after the following moves

1. Rd2 Kc3 2. Rd8 Kc4 3. Ke5 Kc5 4. Rc8 Kb4 5. Kd5 Kb5 6. Rb8 Ka4 7. Kc5 Ka3 8.
Kc4 Ka2 9. Kc3 Kal 10. Kc2 Ka2.

After the 10™ move (Ka2 by black) the algorithm will work and find that mate is achievable and
Ra8 move will be returned. This move will be applied and the plan is achieved.

e e
L,
EI ﬁ !:I:I

Fig 8. The position of putting mate.

4. Conclusion

1.

Structures of plans and goals are defined for the Solver of RGT class allowing user to
describe generic plans and goals for any problem of this class in a regular manner. Goals
are defined as a composition of preCondition, postCondition situations, depth of game
tree to achieve the goal and evaluator to evaluate the utility achieved in a situation while
accomplishing the goal. Plans are sets of prioritized goals.
An algorithm of searching strategy by a plan was constructed and developed based on
PPIT algorithms previously developed by our team for certain problems and with injected
knowledge usage. The algorithm works only with defined plans and goals, regardless of
the problem it solves. Previously the constructed PPIT consists of three modules RHP,
CPMU, GMP.
a.In the following we developed algorithms for GMP module
b.Future development of other modules within the scope of Solver to complete PPIT
algorithm are in progress now, which is related to constructing algorithms to
choosing the best plan from the given list of plans. This corresponds to CPMU
module.
For the current state we assume that expert knowledge for plans is being defined by a
user but in the development process we aim to achieve creating algorithms for Solver to
generate plans by itself relying on the knowledge set it already has for the game.
Demonstration of the structures and the algorithms were carried out for chess endgames,

their adequacy is shown. More experiments are in progress now for different chess
situations, particularly Reti etude planning is in progress now.
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Lyuwnwljubph b ypubbbph jupnignid wbdtwdnpdusd
wjwbwynpdwb b yjwbbbkph hunbkgpugyws
ptunuynpdwt hwdwp

U. @phgnpjut
Udthnthnid

Ublp nuunidtwuhpmd kup dpgulguyhll uinhpitpp vwhdwigws npubu pu,
npnkn ndnmudubph pwqunipniup Jhkpwpunwungpbih dwe E O (RGT): Upwljdws Lu
Utudtwynpyws yjuwwynpdw b hputnbgpugdus phunwuynpdw wignphpdutp RGT
hughpubpnid  jujugnyt pwquuyupnipjuit  hunpdwt  hwdwp: Uowwnwbpnid
qupqugymd ki twwwnwlubph b wjwbubph YJupmigqusputp, YJupnigymd E
puqUuyupnipjul thtnpdwt wgnphpd pun yuih b gnigunpymud £ upwbg
hhdtwynpnipiniup:

CTpyKTypHpOBaHUE LIEJIEN U TIJIAHOB JIJIS IEPCOHATU3UPOBAHHOTO
TJTAHUPOBAHUSA U UHTETPUPOBAHHOTO TECTUPOBAHUS

C. I'puropsin

AHHOTAIUA

PazpaGoTanpl anropuTtMbl M HPOTrpaMMbl NPEACTABICHHUS IUVIAHOB M IEJIeH MPH PELICHUU
3agaud kiacca RGT. IlpencraBieHo omucaHWe MOWMCKA CTPATETHil HAa OCHOBE IUIAHOB IS
nakeTa Solver. OG0CHOBaHHOCTH aJITOPUTMOB MOKa3aHa Ha MPUMEPE MaXMATHBIX YHIIIIHAICH.
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