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Abstract

In the following paper, we will define conditions, which need to be satisfied in
order for the maximum entropy problem applied in European call options to have a
solution in a general n-dimensional case. We will also find a minimum right boundary
for the price range in order to have at least one risk neutral measure satisfying the
option pricing formula. The results significantly reduce the computational time of
optimization algorithms used in maximum entropy problem.
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1. Introduction

The maximum entropy methodology has recently started to become a quite popular tool
with a huge potential of application in different fields [1, 2, 3, 4]. The core of the theory is
based on Shannon’s classical definition of information entropy [5], which is a crucial foun-
dation in information theory. The maximum entropy approach has been broadly studied
for its application in finance and financial extrapolation [6], and there have been significant
contributions to its development since then, including the application of Legendre transforms
[7], partially finite convex programming [8], the employment of risk neutral moments [9], as
well as the application of the problem as a non-parametric approach in American options
pricing [10]. By theory, in the discrete case, the price of a European call option should be
equal to the mathematical expectation of future pay-offs’ discounted value, thus lying in
their convex hull. In reality, actual market prices may be biased from the theoretical ones
[11] and lie out of the convex hull. We will concentrate on the derivation of conditions for
the existence of solution which will not only reduce the computational time but will also
result in an automated distribution recovery process [12, 13, 14] and will later allow us to
develop algorithmic trading strategies that train on huge data sets.

2. Outline of the Problem

Consider having European call options for n different strike prices. Let us denote the vector
of strike prices with K and the vector of future states with X. X and K needn’t be of the
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same dimension. Maximum entropy methodology seeks a risk neutral probability measure
p, such that
Ap =, (1)

Zpi =1, p >0, (2)
i1

S(p) = Zp,-ln(pi) is maximal, (3)
i=1
where b is the vector of current option prices’ future values for each strike and A is
(X7 — KDt (Xo— KDt ... (X, — KT
: : : , (4)
(X1 — Kt (Xo—K)t ... (X, —K,)"

where ()" = maz(x,0). The probability vector p and the vector of future states X have
the same dimension, in fact p; is the probability mass assigned to the future state X;. The
distribution of future states will change as we change the state vector X. The question
that interests us is what kind of state vector should be considered in order for a probability
measure satisfying (1), (2) to exist in the first place. It is obvious that the greater the
number of A’s linearly independent columns is, the bigger will their convex hull be, and so
the more p vectors may exist satisfying (1), (2). So first of all we will consider the state
vector (Ky,..., K,, K, +t) for some arbitrary t. Matrix A will now have the form below.

(0 Ko—K, ... K,—-K  K,—K +t]
0 0 .. K, — K, K, — Ky+t
: : : : ()
0 0 ... K, - K, K,—K,_1+t1
0 0 o 0 t |
We will denote A’s columns by ag, a1, . .., a,. Let a(t) denote the angle between a,, and I,
where [ is the unit vector (1,...,1). It is easy to show that lim; ., cosa(t) = 1, so in order

to see if any ¢ exists, s.t. (1), (2) are satisfied, we will consider I instead of a,, assuming
that the angle between b and [ isn’t 0 (this assumption holds throughout the text). Let’s
consider the following n + 1 hyperplane - vector pairs (we denote hyperplanes by hp(-)).
(hp(ay, as, ... an_1,1), ag
hp(a07a27"‘7an—17-[)7 ay
(6)
hp(ag,a1,...,an-2,1), an_q

\hp(a07a17"‘7an—27an—1>7 I

For each hyperplane above, we will denote by N; its normal “pointing” in the direction
of the associated vector a; (note that ag = (0,...,0))

(No —ai,ap—ay) >0

Ni,a1) >
:< ) >0 | @

(N, an) =0
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where (-, -) denotes the scalar (dot) product.

3. Existence of Solution

The following proposition is obvious.

Proposition 1. There exists a finite t, s.t. (1), (2) are satisfied if and only if the following
mequalities take place.

<N0—a1,b—a1> ZO

Ny, b) >
:< ) >0 | -

(N,,b) >0

We now proceed to finding a minimal value for ¢, s.t. conditions (1) and (2) are satisfied.
b represents the vector of prices and, thus its components are non-negative. Assume that
(8) takes place. If the last component of b, b, is 0, then the minimal value of ¢ for which
b € conv(ag,ay,...,an-1,a,) is 0 (conv(-) denotes the convex hull). In case b, is greater
than 0, we will use the following lemmas (note that a,, = a,,_1 + t1).

Lemma 1. Ju > 0, s.t. Vt for which b € conv(ag, ..., ap_1,0,), t > > 0.

Proof. Assume the opposite, then Ve > 0 3ty < €, s.t. Fvp,..., Y, % >0, D iy = 1, for
which yoao + ... + yna, = b. Let

where p is the Euclidean distance. For the € above there exists 0 < tg < €, s.t. ypap+. ..+
Yntn =b & a0+ ... + (Va1 + V)1 + toynd = b= p(yoa0 + ... + (Y1 + Vn)an-1,b) =
p(b —toynI,b) < top(I,b) < r, resulting in a contradiction. §

Lemma 2. If for some ty b € conv(ay, ..., ay), then this also holds for any t > t,.

Proof. Let t > o, Vo1 = T+ T, = 7,2, then v, + 7, = Y1 + Y and
Yoo + - oo F Vo 1Gn—1 F+ VO = Y000 + ... + Ynan =011

We now know that the set T of all possible t’s for which b € conv(ay, . .., a,) is bounded
from below by a positive number and unbounded from above. The next lemma proves that
for t = inf T b is again in the convex hull conv(ay, ..., a,).

Lemma 3. Let T be the set of allt’s, s.t. b € conv(ag,...,a,), thent =infT € T.

Proof. Let’s assume the opposite. As t is the infimum of 7', then for Ve > 0 Jtq € T, s.t.
0<ty—t<e Let

r= in p(b,9).

g€conv(ag,...,an—1,an—1+tl)
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,
€ =

p(b, 1)

By the assumption there exists a to < t+¢€, s.t. b = yao+...+Vua,. Let a;b = Qy,_1+11,

then p(Y0ao + - - - + Yn-1n_1 + Yna,, b) = p(b+ (t — to)I,b) < (to —t)p(I,b) < r, resulting in
a contradiction. g

Based on the lemmas we may now formulate the main theorem of the article.

Theorem 1. If condition (8) is satisfied, the angle between b and I isn’t 0, then b €
conv(ag, ..., a,), where a, = a,—1 + tI and v,—1 = 0 in the linear representation of b by
vectors ag, . . . a,. The minimal value of t, t is given by

bn(Kn - anl)

t =
B bn—l - bn

(9)

Proof. We only need to show that ~,_; = 0. Assume it’s not, then

b="a0+ ...+ Ynln = Y000 + ..+ Yn-10n-1 + V(a1 +1I) =

1Yn
Yoag + .-+ (Y +Vne1)an1+ —————— (W + V1)L =
o ( )y %+%_1( 2
bt (it )+ —E )
YoQo T - .- Yn T Vn-1)\Op—1 T —— —1).
'771 + ’Ynfl
As 7, > 0, then
1Yn
oy
Tn + Yn—1
Which is a contradiction. Having known that a,_; doesn’t ”participate” in the linear
representation of b, we only need to find the value of ¢, s.t. b € hp(ao,...,a,_2,a,). For

that we will find the normal N of the hyperplane and solve (N,b) = 0 for t. We find N by
observing the determinant of the following matrix based on the vectors from the hyperplane.

K, — K, 0 0]
K — K, K — Ky 0 0

‘ (10)
K, .- K K,1—Ky ... 0 0
K,—-Ki+t K,—Ky+t ... K,—K,,_1+t t
€1 €9 €n—1 €n

The determinant is
(-1)2n_1t<K2 — Kl) e (Kn—l — Kn_g)en_1—|—
(—1)*"(K, — K1 +1)(Ky — K1) ... (Ky_y — Kp_s)en.
So N =(0,...,0,—t, K, — K,_1 +1), and therefore

bn(Kn - Kn—l)
bn—l - bn .

(N,b) =0t =
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4. Conclusion

As a result we obtained a way of checking whether a solution to the maximum entropy
problem applied in European call options exists, before starting the optimization. If (8)
takes place, then in order for the solution to exist, the right bound of future states vector
must be greater than or equal to the value of ¢ described in the theorem above. Checking
the existence of solution prevents the user from unknowingly proceeding to the stage of
entropy maximization over an empty set of discrete probability distributions, which would
yield unpredictable results.
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CGnhwlnip N-swthwGh niypnmyd wnwybjugni G
LGupnwhwjh fulingph nodwl gnynipyniln

k. Glnpgjub L L. Uwpqupjui
Udthnthnid

Ltunlyw) wyuwwnwlpnid juwhdw(bip wyuwjdwGitp, npnlg pujuwpupyuwonipniGG wi-
hpwdtywn £ plnhwlnp n-sjuthwGh ghypmd Gypnuyuwwb owyghnlGlGtpnmd Yhpwnynn w-
nuwybjugm )G EGupnyhwjh juGnph odwl gnynipjul hwdwp: ‘Lwl YqunGhkGp qGuyhG
dhowlwjph GJuqugnt)G wowynnijul vwhdwln’ owghnGGtph qGwgnjugiwl puGuwduhG
pwywpwnpnn wnljuql vty nhulhg stqnp swthh gnympjwl hwdiwp: Unwgywd wprnilp-
Gbpp gqquihnptl (uqbglmy GG wnwybjuwgniyyG LGunpnuyhwyh fulnph dt9 oquuuwgnpoynn
owyumhvihqughnb wjgnphpilGtph hwyyupyuyhl dwudiwbtwyn:

Cy1lecTBOoBaHue pelieHuss IpoOAeMBl MAaKCUMAABHOMU
SHTpoOIIMU B 001eM N-MepHOM CAydYae

P. 'eBopran u H. Maprapsau

AnHoTanuys

B caepyromieli ctaTbe MBI OIIPEAEANM YCAOBHUS, BEIIIOAHEHUE KOTOPBIX HEOOXOAUMO
AASL CYIIeCTBOBAHMS pelleHUs NPOOAeMbl MAKCUMAAbHOW 3HTPOIWH, IPUMEHSeMOU
B EBponenickux onnuoHax, B OOIlleM N-MepHOM cAy4Yae. MBI TakykKe HaVAEeM MU-
HUMAABHYIO IIPaBYIO I'DAHUIy AAS IIEHOBOTO AMAIla30HAa, KOTOpasd HEOOXOAWMA AN
CYIII€CTBOBAHMA XOTS OBl OAHOU PUCK-HEUTPAABHOU MePHI YAOBAETBOPSIOIIEN (popMyAae
IIleHOOOpa30BaHMus OIMUOHOB. [loanydeHHBIE pe3yAbTaThHl 3HAYWTEABHO YMEHBIIAIOT
BBIYUCAUTEABHOE BpeMs ONTHUMHU3AIMOHHBIX AATOPUTMOB, HCIIOAB3yYEMBIX B 3aAa4e
MaKCHUMAABHOU 3HTPOIINU.
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