
Mathematical Problems of Computer Science 63, 81–101, 2025.
doi:10.51408/1963-0134

 UDC 544.12, 004.942

FlashRMSD: An Effective Approach for Symmetry-
Corrected RMSD Calculation with Extensive

Benchmark Analysis

Vahagn N. Altunyan

Yerevan State University, Yerevan, Armenia
e-mail: altunyanv@gmail.com

Abstract

Root-mean-square deviation (RMSD) is a crucial metric for quantifying molecular
structure similarity. However, the associated combinatorial challenges complicate the
calculation process when dealing with highly symmetric molecules. Although several open-
source tools have been developed to perform symmetry-corrected RMSD computations,
each has limitations in terms of speed, accuracy, or usability. In this paper, we introduce
FlashRMSD, a novel, rapid approach for symmetry-corrected RMSD calculation. In
addition, we present an extensive benchmark dataset to evaluate RMSD calculation tools
and provide a comparative analysis of existing methods alongside our proposed tool.
Keywords: Symmetry corrected RMSD, FlashRMSD, Molecular docking, Backtracking.
Article info: Received 30 March 2024; sent for review 1 April 2025; accepted 2 May 2025.

1. Introduction

Root Mean Square Deviation (RMSD) is a cornerstone metric in computational chemistry, widely
employed to measure the similarity between molecular conformations. It is pivotal in applications
such as assessing docking outcomes, guiding lead optimization, and filtering large sets of
candidate structures in high-throughput screening. However, RMSD calculations become
problematic when molecules exhibit symmetry—such as repeated functional groups or identical
substituents—because standard atom-to-atom mappings often ignore these chemical equivalences.
This oversight can produce inflated RMSD values and hinder accurate comparisons.

81

FlashRMSD: An Effective Approach for Symmetry-Corrected RMSD Calculation with Extensive Benchmark Analysis

82

Several open-source tools attempt to address these symmetry-related challenges, but each
exhibits notable constraints in terms of computational efficiency. Moreover, the field currently
lacks a standardized dataset that captures the full breadth of symmetrical molecular structures.
This absence complicates the fair evaluation of different RMSD methods, as it is challenging to
determine whether the observed failures originate from the algorithms themselves or from
insufficient testing.

Our previous studies [1] demonstrated that while existing RMSD tools can effectively process
highly symmetrical structures, they often struggle with certain specific molecular configurations
that are overlooked during benchmarking. These structural cases, left unexamined in typical tool
evaluations, highlight gaps in current methodologies and the need for more comprehensive
benchmarking datasets.

To address these challenges, we make two key contributions in this work:

1. Comprehensive Dataset – We curate a dataset designed to challenge RMSD tools by
incorporating molecules with diverse and tricky symmetry patterns that can mislead certain
tools into unnecessary computations. By spanning a broad range of molecular scaffolds,
this dataset provides a rigorous benchmark for evaluating both existing and novel methods.

2. FlashRMSD: A Symmetry-Corrected RMSD Tool – We introduce FlashRMSD, an
efficient approach for symmetry-aware RMSD calculation. Our method leverages an
optimized backtracking algorithm with pruning strategies to account for chemical
equivalences, ensuring both accuracy and computational efficiency.

The remainder of this paper is structured as follows. First, in Section 2, we describe the
construction and scope of our new dataset. Section 3 then introduces the FlashRMSD tool,
detailing its theoretical background and practical implementation. Next, in Section 4, we outline
the benchmark setup used to evaluate FlashRMSD alongside other RMSD calculation tools.
Finally, Section 5 presents our comparative results, and Section 6 discusses edge cases of
molecules that are challenging for some or all RMSD calculation tools.

1.1. Background and Related Work

1.1.1 RMSD and Symmetry Challenges

RMSD quantifies the structural similarity between two molecular conformations by measuring the
root mean squared distance between corresponding atoms. While seemingly straightforward,
RMSD calculations can be undermined by molecular symmetry. In symmetrical molecules,
multiple valid atom mappings exist, and failing to account for all chemically equivalent
correspondences can lead to erroneous or inflated RMSD values. These inaccuracies can influence
the results of tasks like molecular docking, virtual screening, and structure-based drug design,
where having reliable similarity metrics is crucial.

V. Altunyan 83

1.1.2 Existing RMSD Tools

Several RMSD tools have been developed, each tackling different aspects of the problem with
varying degrees of effectiveness:

● spyRMSD[2]:
Designed for flexibility and ease of use, spyRMSD integrates with popular libraries such
as RDKit and Open Babel, leveraging Python for accessibility. However, its reliance on
libraries for graph isomorphism calculations lacks problem-specific optimizations, making
it highly inefficient. Additionally, it offers limited support for bond-type variations.

● DockRMSD[3]:
Optimized for computational efficiency, DockRMSD is implemented in C, allowing for
rapid calculations with minimal overhead. However, its functionality is restricted to
specific MOL2 file formats, and it may fail silently (e.g., via segmentation faults) when
encountering format inconsistencies or complex symmetries. While it does account for
bond types, it silently ignores them if no valid mappings are found.

● obrms:
As part of the OpenBabel[4] cheminformatics toolkit, obrms supports multiple file formats
and cross-RMSD calculations. While it is both efficient and versatile, its packaging
introduces some overhead, making it slightly less efficient than DockRMSD.

Collectively, these tools highlight a common limitation: while each addresses specific user needs,
none effectively balances speed, reliability, and robust handling of symmetrical equivalences.
Furthermore, the absence of a comprehensive, standardized dataset encompassing diverse
symmetrical structures makes it challenging to objectively evaluate their strengths and
weaknesses.

1.1.3 Motivating a New Dataset

In the absence of a dedicated dataset that systematically tests RMSD performance on symmetrical
structures, evaluations often rely on ad hoc collections of molecules or focus on only a few specific
chemotypes. This approach fails to capture the breadth of symmetry types encountered in real-
world applications, ranging from simple ring systems to large, multiply substituted scaffolds.
By presenting a new dataset that features a wide range of symmetrical patterns, we aim to provide
a benchmark that can reveal subtle performance gaps in existing RMSD tools. This resource will
also serve as the testing ground for our proposed FlashRMSD tool, enabling transparent
comparisons and guiding future improvements in symmetry-corrected RMSD algorithms.

2. Dataset

Our dataset was constructed using molecules from two primary sources: the Chemical
Component Dictionary (CCD)1[5] and the Biologically Interesting Molecule Reference

1 https://www.wwpdb.org/data/ccd

https://www.wwpdb.org/data/ccd

FlashRMSD: An Effective Approach for Symmetry-Corrected RMSD Calculation with Extensive Benchmark Analysis

84

Dictionary (BIRD)2, both obtained from the RCSB Protein Data Bank (PDB). As of February
2024, the CCD dataset contained 45,622 molecules, primarily small organic compounds
commonly found in macromolecular crystallography, while the BIRD dataset contained 819
molecules, representing biologically relevant non-polymeric entities. These datasets were selected
for their structural diversity and derivation from real protein–ligand systems. They include a
number of challenging symmetric or pseudo-symmetric structures, which we analyze in detail
through specific case studies in Section 6.

2.1 Data Preprocessing

Since the datasets were originally in different formats, we generated a new conformation for each
entry, saved them in the SDF file format for further processing, and subsequently merged both
datasets.

Initial conformer generation was primarily performed using the EmbedMolecule function of
the RDKit toolkit [6], followed by structural optimization with the MMFF94 force field [7]. RDKit
was chosen due to its efficient 3D embedding algorithm, improved handling of torsional strain,
and its ability to generate high-quality conformers that are more physically realistic. In cases where
RDKit’s conformer generation failed, OpenBabel’s conformer generation was used as a fallback
due to its broader support for certain chemical structures and alternative embedding methods.
Entries for which both tools failed to generate conformers were excluded from the dataset.
Additionally, molecules containing fewer than five heavy atoms were removed to ensure structural
relevance and meaningful molecular modeling.

After preprocessing, the final dataset comprised 45,706 molecules. An overview of the dataset
is provided in Table 1.

Table 1: Overview of Molecule Sources․

Source Molecules
Retrieved

Molecules
Retained

Conformer Generation Tool
RDKit Openbabel

CCD 45622 44901 44630 271
BIRD 819 805 755 50
Total 46441 45706 45385 321

2.2 Conformer Generation

To generate realistic 3D conformations of molecules for downstream analysis (see Section 4), we
employed SMINA[8], a fork of AutoDock Vina, using structure-based docking against a protein
target.

The chosen target was HIV-1 protease from PDB entry 1EBY, selected for the following
reasons:

2 https://www.wwpdb.org/data/bird

https://www.wwpdb.org/data/bird

V. Altunyan 85

● Symmetrical Dimeric Structure: HIV-1 protease functions as a symmetrical homodimer,
which mirrors the structural symmetry observed in many small molecules, making it a
relevant docking environment.

● Large Binding Pocket: The active site is spacious and capable of accommodating a wide
variety of ligand sizes, supporting the diversity of our dataset.

For the docking simulations, default parameters were used with one exception: the
exhaustiveness setting, which determines the thoroughness of the search, was reduced from the
default value of 8 to 4 to obtain results within a reasonable computation time.

For each ligand, up to nine docked conformations were generated and saved in a single SDF
file. These conformations were subsequently used for downstream analyses, including symmetry
evaluation and conformational clustering.

2.3 Final Data Format and Organization

To ensure compatibility with various RMSD calculation tools, including DockRMSD, the dataset
underwent the following formatting and organization steps:

● Conversion to MOL2 Format: All SDF files containing multiple conformations per
molecule were converted to MOL2 format using the obabel tool from Openbabel toolkit,
ensuring broad compatibility with RMSD tools.

● Individual Conformation Files: In addition to multi-conformer files, separate files for
each conformation were generated in both SDF and MOL2 formats to facilitate structure-
specific analyses.

The dataset is systematically organized to provide clear accessibility:

● Parent Directories: Molecules are categorized based on their source repository:
o CCD/[MOLECULE_ID]/
o BIRD/[MOLECULE_ID]/

● Per-Molecule Subdirectories: Each molecule is stored in a folder named after its unique
identifier, which contains the following files:

o all_poses.sdf – Multi-conformation file in SDF format.
o all_poses.mol2 – Multi-conformation file in MOL2 format.
o pose_X.sdf – Individual conformation X in SDF format.
o pose_X.mol2 – Individual conformation X in MOL2 format.

This structured approach ensures efficient data retrieval, compatibility with docking validation
tools, and seamless RMSD analysis across different molecular modeling workflows.

2.4 Statistical Analysis of Benchmark Molecules

To better understand the composition and structural diversity of our dataset, we performed a
statistical analysis focusing on problem-related molecular properties like heavy atom count

FlashRMSD: An Effective Approach for Symmetry-Corrected RMSD Calculation with Extensive Benchmark Analysis

86

distribution, distinct atom types count distribution, and also combinatorial properties like
automorphisms count distribution. The results provide a comprehensive overview of the dataset’s
characteristics, aiding in molecular modeling and cheminformatics applications.

Heavy Atom Count Distribution: As noted earlier, atom count significantly impacts the
computational complexity of molecular comparison tasks. However, hydrogen atoms are typically
omitted in RMSD calculations, making heavy atom count a more relevant metric. In our dataset,
heavy atom counts range from 5 to 244, reflecting a wide range of molecular sizes. The majority
of molecules, however, contain fewer than 50 heavy atoms, indicating a concentration of compact,
chemically meaningful structures (Fig ․ 1).

Fig. 1. Log-scaled distribution of heavy atom counts across the dataset.

Distinct Atom Types Count Distribution: While not as directly influential as total or heavy atom
counts, the number of distinct atom types in a molecule can affect RMSD calculations by
increasing the number of potential matching groups. In our dataset, this value typically ranges
from 3 to 6, with a maximum of 8 (Fig. 2), reflecting a moderate yet meaningful degree of
elemental diversity. This variation further supports the structural richness and chemical diversity
of the dataset.

Fig. 2. Log-scaled distribution of distinct atom type counts across the dataset.

Automorphisms Count Distribution: We used the latest version (2.8.9) of the dreadnaut tool
from nauty&Traces [9] toolset to quantify molecular symmetry. Graph representation files were
generated for all molecular structures, which were then processed using dreadnaut to compute
the number of automorphisms for each molecule. The resulting statistics are summarized in Fig.
3. Notably, a large portion of the dataset falls into the <2, 2–5, and 5–10 bins. Molecules with

V. Altunyan 87

moderate symmetry (10–100 automorphisms) form a secondary peak, while highly symmetric
structures (over 1000 automorphisms) are rare.

Fig. 3: Log-scaled distribution of the number of automorphisms across the dataset.

3. FlashRMSD Tool

3.1 Overview

The FlashRMSD tool is designed for efficient and robust symmetry-corrected RMSD calculations,
supporting multiple molecular file formats including SDF, MOL, and MOL2, as well as files
containing multiple conformations. It accommodates both standard and advanced use cases
through a comprehensive set of configurable options.

The tool provides several key features:

● Naïve calculation (-n flag): Runs naïve search, by iterating over all permutations of
possible matching atom groups. Can be used for results validation.

● Hydrogen inclusion (-h flag): Includes hydrogen atoms in RMSD calculations.
● Bond order enforcement (-b flag): Ensures strict bond order matching during atom

mapping, preserving chemical integrity. This deterministic feature distinguishes
FlashRMSD from other tools by enforcing chemically valid matches.

● Verbose and assignment output (-v, -a flags): Provides detailed runtime diagnostics and
atom-to-atom assignment outputs for in-depth analysis.

● Cross-RMSD calculation (-x flag): Computes pairwise RMSD across all conformations
within a single file, similar to the functionality of obrms.

● Multi-query input support: Allows a reference conformation (first structure in a template
file) to be compared against all conformations in a query file, enabling batch comparison
workflows.

3.2 Algorithm

FlashRMSD utilizes a two-stage approach that combines descriptor-based atom featurization with
an optimized backtracking algorithm to achieve symmetry-aware atom mapping.

FlashRMSD: An Effective Approach for Symmetry-Corrected RMSD Calculation with Extensive Benchmark Analysis

88

Stage 1: Atom Descriptor Generation

Each atom is encoded with a descriptor array created via breadth-first traversal of the molecular
graph starting from that atom as a root. For each traversed atom, its periodic table number and the
distance from the root atom are encoded into a single integer (descriptor) using the formula:

𝐷𝐷 = 210 ⋅ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑃𝑃𝐷𝐷𝑃𝑃𝐷𝐷𝐷𝐷𝑃𝑃𝐷𝐷𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷
The resulting descriptor arrays for each atom are sorted and eventually hashed into a single integer.
Hashing is used to avoid costly array comparisons; thus, any consistent function can be used. The
encoding formula ensures that after sorting a descriptor array, descriptors from the same BFS
(Breadth-First Search) layer occupy adjacent positions. This has the same effect as if we kept an
array of descriptor arrays per distance from the root atom. In this way, a sorted descriptor array
effectively encodes all level neighborhood information, and so does its hash. As these values
encode BFS layers’ information, we’ll refer to them as Layer Data.

Although this stage has a complexity of 𝑂𝑂(𝐶𝐶 × 𝑃𝑃2) (where 𝐶𝐶 is the number of conformations
and 𝑃𝑃 the number of atoms), it lays the groundwork for efficient atom mapping. This approach
becomes particularly advantageous during cross-RMSD calculations. In a standard RMSD
comparison between two conformers, only two featurizations and one RMSD calculation are
required. However, in cross-RMSD mode, the process involves 𝐶𝐶 featurizations followed by
𝐶𝐶(𝐶𝐶 − 1)/2 RMSD computations. As the number of conformers increases, the computational load
shifts from featurization to RMSD calculation, highlighting the importance of optimizing the latter.

Here’s an example of how atom descriptors are generated for a single O atom of SO ₄

molecule (see Fig. 4).

Fig. 4. SO₄ molecule, with the sulfur atom shown in yellow and oxygen atoms in red.

During BFS traversal, we’ll visit O atom at distance 0, S atom at distance 1, and 3 more O atoms
at distance 2, thus O atoms descriptor will have the following value:

ℎ𝐷𝐷𝐷𝐷ℎ([0 + 8, 1024 + 16, 2048 + 8, 2048 + 8,2048 + 8]) = 1428496640

Stage 2: Atom Mapping via Backtracking

The following algorithm is presented for mapping atoms between a pair of conformations, after
the atom descriptor generation stage is completed for each:

● Candidate lists are generated for each atom in the first conformation based on descriptor
matches.

V. Altunyan 89

● An optimized backtracking search is performed to determine the best atom-to-atom
mapping, with the following optimization levels:

o Level 1: Naive backtracking using all candidates.
o Level 2: Trivial one-to-one matches are resolved and removed before backtracking

to reduce complexity.
o Level 3 (default): After excluding trivial matches, atoms are grouped into

independent blocks using a Disjoint Set Union (DSU) based on descriptor matches
or bonding. Each block is processed independently, and results are combined for
the final mapping.

Fig. 5. Flowchart of the FlashRMSD Algorithm.

This flowchart illustrates the two main stages of the FlashRMSD algorithm (see Fig. 5). The first
stage includes the atom featurization, where each atom's descriptor is generated through a breadth-
first traversal and hashed to produce a unique fingerprint, and computation mode determination.
The second stage depicts the pairwise mapping process: candidate list generation based on
matching descriptors, followed by optimizations including trivial mapping exclusion and block
decomposition, and finally, the backtracking procedure used to derive the optimal mapping.

4. Benchmark Setup

While RMSD is defined between two molecular conformations, in practical applications,
especially within automated pipelines, it is usually computed across multiple conformations. For
instance, in docking workflows, multiple binding poses are often generated and must be compared
with each other to identify distinct clusters. This step typically precedes more expensive stages
such as rescoring or molecular dynamics, making early-stage correctness and robustness crucial.
Therefore, a more scalable interface for cross-RMSD calculations is often more important. Tools

FlashRMSD: An Effective Approach for Symmetry-Corrected RMSD Calculation with Extensive Benchmark Analysis

90

that support efficient, reliable cross-RMSD interfaces better support real-world use cases such as
clustering, redundancy filtering, and structural diversity analysis.

Additionally, when RMSD tools are used repeatedly or integrated into long-running
workflows, even minor issues, such as memory leaks, crashes, or incorrect output, can propagate
and cause significant downstream errors. Therefore, we argue that benchmarking tools on their
cross-RMSD functionality is not only representative of real usage scenarios but also a more
comprehensive test of tool robustness and interface design.

In our benchmarking, we consider two complementary setups:

1. Cross-RMSD Native Benchmark – Tools are tested on their ability to compute all-pair
RMSD values across a set of poses through their native interface.

2. All-to-All Pairs RMSD Benchmark – Tools are also tested on computing the same
RMSD matrix using repeated two-pose calls to simulate scenarios where no cross-RMSD
interface is available.

Tools will be evaluated along three criteria:

● Reliability: Success rate across tasks, accounting for errors, crashes, indefinitely long
runtime, or invalid outputs.

● Correctness: Agreement with reference calculations using naïve but accurate RMSD
implementations.

● Performance: Execution time, measured only on cases where all tools succeed to ensure
fair comparison.

This setup allows us to assess both the core computational correctness and the practical utility of
RMSD tools in scalable scientific applications.

To ensure a fair and meaningful comparison across tools, we extended the functionality of
DockRMSD in two key ways. First, we modified the tool to support cross-RMSD computation
directly from a single multi-conformer input file. This significantly reduces the number of
redundant pairwise calls and mitigates file I/O overhead, aligning DockRMSD’s interface more
closely with tools like obrms and FlashRMSD that natively support cross-RMSD calculations.

Second, we addressed limitations in DockRMSD’s file parsing. The original implementation
only supported a narrow subset of MOL2 files, rejecting valid inputs that deviated from expected
formatting. We revised the file reading logic to accommodate a broader range of MOL2 variants
by relaxing strict constraints and improving parser robustness. These changes eliminate
unnecessary preprocessing steps and ensure compatibility with more diverse datasets, improving
DockRMSD’s utility in real-world workflows.

The resulting extended version, supporting both cross-RMSD input handling and enhanced
MOL2 compatibility, is referred to as DockRMSDExt in our benchmarks. This ensures that
performance and reliability comparisons across tools reflect differences in computational design,
rather than constraints imposed by tool interfaces or input formatting.

V. Altunyan 91

4.1 Benchmarking Environment and Tools

To ensure fair and reproducible comparison across RMSD calculation tools, all benchmarks were
conducted on a consistent hardware and software environment with the following specifications:

● CPU: AMD EPYC 9654 96-Core Processor
● RAM: 504 GB DDR4
● Operating System: Ubuntu 22.04 LTS (64-bit)
● Storage: NVMe SSD
● Python Version: 3.12.9 (used for automation, validation, and timing)

Each benchmarking task was run as a separate process to avoid system-level interference, and
wall-clock times were measured using Python-based orchestration scripts. All tools were tested
using their latest stable versions, compiled with default settings where applicable.

We evaluated the following tools:

● obrms
● FlashRMSD (Level 3)
● FlashRMSDNaive

o FlashRMSD tool with naïve flag set, iterates over all possible mappings after
layer data matching (Figure 5)

● DockRMSD
● DockRMSDExt

In this benchmark, we exclude spyRMSD due to its prohibitively slow performance and prior
evidence of inefficiency [1, 2], focusing instead on faster tools for runtime evaluation.

5. Results

5.1 Cross-RMSD Native Benchmark

This benchmark focuses on evaluating each tool’s capability to compute all-to-all RMSD values
across multiple conformations of the same molecule using their native cross-RMSD interfaces,
where available. This use case is central to workflows that require clustering or structural
deduplication prior to downstream analysis or simulation.

As mentioned before, DockRMSD doesn’t provide a native interface for such calculations,
thus, we’ll compare other tools against each other.

For this benchmark, each tool was provided with a single MOL2 file containing multiple
conformations of the same molecule. The expected output was a complete pairwise RMSD matrix
of size 𝑃𝑃 × 𝑃𝑃, where 𝑃𝑃 is the number of conformations in the input. Only the upper triangular part
(excluding the diagonal) was used for performance analysis, as RMSD matrices are symmetric.
To assess correctness, outputs were compared against results from FlashRMSDNaive, which
performs exhaustive symmetry correction without heuristics. Minor floating-point differences

FlashRMSD: An Effective Approach for Symmetry-Corrected RMSD Calculation with Extensive Benchmark Analysis

92

were allowed within a predefined tolerance (0.001). Any discrepancies beyond this threshold were
flagged and analyzed.

To prevent excessive runtimes from affecting the benchmark, a per-call timeout of 60 seconds
was set. Any individual RMSD computation that exceeded this limit was recorded as a timeout
failure. However, for naïve calculations, the timeout was set to 180 seconds.

Runtime was measured for successful runs only, using wall-clock time recorded externally
via orchestration scripts. This benchmark isolates and evaluates tools specifically on their native
ability to handle structured, multi-conformer input efficiently and correctly.

Out of 45,706 total samples, 45,543 were completed successfully across all tools. For the
remaining 163 samples, only timeout-related failures were encountered—no runtime crashes or
output corruption were observed. We also verified that all outputs from the tools were numerically
identical for the successful cases.

Table 2. Runtime summary of symmetry-corrected RMSD calculation tools on cross-RMSD benchmark

(45,543 samples)

Tool Mean (s) Std (s) Min (s) Max (s)
FlashRMSD 0.0137 0.0099 0.0041 0.4596
FlashRMSDNaive 0.0736 2.3091 0.0074 169.3351
DockRMSDExt 0.0510 0.8490 0.0043 55.0944
obrms 0.0571 0.7833 0.0206 47.0439

As shown in Table 2, FlashRMSD outperformed all other tools in terms of runtime, completing
tasks approximately 4 times faster than its nearest competitor on average.

For the 163 samples where one or more tools failed, we analyzed the output of FlashRMSD on
the same cases. Notably, FlashRMSD failed for only 7 samples, all of which also failed in other
tools. For the remaining cases where only other tools failed, FlashRMSD completed successfully,
and its output matched with the succeeding tools.

Table 3. FlashRMSD runtime on samples that failed in other tools.

Failed Tool Number of
failures

FlashRMSD runtime report
Mean (s) Min (s) Max (s)

FlashRMSDNaive 43 1.8886 0.0064 49.7958
DockRMSDExt 118 0.4810 0.0056 49.7958
obrms 36 2.3881 0.0063 49.7958

As seen in Table 3, FlashRMSD handled most of these challenging samples well, maintaining
reasonable runtimes. However, a single outlier pushed its maximum runtime to 49.8 seconds,
which was close to the timeout threshold. This suggests the tool is generally robust, with rare edge
cases that may require monitoring.

V. Altunyan 93

5.2 All-to-All Pairs RMSD Benchmark

This benchmark evaluates the behavior and performance of RMSD calculation tools when used in
pairwise mode, computing RMSD values between all unique pairs of conformations. Unlike the
native cross-RMSD benchmark, this approach requires invoking the tool separately for each pose
pair, simulating the fallback strategy often required by tools that lack native cross-RMSD support.

For a molecule with 𝑃𝑃 conformers, this results in 𝑃𝑃(𝑃𝑃 − 1)/2 individual RMSD
computations. All tools were orchestrated via automated scripts to execute these comparisons
sequentially, and per-call runtimes were collected. For this benchmark, a timeout of 5 seconds per
call was set; any computation exceeding this limit was considered a timeout failure.
The objectives of this benchmark are threefold:

● To enable a direct comparison with the original DockRMSD, which does not support native
cross-RMSD and must operate in this mode by design.

● To evaluate robustness and failure rates across specific pairwise comparisons, especially
in challenging edge cases.

● To identify and showcase individual pose pairs for which certain tools fail, providing
insight into tool stability and error patterns.

All available tools, including those with native cross-RMSD support, were evaluated in this
benchmark to ensure a uniform baseline for comparison. As in the cross-RMSD benchmark,
FlashRMSDNaive was used as the reference for correctness verification.

Out of 45,706 total samples, 42,406 were successfully processed by all tools, including the
original implementation of DockRMSD. However, when excluding DockRMSD, the number of
successful samples increases to 45,558. This discrepancy is due to the file parsing limitations of
the original DockRMSD implementation, as discussed earlier.

On all samples where any two tools produced results, their outputs were in agreement in terms
of correctness. To evaluate whether our modified version—DockRMSDExt—can reliably replace
DockRMSD in broader benchmarks, we compared the two implementations on the 42,406 samples
that both completed successfully.

Table 4. Runtime comparison of DockRMSD and DockRMSDExt on all-to-all pairs benchmark
 (42,406 samples)

Tool Mean runtime

over all calls (s)
Mean of per-

sample averages
(s)

Std over all calls
(s)

Std of per-
sample averages

(s)
DockRMSD 0.00573 0.00562 0.0439 0.0367
DockRMSDExt 0.00571 0.00560 0.0442 0.0368

As shown in Table 4, the runtime performance of DockRMSD and DockRMSDExt is nearly
identical. In fact, the revised version is marginally faster on average. This indicates that the
improvements to file parsing in DockRMSDExt do not introduce any runtime penalty, validating
its use in place of the original implementation.

FlashRMSD: An Effective Approach for Symmetry-Corrected RMSD Calculation with Extensive Benchmark Analysis

94

Moreover, the original DockRMSD failed on approximately 7% of the total dataset due to strict
file parsing issues—failures that are fully resolved in DockRMSDExt. Therefore, we will use
DockRMSDExt in all further benchmarks as a reliable and representative version of DockRMSD.
We conducted the same benchmark as in the previous section, with one key difference: we
evaluated both per-call runtimes across all pose pairs and per-sample average runtimes separately
to capture different aspects of tool performance.

Table 5. Runtime summary of symmetry-corrected RMSD calculation tools on all-to-all pairs benchmark
(1,458,326 pairs)

Tool Mean (s) Std (s) Min (s) Max (s)
FlashRMSD 0.00435 0.00176 0.00150 0.06144
FlashRMSDNaive 0.00557 0.06241 0.00164 4.93368
DockRMSDExt 0.00607 0.04947 0.00170 4.94237
obrms 0.02072 0.02414 0.01431 2.47477

As shown in Table 5, FlashRMSD consistently outperforms other tools in terms of runtime on this
benchmark. Notably, the minimum runtime for obrms is significantly higher than the other tools,
reflecting the inherent overhead associated with being part of a larger, more complex codebase.

A more comprehensive view of runtime distributions across all tools can be seen in Fig. 6,
which presents the box-and-whisker plot of per-call runtimes for all 1,458,326 comparisons.

Fig. 6. Box and whiskers plot of runtimes of symmetry-corrected RMSD calculation tools

(1,458,326 pairs)

V. Altunyan 95

Table 6. Per-sample average runtime summary of symmetry-corrected RMSD calculation tools on all-to-
all pairs benchmark (45,558 samples)

Tool Mean (s) Std (s) Min (s) Max (s)
FlashRMSD 0.00435 0.00174 0.00162 0.04436
FlashRMSDNaive 0.00544 0.05885 0.00188 4.72553
DockRMSDExt 0.00593 0.04068 0.00191 3.50721
obrms 0.02063 0.02335 0.01563 2.38896

The results in Table 6 further support the conclusion that FlashRMSD outperforms other tools in
terms of per-sample average runtime. This demonstrates that the complex atom featurization used
in our algorithm, originally introduced to optimize cross-RMSD calculations, does not introduce
any runtime overhead when applied to pairwise RMSD computations. On the contrary,
FlashRMSD remains the most efficient across both benchmark modes.

Finally, there were 148 samples where one or more tools failed during the all-to-all pairwise
benchmark. FlashRMSD failed on the fewest samples — 5 in total and consistent with previous
results, all other tools also failed on those 5 samples.

Table 7. FlashRMSD runtime on pairs that failed in other tools.

Failed Tool Number of
failed samples

Number of
failed pairs

FlashRMSD runtime report
Mean (s) Min (s) Max (s)

FlashRMSDNaive 40 1370 0.1530 0.0017 3.7507
DockRMSDExt 106 2932 0.0656 0.0018 3.7507
obrms 9 324 0.1101 0.0021 2.1288

As shown in Table 7, FlashRMSD handled these challenging samples successfully, maintaining
reasonable runtime performance even in cases where other tools failed.

6. Case Studies

In this section, we’ll dive into benchmark results focusing on interesting molecules discussed in
[1, 3], and also two new challenging examples identified during our current benchmarks.

CCD/PE3, CCD/33O

The molecules PE3 and 33O, previously discussed in [1], are known to consistently cause failures
in the original DockRMSD implementation. Both structures consist of chains of alternating carbon
and oxygen atoms, creating symmetric topologies that introduce multiple valid atom mappings
during alignment.

These systems are particularly interesting because they expose limitations in tools that rely
heavily on strict atom ordering or lack robust symmetry handling. In both cases, all tested tools,
except for DockRMSD, successfully completed the RMSD calculation within the time limit.
DockRMSD consistently exceeded the 5-second timeout, failing to return results.

FlashRMSD: An Effective Approach for Symmetry-Corrected RMSD Calculation with Extensive Benchmark Analysis

96

Table 8. Comparison of RMSD calculation tools on DockRMSD breaking samples. Per-pair average
runtimes are presented in seconds.

Tool PE3 (per-pair average) (s) 33O (per-pair average) (s)
FlashRMSD 0.00282 0.00615
FlashRMSDNaive 0.00313 0.00563
obrms 0.02026 0.02033

As shown in Table 8, all successful tools returned results in a fraction of a second. The
FlashRMSD and FlashRMSDNaive runtimes are nearly identical, but notably,
FlashRMSDNaive performs slightly faster than the optimized implementation in the case of 33O.
This rare case emphasizes that while general optimizations are effective, atom featurization and
initial pruning strategies are critical for performance consistency. Poorly suited heuristics or
inadequate pruning, especially in highly symmetric cases, can lead to exhaustive search behavior
even in otherwise optimized tools.

 CCD/60C

Fig. 7. 60C (buckminsterfullerene) molecules 2D (left) and 3D (right) structures.

The molecule 60C (Fig. 7), previously analyzed in [3] for comparison between DockRMSD and
obrms, serves as a valuable case for evaluating tool performance under extreme symmetry. Here,
we extend the analysis by including benchmark results from the FlashRMSD and
FlashRMSDNaive tools.

Structurally, 60C features 12 pentagonal and 20 hexagonal faces arranged in a fullerene-like
topology. A critical detail is that every edge of a pentagonal face is shared with a hexagonal face.
This edge-sharing relationship creates a unique fingerprint for certain bonds; specifically, edges
that bridge a pentagon and a hexagon are uniquely identifiable, as they cannot be matched to bonds
lying solely between two hexagons.

As a result, when attempting to match two conformers of 60C, any mapping that aligns a bond
connecting a pentagon and a hexagon in the template must align with the corresponding bond in
the reference. This significantly constrains the mapping space and leads to 2 × 60 = 120 possible

V. Altunyan 97

mappings — a manageable number, in contrast to estimates in [3]. However, the challenge lies in
efficiently searching and pruning this space.

Despite this manageable mapping space, the FlashRMSDNaive tool failed to compute RMSD
for any pose pairs, highlighting the limitations of exhaustive, non-pruned search methods in
symmetric systems. The other tools, however, successfully completed the calculations and yielded
the following average runtimes:

● FlashRMSD: 5.8 ms
● DockRMSD: 12.3 ms
● obrms: 37.6 ms

These results demonstrate that FlashRMSD outperforms both DockRMSD and obrms, achieving
approximately 2 and 6.5 times better runtimes, respectively. The case of 60C underscores the
importance of efficient pruning and symmetry-aware mapping strategies, even in search spaces
that are theoretically tractable. Without such optimizations, tools can still struggle or fail under the
computational weight of redundant mappings.

 BIRD/PRDCC_900031

.

Fig. 8. PRDCC_900031(heparin pentasaccharide) molecules 2D structure.

The molecule PRDCC_900031 (Fig. 8) serves as a prime example where all key design features
of the FlashRMSD tool contribute directly to performance. At a glance, the molecule appears to
have a symmetric scaffold due to its ring-chain architecture and repetitive SO ₄ (sulfate) or COOH
substituents. However, a closer inspection reveals that the core scaffold is not symmetric: the rings
contain alternating carbon and oxygen atoms in a way that breaks symmetry.

Thanks to its advanced atom featurization, FlashRMSD is able to quickly detect this and
identify a trivial atom mapping, effectively ruling out unnecessary branches during backtracking.
This dramatically improves performance.

The real complexity arises from the nine SO ₄ and two COOH groups attached to the leaf
atoms of the backbone. Each SO ₄ group can be matched in 3! (6) different ways, and each COOH
group can be matched in 2! (2) ways, leading to a theoretical explosion of 2269 = 40,310,784

FlashRMSD: An Effective Approach for Symmetry-Corrected RMSD Calculation with Extensive Benchmark Analysis

98

possible mappings across the entire molecule. While other tools treat this as a flat, unstructured
mapping problem, FlashRMSD’s level-3 optimization decomposes the problem: each
symmetrical group mentioned above is treated as an independent subtree, allowing mappings to
be computed separately and then combined. This reduces the mapping search space from 2269 to
just 2 × 2 + 9 × 6 = 58 evaluations, a drastic and principled reduction.

All other tools failed to compute cross-RMSD in a reasonable time. FlashRMSDNaive,
despite correctly accounting for symmetry, was forced to iterate through the full 2269 mappings,
completing in 46.9 seconds. In contrast, FlashRMSD completed the same calculation in just 8.9
milliseconds, clearly demonstrating the power of intelligent symmetry decomposition.

We also evaluated all-to-all pairwise RMSD performance. DockRMSD succeeded on only 4
out of 36 pairs, while obrms failed on all. This case illustrates that clever partitioning of symmetric
substructures can make the difference between exponential runtime and milliseconds.

CCD/7AZ, CCD/FWQ

These molecules are special because, independently, they managed to fit into a 5-second window,
but in the cross-RMSD benchmark, the total runtime was bigger than 60 seconds. They both have
a similar structure and represent a special case of symmetries – a big macrocycle with trailing
similar components from macrocycle nodes. These kinds of samples are the subject of
investigation as how they can be effectively analyzed.

Fig. 9. 7AZ (left) and FWQ (right) molecules 2D structures.

Fig. 9 shows that both molecules share a common motif: a large macrocyclic core with branching,
symmetry-repeating fragments extending from multiple macrocycle nodes. These fragments exhibit
local similarity, but are distributed across the molecular structure in ways that significantly increase
the number of potential atom mappings. These examples suggest a new class of test cases that
require new approaches in future RMSD tools.

V. Altunyan 99

7. Conclusions

This work presents FlashRMSD, a symmetry-corrected RMSD calculation tool designed for
accuracy, efficiency, and robustness in both standalone and large-scale automated workflows.
Alongside FlashRMSD, we introduce a comprehensive benchmark dataset comprising thousands
of molecular pose comparisons, specifically structured to evaluate tool performance under realistic
and challenging scenarios.

Through systematic benchmarks, including native cross-RMSD calculations and all-to-all
pairwise comparisons, we demonstrate that FlashRMSD consistently outperforms existing tools
in terms of runtime, reliability, and correctness. It exhibits superior scalability, maintaining low
variance across diverse molecular structures, and handles failure-prone or highly symmetric cases
with resilience. Importantly, the optimizations introduced for cross-RMSD efficiency do not
introduce overhead in simpler pairwise use cases.

Our benchmark suite also highlights structural motifs that pose challenges to current RMSD
tools, such as highly symmetric systems, macrocyclic architectures, and molecules with repetitive
substructures or symmetric side chains. These special cases, analyzed in detail, provide insight
into where existing tools struggle and where future development should focus.
 We make both FlashRMSD and the full benchmark dataset publicly available to facilitate
reproducible evaluation and guide future development of RMSD tools. We hope this contribution
will support more reliable and scalable structural comparison workflows in molecular modeling,
docking, and related fields.

Appendix

Data and Code Availability

The benchmark dataset developed for this study is publicly available via Zenodo at
https://doi.org/10.5281/zenodo.15097621. It includes over 45,000 small molecules from the CCD
and BIRD repositories, complete with multi-conformer and per-pose files, as well as a results.csv
file containing ground truth cross-RMSD values.
 The source code for the FlashRMSD tool, along with the modified tool DockRMSDExt, is
available on GitHub at https://github.com/altunyanv/FlashRMSD. Both the dataset and the code
are released under open-source licenses to facilitate reproducibility and further development in
symmetry-corrected RMSD calculations.

References

[1] V. Altunyan, “Comparative analysis of symmetry corrected rmsd calculation tools in
molecular docking”, Vestnik RAU, vol. 1, pp. 25-36, 2024.

[2] R. Meli and P. C. Biggin, “spyrmsd: symmetry-corrected RMSD calculations in Python”,
Journal of Cheminformatics, vol. 12, no. 49, 2020. https://doi.org/10.1186/s13321-020-
00455-2

https://doi.org/10.5281/zenodo.15097621
https://doi.org/10.5281/zenodo.15097621
https://doi.org/10.5281/zenodo.15097621
https://github.com/altunyanv/FlashRMSD

FlashRMSD: An Effective Approach for Symmetry-Corrected RMSD Calculation with Extensive Benchmark Analysis

100

[3] E.W. Bell and Y. Zhang, “DockRMSD: an open-source tool for atom mapping and RMSD
calculation of symmetric molecules through graph isomorphism”, Journal of
Cheminformatics, vol. 11, no. 40, 2019. https://doi.org/10.1186/s13321-019-0362-7

[4] N. M. O'Boyle, M. Banck, C.A. James, C. Morley, T. Vandermeersch and C. R. Hutchison,
“Open Babel: An open chemical toolbox.”, Journal of Cheminformatics, vol. 3, no. 33,
2011. https://doi.org/10.1186/1758-2946-3-33

[5] J. D. Westbrook, C. Shao, Z. Feng, M. Zhuravleva, S. Velankar and J. Young, “The
chemical component dictionary: complete descriptions of constituent molecules in
experimentally determined 3D macromolecules in the Protein Data Bank”, Bioinformatics,
vol. 31, no. 8, pp. 1274–1278, 2015.

[6] RDKit: Open-source cheminformatics. [Online]. Available: https://www.rdkit.org
[7] P. Tosco, N. Stiefl, G. Landrum, “Bringing the MMFF force field to the RDKit:

implementation and validation”, Journal of Cheminformatics, vol. 6, no. 37, 2014.
https://doi.org/10.1186/s13321-014-0037-3

[8] D. R. Koes, M.P. Baumgartner and C.J. Camacho, “Empirical scoring with smina from
the CSAR 2011 benchmarking exercise”, Journal of Chemical Information and
Modelling, vol. 53, pp. 1893-1904, 2013.

[9] B.D. McKay and A. Piperno, “Practical graph isomorphism, II”, Journal of Symbolic
Computation, vol. 60, pp. 94-112, 2014.

FlashRMSD․ Արդյունավետ մոտեցում սիմետրիայով ճշգրտված

RMSD հաշվարկի համար և համապարփակ բենչմարք
վերլուծություն

Վահագն Ն․ Ալթունյան

Երևանի պետական համալսարան, Երևան, Հայաստան
e-mail: altunyanv@gmail.com

Ամփոփում

Արմատ միջին քառակուսային շեղումը (RMSD) առանցքային չափում է
մոլեկուլային կառուցվածքների նմանությունը գնահատելու համար։ Սակայն
սիմետրիկ մոլեկուլների դեպքում առաջանում են կոմբինատոր բարդություններ, որոնք
խանգարում են հաշվարկի գործընթացին։ Թեպետ հասանելի են մի շարք գործիքներ,
որոնք RMSD-ի հաշվարկում հաշվի են առնում սիմետրիաները, բոլորն էլ ունեն իրենց
սահմանափակումները՝ կապված արագության, ճշգրտության կամ կիրառելիության

mailto:altunyanv@gmail.com

V. Altunyan 101

հետ։ Այս հոդվածում մենք ներկայացնում ենք FlashRMSD գործիքը՝ նոր, արագ և
արդյունավետ մոտեցում սիմետրիայով ճշգրտված RMSD հաշվարկի համար։ Բացի
այդ, մենք ներկայացնում ենք մոլեկուլային կառուցվածքների բազա RMSD գործիքների
գնահատման և գործող մեթոդների համեմատական վերլուծության համար։

Բանալի բառեր` սիմետրիայով ճշգրտված RMSD, FlashRMSD, մոլեկուլային
դոկինգ։

FlashRMSD: Эффективный подход к вычислению RMSD с

учётом симметрии и расширенный бенчмарковый анализ

Ваагн Н. Алтунян

Ереванский государственный университет, Ереван, Армения
e-mail: altunyanv@gmail.com

Аннотация

RMSD является важным показателем для оценки сходства молекулярных структур.
Однако при работе с сильно симметричными молекулами возникают комбинаторные
сложности, которые затрудняют процесс вычислений. Хотя существует ряд инструментов с
открытым исходным кодом для вычисления RMSD с учетом симметрии, каждый из них
имеет ограничения по скорости, точности или удобству использования. В данной статье мы
представляем FlashRMSD — новый, быстрый и эффективный метод вычисления RMSD с
учетом симметрии. Также мы представляем обширный набор молекулярных структур для
оценки инструментов вычисления RMSD и проводим сравнительный анализ существующих
методов с нашим решением.
 Ключевые слова: RMSD с коррекцией симметрии, FlashRMSD, молекулярный докинг.

	1. Introduction
	References
	FlashRMSD․ Արդյունավետ մոտեցում սիմետրիայով ճշգրտված RMSD հաշվարկի համար և համապարփակ բենչմարք վերլուծություն
	Ամփոփում

