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Abstract

Diophantine equations are multivariate equations, usually polynomial, in which
only integer solutions are admitted. A brute force method for finding solutions would
be to systematically substitute possible integer values for the unknown variables and
check for equality.

Grover’s algorithm is a quantum search algorithm which can find marked indices in
a list very efficiently. By treating the indices as the integer variables in the Diophantine
equation, Grover’s algorithm can be used to find solutions in a brute force way more
efficiently than classical methods. We present a hand-coded example for the simplest
possible Diophantine equation, and results for a more complicated, but still simulable,
equation encoded with a high-level quantum language.
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1. Introduction

A Diophantine equation is an equation, typically polynomial, with integer coefficients, in
more than one integer variable. A famous example occurs as Fermat’s Last Theorem, which
states that

xn + yn = zn (1)

has no solutions for n ≥ 3 where n, x, y, and z are all natural numbers. The simplest
Diophantine equation is linear in two variables and is of the form

ax+ by = n, (2)

∗Data Availability: Codes for all parts of this work are available at
https://github.com/LaraTatli18/grovers-algorithm.
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where a, b, and n are given constants. While this equation has well-known solutions, in
many other cases, solutions to Diophantine equations are not known (see e.g. the regularly-
updated paper by Grechuk keeping track of some open and solved problems [1]). Seeking
solutions to Diophantine solutions through numerical search is an established method, where
searches can prove the existence of solutions where it is posited that none exist [2].

Here, we bring quantum computing to bear upon the search for Diophantine equation
solutions, using Grover’s algorithm [3] to look for solutions for the simple linear equation of
the form (2). We choose a = b = 1 and n = 5 arbitrarily for definiteness, and also explore a
simple quadratic equation to give an indication of scaling. Both examples are deliberately
simple so that they can be encoded in a workable number of qubits on an available simulator.
While we are not aware of works explicitly solving Diophantine equations with a quantum
search algorithm, we note recent work using Grover’s algorithm to perform a series of basic
arithmetic procedures through search [4]. In our work we use standard classically-inspired
quantum circuits for arithmetic (not using search) and use Grover for the search for equality.

2. Grover’s Algorithm as Equation Solution Searcher

We give here a brief discussion of the principles of a quantum search algorithm, following the
treatment in Nielsen and Chuang’s textbook [5]. The search algorithm generally searches
through a search space of N elements. It is supposed that one can work at the level of the
index of the elements such that if presented with the index, it is easy to check if it is the
element sought. This is the case in our example where checking if given numbers x and y
are solutions of the given equation is straightforward by direct substitution and evaluation.

The algorithm uses an oracle, O, which acts as

O|x⟩|q⟩ → |x⟩|q ⊕ f(x)⟩. (3)

Here, |x⟩ is a register of index qubits, and |q⟩ is the oracle qubit. ⊕ is addition modulo 2
and f(x) is a function which returns 0 if index x is not a solution to the search problem,
and 1 if index x is a solution.

If the oracle qubit is prepared in the state |−⟩ = (|0⟩ − |1⟩)/
√
2 then the action of the

oracle is

O|x⟩
(
|0⟩ − |1⟩√

2

)
→ (−1)f(x)|x⟩

(
|0⟩ − |1⟩√

2

)
, (4)

thus the action of the oracle marks out, with a phase change, components of the register
state |x⟩ which are solutions to the problem - i.e. have f(x) = 1. The full Grover algorithm
then amplifies the states which have been marked, and suppresses the unmarked states,
using a “diffuser” circuit. The oracle-diffuser combination together constitute a single Grover

iteration. A total of O(
√
N/M) iterations are needed in general to have the solutions selected

in the register with high probability, where M is the number of solutions in the N -element
space. Note that the standard diffuser requires that valid solutions do not account for the
majority of the solution space, but this is the usual condition for an interesting Diophantine
equation.

For the case of our linear equation (2), the indexing register works by having 2m qubits
in which each half encodes one of the numbers x and y. The encoding is made directly
in standard binary and we do not consider negative numbers. Clearly the size of m will
determine the available integers in the search space, and one must apply ever more qubits
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to increase the size of the search space, though one benefits from an exponential increase in
search space as the number of qubits increases linearly.

For this exploratory study, to find solutions to the equation x + y = 5 we use a 2m = 6
qubit register |x⟩ to encode two 3-bit numbers to add together. The oracle performs the
addition and checks the result against the desired solution. The details of the quantum adder
we use is given in the next section.

3. Quantum Adder Circuit

A quantum adder capable of calculating the sum of two 3-qubit binary numbers was produced
using Qiskit. The adder was designed in such a way that the registers storing the input
numbers were not overwritten during the calculation, as is the case with e.g. ripple-carry
adders [6]. Retaining the input numbers is useful for use in further calculation, though not
vital in our case.

In this setup, shown in Fig. 1, the first 3 qubits, x0, x1 and x2, denote the binary digits
representing a natural number x in the format x0x1x2, where x2 is the least significant bit.
In the same manner, qubits y0, y1 and y2 denote the natural number y in the format y0y1y2.
Qubits a0 and a1 represent ancillary qubits used to hold carry bits in the addition. Qubits
s0, s1, s2 and s3 denote the solution to x + y in the form s0s1s2s3, where s3 is the least
significant bit. The figure shows all qubits that are needed for the full Grover algorithm.
Qubit q12 is the oracle qubit |q⟩ as in equation (3).

Fig. 1. A diagram of the quantum adder with barriers included to visually indicate each section.
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The dividers labelled A, B, and C in the circuit help label different functional parts.

In the section terminated by divider A, an addition operation is performed on the qubits
representing the least significant bits x2 and y2 using two CNOT gates and one Tofolli gate,
with the result stored in the qubit s3 and the first carry bit stored in a0.

In the section between dividers A and B, the qubits representing x1, y1, and the carry
bit a0 are added using three CNOT gates; the target is set to the sum digit s2. Three Tofolli
gates are used to compute the second carry bit, stored in a1.

In the section between B and C, the sum digit s1 is calculated using three CNOT gates
acting on the qubits representing x0, y0, and the second carry bit in a1. The final sum digit,
s0, is calculated using three Toffoli gates and takes into consideration the second carry bit.

In total, this adder employs 8 CNOT gates and 7 Toffoli gates collectively acting over
12 qubits. In terms of scaling to larger registers, adding two m-bit numbers requires 4m
qubits (2m representing the numbers to be added, m− 1 ancillary carry bits, and m+ 1 to
represent the sum). The number of gates is 3m− 1 CNOT gates and 3m− 2 Tofolli gates.

4. Application of Grover’s Algorithm

In order to apply Grover’s algorithm to solve a linear Diophantine equation ax+ by = n in
the case a = b = 1 and n = 5, it is first necessary to apply a Hadamard gate to each of the
qubits |x0 . . . x2, y0 . . . y2⟩ encoding x and y. This produces the initial superposition state
with all possible solution strings present with equal amplitude.

We then construct a quantum oracle capable of “marking” the solutions once queried.
This consists of the quantum adder and its inverse circuit with a query circuit in between
which applies a phase shift of -1 to the solution qubits of the adder, if and only if, the
solution is in the state |s0s1s2s3⟩ = |0101⟩. All other states are left unchanged. This is
achieved using two X-gates and a multi-controlled Toffoli gate targeting q12, configured to
be in the |−⟩ state prior to implementing Grover’s algorithm. X-gates are re-applied to
reverse the computation. The query circuit design used for this example is provided in the
left-hand part of Fig. 2.

Each iteration of the oracle is followed by the circuit used for the diffusion operator,
which by acting across the six qubits |x0 . . . x2, y0 . . . y2⟩ amplifies states that sum to give
the desired solution only. In this diffuser circuit, shown for our case in the right-hand part
of Fig. 2, the combination of Hadamard and X-gates, in conjunction with a multi-controlled
Toffoli gate, enable a phase change of -1 to be applied to the initial superposition state. This
completes one full iteration of the Grover algorithm. After the desired number of algorithms,
one would then perform a measurement on a real quantum computer, identically prepared
through many repeated experiments, to build up a histogram of most probable outcomes
corresponding to the sought solution(s). The multiple measurements are known as “shots”
in the language of quantum computation. In our present example, we simulate our circuit
using a full quantum statevector, so present results in the next section by simply reading
off the amplitudes of each register state. We show a simulation of a shot-based calcualtion
later, for the case of a quadratic equation.
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Fig. 2. Left: Diagram of the query circuit and its inverse used for the oracle operation, O, for the

case |s0s1s2s3⟩ = |0101⟩. This circuit is run after the quantum adder circuit and is followed by the

inverse quantum adder, forming a complete oracle. Right: The diffuser circuit used to amplify the

solution(s).

5. Implementation and Result

The full quantum circuit, including the Hadamards to initialize the superposition of the x
and y register qubits and the |−⟩ initialization of the oracle qubit, is shown for one iteration
in Fig 3. By running this full quantum circuit on BlueQubit’s statevector simulator, it is
shown that two iterations of Grover’s algorithm are sufficient to generate the full set of
solutions to our simple Diophantine equation.

The histogram displayed after one iteration is displayed in Fig. 4; the histogram for two
iterations is displayed in Fig. 5. Note that the solution should be read from left to right,
with the first three digits representing x0x1x2 and the following digits y0y1y2.
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Fig. 3. The complete circuit employing one Grover iteration. The † symbol indicates Hermitian

conjugate.

The solutions are seen to be correct solutions of the Diophantine equation x+y = 5, and
we tabulate them for clarity in Table 1.

quantum state x (base 2) y (base 2) x (base 10) y (base 10) x+ y (base 10)

101000 101 000 5 0 5
001100 001 100 1 4 5
011010 011 010 3 2 5
100001 100 001 4 1 5
000101 000 101 0 5 5
010011 010 011 2 3 5

We find that six iterations of Grover’s algorithm are required to return to the probability
distribution shown in Fig. 4.

Table 1. Solution states picked out by Grover’s algorithm in search for solutions to Diophan-
tine equation x+ y = 5.
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Fig. 4. Histogram for n=1 iterations.

Fig. 5. Histogram for n=2 iterations - probabilities of incorrect solutions effectively become zero.
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6. Example with squaring

As an example of a more complicated equation, we look for solutions of the equation

x2 + y2 = z. (5)

The complication of raising variables to a power brings in an increased overhead in ancillary
qubits and in depth of quantum circuit necessary to perform the calculations, meaning a
more automated method for circuit generation is necessary, as opposed to the hand-made
adder used in our first example.

Fig. 6. Grover search for x2 + y2 = z.

index x y z

1000010 2 0 4
1001000 0 2 4
1010110 2 1 5
1011001 1 2 5
0010001 1 0 1
0010100 0 1 1
0000000 0 0 0
0100101 1 1 2

We made use of the Classiq framework [7], which is able to automate the conversion of
quantum algebra into circuit form. The equation (5), when variables x, y, and z are encoded
with 2, 2, and 3 qubits respectively, is converted into a 18 qubit circuit with a depth of 502

Table 2. Results of simulation of quadratic equation x2 + y2 = z using Classiq platform
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basis gates. In order to search for Pythagorean triples, the circuit for x2 + y2 = z2, with the
minimum bit-representation to find the {3, 4, 5} triple was designed on the Classiq system,
and has a qubit count of 33 and a depth of 981. This latter circuit cannot be simulated on
the free Classiq platform and we present results of the simpler equation (5), shown in Fig. 6,
using a 10,000 shot simulation, as opposed to the exact statevector calculation for our first
example.

The labelled peaks, reading from left to right are shown in Table 2. Note that the
encoding used by Classiq is such that the seven bits in the indices encode the variables as
z0z1z2y0y1x0x1, witht he least significant bit at the right in each variable encoding. Note that
the noisy background for the non-amplified non-solutions in Fig. 6 is due to “shot noise”
that comes from the statistical analysis of the quantum measurement.

7. Conclusions

Grover’s algorithm can be implemented to search for solutions to simple linear Diophantine
equations. We have not attempted implementation on a real quantum computer, and the
ability of our circuit to operate on noisy intermediate-scale quantum devices would need to
be evaluated. Nevertheless, further work could investigate more complicated Diophantine
equations, if access to sufficient real or similated qubits is available. In that case, more
interesting unsolved cases, like those listed in Grechuk’s paper [1] could be tackled.

Furthermore, we have not attempted to refine or optimize the quantum algorithm, rather
concentrating on a straightforward implementation. Techniques to improve the Grover con-
vergence [8] could be applied, while inclusion of a quantum counting approach [9] would
allow one to gain knowledge of how many Grover iterations should be applied in advance
of performing each calculation. For a more general Diophantine equation solver, such en-
hancements would be desirable. We also comment that we have preformed a naive brute
force search, while standard methods for solving Diophantine equations can be invoked to
to reduce the search space.
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Àííîòàöèÿ

Äèîôàíòîâû óðàâíåíèÿ - ýòî ìíîãîìåðíûå óðàâíåíèÿ, îáû÷íî ïîëèíî-
ìèàëüíûå, â êîòîðûõ äîïóñêàþòñÿ òîëüêî öåëî÷èñëåííûå ðåøåíèÿ. Ìåòîä
ãðóáîé ñèëû äëÿ ïîèñêà ðåøåíèé çàêëþ÷àåòñÿ â ñèñòåìàòè÷åñêîé ïîäñòàíîâêå
âîçìîæíûõ öåëî÷èñëåííûõ çíà÷åíèé âìåñòî íåèçâåñòíûõ ïåðåìåííûõ è
ïðîâåðêå ðàâåíñòâà.

Àëãîðèòì Ãðîâåðà - ýòî êâàíòîâûé àëãîðèòì ïîèñêà, êîòîðûé ìîæåò î÷åíü
ýôôåêòèâíî íàõîäèòü îòìå÷åííûå èíäåêñû â ñïèñêå. Îáðàáàòûâàÿ èíäåêñû êàê
öåëî÷èñëåííûå ïåðåìåííûå â Äèîôàíòîâîì óðàâíåíèè, àëãîðèòì Ãðîâåðà ìîæåò
áûòü èñïîëüçîâàí äëÿ ïîèñêà ðåøåíèé ãðóáîé ñèëîé ãîðàçäî ýôôåêòèâíåå,
÷åì êëàññè÷åñêèå ìåòîäû. Ìû ïðåäñòàâëÿåì ïðèìåð ñ ðó÷íûì êîäèðîâàíèåì
äëÿ ïðîñòåéøåãî âîçìîæíîãî Äèîôàíòîâà óðàâíåíèÿ è ðåçóëüòàòû äëÿ áîëåå
ñëîæíîãî, íî âñå åùå ìîäåëèðóåìîãî óðàâíåíèÿ, çàêîäèðîâàííîãî ñ ïîìîùüþ
êâàíòîâîãî ÿçûêà âûñîêîãî óðîâíÿ.

Êëþ÷åâûå ñëîâà: êâàíòîâûå âû÷èñëåíèÿ, àëãîðèòì Ãðîâåðà, Äèîôàíòîâû
óðàâíåíèÿ.
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