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Abstract

This article examines the behavior of the normalizing constants in V. Feller’s theo-
rem on the convergence of distributions for sums of independent, identically distributed
random variables with heavy tails at infinity. It is proved that, in this setting, the nor-
malizing constant is regularly varying at infinity.
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1. Introduction

We consider a sequence of independent, identically distributed random variables with the
distribution function F'(x). Suppose that for x — +o00, an asymptotic relation is executed:

x~*L(x)
1—F(r) ~ ——= 1
(@) ~ 1)
where 0 < a < 1, T'(a) = [;° 2 'e "dz, L(x) - slowly varying function at infinity (SVFI),
i.e., a positive function defined for (0, 00) and for each x > 0 fulfills the condition

L
lim (tz)

= 1.
t—+o0o L(t)

Subsequently, according to Theorem 2 (see [1], XIIL.6, p. 448), if F' is the probability
distribution, concentrated on (0, 00) and such that upon n — oo

F™(ap,x) = G(x), (2)
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(at points of continuity), where F"*(-) - n-fold convolution of distribution F' with itself, while
G is the proper distribution, not concentrated at one point and if the type of distribution F'
is (1), a, variates in standard measure may be selected in a way that

nL(ay,)

«
an

— 1. (3)

In this case, the asymptotic relation (2) is executed along with the distribution of probabili-
ties G = G, where G, is a stable distribution with 0 < a < 1, parameter focused on (0, co0)
having Laplace-Stieltjes transform e=".

2. The Behavior of the Normalizing Constants in V. Feller’s Theorem at
Infinity

The positive function R is called (accurately) regularly varying at infinity if it is measurable
on the [A, 00), A > 0 semiaxis and there exists such a number as o € (—o0, +00), which for
a certain x > 0

lim ((R(xt)/(R(t)) = 2°.

t——+o0

Meanwhile, « is called the order (indicator) of the function R.

Suppose that a, = n'/%p(n) and find out what features shall possess function ¢(n) in
order to execute asymptotic (3).

By plugging in (3) an equation for a,, we will deduce an equivalent (3) relation:

L (n'/*Pp(n)) ~ % (n),
or in a more general form:

L (#/hp(t)) ~ (1). (4)
Consider the following relation:

L((xt)p(tx))

Ri(z) = L(t1/alpha(p(t)) '

By virtue of asymptotic relation (4) upon t — 400 out of (5), it follows that

- (25)”

In ([2], p. 10), the following is proved:

Theorem 1. (On the introduction of SVFI). If funcion L, defined on semiazis [A,+00),
A >0 - SVFI, such number B > A will be found so that for all x > B occurs the following

representation: )
L(z) = exp {n(x) +/ @du}, (7)

B U
where n- limited measurable function on [B,400) is such that
a) n(z) = ¢ (|| < oc0) and
b) e(z) - continuous function on [B,+00) is such that e(x) — 0 in case of x — +00.
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Since L is SVFI, therefore using the relation (5), it is not complicated to deduce the following
equation for R;(z):

(te)1/*p(ta)
Relw) = expfn((t2)"“(t2)) = n(()"/*(2))} - exp { L. dy} . ®

w(tz)
w(t)

By introducing the notation a;(z) = , the expression (7) will be transformed into the

following type:

z

2.y ¢ (g (HY20(t)2
Rt<x>:exp{n<<m>1/%o<tx>>—n<<t>l/w<t>>}-exp{ / (= (% () ))dz}. o)

In the case of ¢ — +o00, the first factor in the right-hand part of the relation (8) by virtue
of condition b) of Theorem 1, tends to unity. Therefore, upon the availability of sufficiently

high ¢
xl/o‘at(z) e (s 1/a

Y

Theorem 2. In case of any x > 0, the following equation is true:

lim 2"/%a,(z) = 1.
t—+o00

Proof. It shall firstly be proved that lim,_,sa,(x) - +oo for all z € (0, 400). Suppose
that the contrary takes place: then for each x > 0, there exists a sufficiently high ¢ty = ¢o(x),
that in the case of all ¢t > ¢j, the following condition is executed:

oy (z) > 1. (11)

Further, condition b) means that for any § > 0, there exists yo = 3(d), such that for all
y > 1o occurs the the following inequality:

e(y) <o (12)

Besides, since tl/ago(t) — 400 in case of t — 400, we will select t; > t; such that upon
t > t; inequality tY/%p(t) > yo is executed by virtue of selecting ¢, and condition z > 1
apparent from (12), uniformly in z follows the inequality e(2tY/“p(t)) < . Therefore, after
uncomplicated transformation, the following inequality is deduced:

xl/aat(z) tl/a t
exp {/ w dy » < 2%/%a¢(z). (13)
1

Y

On the other hand, by virtue of asymptotic relation (4) in the case of t — 400, the following

is concluded:
L()e(tn) (el .
sy~ (5@) =@ -

That’s the inequality (11) from which we deduce the following:

Ri(z) =

x5/°‘af(x) > ay(z).
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By selecting 0 < « from the previous inequality, we have the following:
2% > a0, (15)

Upon fixing = > 0, the left-hand side of (13) is limited, while the right-hand side by the
virtue of limitation « — 0 > 0 for ¢ — 400 tends to infinity, resulting in a contradiction.
Thus, it can be concluded from (10) that for any x > 0, the following inequality holds:

lim 2%, (z) < 1. (16)

t—+o0

Let’s demonstrate that a,(z) - 0 in the case of t — +o00. We'll also conduct the proof by
an indirect proof method. Assume that for each x > 0 there exists such ¢’ = ¢'(z), that for
all t > t/, the following condition is satisfied:

z/%y(x) < 1. (17)
Simultaneously ¢” > max(t’, ;) may be taken as high that
2y () - 1 0(t) = (xt)*p(at) > yo,

where vy is defined in (11).
Taking into consideration the above, it is not difficult to prove that

xl/&at(z) tl/a t 1 tl/a t
o / e (V¢ (t)y) P _/ e (V' (t)y) ay
1 Yy xl/aat<z) Y

> exp {—6111 z|i1/aat(z)} (18)

= ad(z) - 2%/

On the other hand, for all z > 0 upon sufficiently high ¢ from (14), we have the following:
Ri(z) ~ a(z) > al(z) - 2.
By selecting § < «, in (12) we will have the following:
ay(x) > £ > 0,

that in the case of ¢ — 400 contradicts our assumption, i.e., the condition (17) is inexe-
cutable. Thus, Theorem 2 is proved. B

Thereof, it follows that for all x > 0 lim;, ., R;(xz) = 1, while from relation (6) it is
concluded that function ¢(¢) is SVFL

Thus, the following is proven:

Theorem 3. If conditions (1) — (3) are executed, the norming quantity a, is a regqularly
varying function at infinity with the parameter 1/cv.

3. Conclusion

If F' is the distribution of probabilities, concentrated on (0, 00), for which in case of z —
+oo asymptotic relation (1) is executed and G, is a stable distribution with the parameter
0 < a < 1 concentrated on (0, 00), then

F"* (nl/o‘ (n)- :1:) Go(x),
where ¢(+) is SVFI connected with SVFI L(-) by the followmg asymptotic relation
n)

L (n'*p(n)) ~ ¢*(n).
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AnHoTanus

B paHHOU cTaTbe paccMaTpPUBAETCS IIOBEAEHME HOPMUPYIOUUX KOHCTAHT B
TeopeMme B. @earepa 0 CXOAUMOCTH pPacIPeAEA€HUM CyMM He3aBUCUMBIX OAMHAKOBO
pacrpeAeAeHHBIX CAYYaMHBIX BEAUYUH C "TS’KEABIMU' XBOCTAMM Ha OECKOHEUYHOCTH.
AeMOHCTPUPYETCsd, 4YTO B AQHHOM KOHTEKCTe HOPMUPYVIOIIass KOHCTAQHTA PETYASIPHO
MeHdaeTCsI Ha 0eCKOHeYHOCTH.

KAroueBele CAOBA: CTpaxXOBaHUE, CAyYaWHasd BEAWYVHAQ, PETYAIPHO MEHSIOIIAsAC
(PYHKIIUSA, MEAAEHHO MEHSIOIAACsa (DYHKIINS, YCTOUMUYMBOE pPacCIlIpepAeAeHue.
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