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Abstract

Atmospheric phenomena such as rain, snow, urban, forest fires, and artificial disasters
can degrade image quality across various applications, including transportation, driver
assistance systems, surveillance, military, and remote sensing. Image dehazing techniques
aim to reduce the effects of haze, dust, fog, and other atmospheric distortions, enhancing
image quality for better performance in computer vision tasks. Haze not only obscures
details but also reduces contrast and color fidelity, significantly impacting the accuracy of
computer vision (CV) models used in object detection, image classification, and
segmentation. While thermal infrared (TIR) imaging is often favored for long-range
surveillance and remote sensing due to its resilience to haze, atmospheric conditions can
still degrade TIR image quality, especially in extreme environments.

This paper introduces MTIE-Net, a novel Mamba-based network for enhancing
thermal images degraded by atmospheric phenomena like haze and smoke. MTIE-Net
leverages the Enhancement and Denoising State Space Model (EDSSM), which combines
convolutional neural networks with state-space modeling for effective denoising and
enhancement. We generate synthetic hazy images and employ domain-specific
transformations tailored to thermal image characteristics to improve training in low-
visibility conditions. Our key contributions include using the Mamba architecture with 2D
Selective Scanning for thermal image enhancement, developing a specialized
Enhancement and Denoising module, and creating a labeled thermal dataset simulating
heavy haze. Evaluated on the M3DF dataset of long-range thermal images, MTIE-Net
surpasses state-of-the-art methods in both quantitative metrics (PSNR, SSIM) and
gualitative assessments of visual clarity and edge preservation. This advancement
significantly improves the reliability and accuracy of critical systems used in remote
sensing, surveillance, and autonomous operations by enhancing image quality in
challenging environments.
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1. Introduction

Images captured in hazy or foggy weather
conditions often suffer from significant
degradation, making it difficult for imaging
systems to identify objects and their
features. The reduction in contrast and =
color shift further complicates imaging
applications. Haze causes reduced contrast,
faint surfaces, color distortion, and blurred
intensity, which diminishes visibility and
object perception [1]. To address this,
image dehazing algorithms improve scene
clarity [2,3,4,5,6]. However, this task is
challenging because haze formation
depends on various factors like unknown
scene depth, the density and size of VIS Image TIR Image
atmospheric particles, and the wavelength

of light [7]. The effect of haze varies across Fig. 1. Haze visibility is shown across two spectra. Heavy fog
different parts of the electromagnetic \_/vith Ia_rger particles affects both spectra compare with smoke
spectrum: shorter wavelengths in the M the firstrow [36, 321

visible (VIS) are more affected, while longer wavelengths, such as those in the thermal infrared
(TIR), are less affected, but factors like atmospheric absorption and scattering can degrade the
quality and accuracy of thermal images, which is shown in Fig. 1. This degradation poses
significant challenges for vision algorithms [8] such as pedestrian detection and segmentation [9],
military target detection [10], surveillance and security [11], and remote sensing [12]. Despite its
benefits, thermal imaging suffers from drawbacks like low contrast and blurred details, which limit
the observation of infrared targets and hinder the development of infrared imaging applications.
Thermal Image Enhancement (TIE) techniques aim to improve visibility, clarity, and overall image
quality for automated processing applications [13]. These methods vary across fields and
objectives, encompassing both traditional approaches and Convolution Neural Networks (CNN).
Table 1 highlights the advantages and challenges of various thermal image enhancement methods,
emphasizing the need for more robust techniques and exposing the need to develop more robust
I1E techniques. Recent developments have introduced State Space Models (SSMs), especially the
Mamba model [14], which captures global contextual information with a linearly lower complexity
for input tokens. The Structured State-Space Sequence model (S4) [15] was the first to highlight
the potential of SSMs, offering a novel alternative to CNNs and Transformers for handling long-
range dependencies. Followed by the S5 layer [16], which introduced MIMO SSM and efficient
parallel scanning. SSM-based architectures have gained significant attention in various fields [17].
For example, Mambad4KT [18] is specifically developed for knowledge tracing in intelligent
education systems, utilizing the Mamba model to effectively capture long-term relationships
between exercises and students' knowledge levels. The latest Mamba architecture, Mamba-2 [19],
introduces an enhanced core layer within the Mamba selective SSM, achieving speeds 2 to 8 times
faster while maintaining competitive performance with Transformers in language modeling.

This paper introduces the Mamba-Based Thermal Image Enhancement Network
(MTIE-Net), a novel approach for addressing thermal image dehazing. MTIE-Net incorporates
an Enhancement and Denoising State Space Model (EDSSM), which integrates convolutional
neural networks (CNNs) with state-space modeling to denoise and enhance thermal images
effectively. Additionally, the framework utilizes advanced techniques, including synthetic data
generation using the Atmospheric Scattering Model (ASM) and domain-specific transformations
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tailored to thermal image characteristics. These enhancements improve the model’s robustness and
accuracy under severe haze conditions. Our main contributions are:

1. Introducing Mamba for thermal image enhancement for the first time, utilizing SS2D
as the computational backbone to ensure efficient and scalable dehazing.

2. Proposing an Enhancement and Denoising (ED) module that optimizes image
enhancement and noise reduction processes, effectively addressing challenges posed by
atmospheric disturbances, which is its backbone to achieve linear computational efficiency.
In other words, this makes the dehazing process faster and more effective, particularly for
long-range thermal imaging tasks.

3. Creating a labeled thermal dataset simulating heavy haze conditions will enable more
realistic training and testing of dehazing models.

Table 1. Advantages and challenges of various thermal image enhancement methods.

Method Advantages Challenges
- Enhances global contrast, |- May lead to noise amplification, it can
is simple, and is fast to cause an unnatural appearance and loss of

Histogram
Equalization [22]

implement. detail
- Flexible control over - May not work well with images with
Contrast Adjustment [brightness and contrast. uneven illumination. Risk of over/under-
[37] Can enhance specific enhancement Can cause loss of details in
regions smooth regions.
- Effective in multi-scale |- It requires parameter selection/tuning and
Wavelet-based . . ) .
analysis, good at edge and [can be computationally intensive. If not
Methods [23] " . . . .
detail preservation properly managed, it may introduce artifacts.
Top-hat Transform |- Useful for highlighting |- May not perform well with complex

Morphological [small features. Effective in |backgrounds, sensitive to structuring element
Operation [24]  |packground suppression  [selection and noise
- Enhances edges and local - May introduce artifacts and noise. It can be

Gradient Field  [contrast. Suitable for sensitive to high-frequency noise.
Equalization [25] |highlighting object Computational intensity: making real-time
boundaries processing challenging.
- Produces visually - It requires large datasets and computational
IE-CGAN [42] appealing results with resources, potentially overfitting and artifacts.

higher contrast and details [Tends to produce unnatural sharpness in
degraded images.

- Maintain a natural scene |- It struggles in lighter areas and with subtle
BBCNN [41]  lappearance contrast differences, obscuring key details.

To validate the effectiveness of our proposed MTIE-Net, we conducted extensive evaluations
using the M3DF dataset, which consists of long-range thermal infrared (TIR) images affected by
varying degrees of atmospheric distortion. Experimental results show that MTIE-Net outperforms
existing state-of-the-art methods in quantitative metrics, such as Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index (SSIM) [20], and qualitative measures, including visual
clarity and edge preservation.

The MTIE-Net framework advances the field of thermal image dehazing by providing a
scalable and highly effective solution for improving image quality in real-world applications such
as surveillance, autonomous driving, and environmental monitoring. These performance
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improvements have broad practical implications: MTIE-Net can enhance the reliability and
accuracy of critical systems, contributing to better overall performance and safety, whether in
enhancing surveillance accuracy or improving the safety of autonomous vehicles.
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Fig. 2. Mathematical expression of the State-Space Model.

2. Background

2.1 Enhancing Thermal Imaging: Challenges and Advances

Thermal imaging cameras convert thermal energy (heat) into visible light, typically in grayscale
or color scales. However, the spatial resolution of thermal images is often limited by diffraction
effects in thermo-reflectance, and the signal-to-noise ratio (SNR) can affect image quality and
application. Recent advancements aim to enhance thermal image quality for various applications,
including geoscience, resource exploration, military surveillance, astronomy, and humanitarian
missions, all of which demand high-quality, accurate thermal images. Creating high-resolution
thermal images is particularly challenging for thermal cameras used on satellites or aerial
platforms. These challenges include low dynamic range, lack of detail clarity, and blurred edges.
Additionally, thermal images often suffer from low luminance due to factors like heat radiation
intensity, object distance, and reflection angles, which can degrade the performance of vision-
based systems.

Thermal image enhancement algorithms fall into two main categories: traditional and learning-
based. Traditional methods [21], see Table 1, such as Histogram Equalization [22], Wavelet-Based
methods [23], Top-Hat Transform [24], and Gradient Field Equalization [25], focus on improving
contrast and reducing noise. While effective in some scenarios, they often struggle in complex
situations, sometimes over-enhance, leading to noise amplification and brightness distortion.

In contrast, learning-based methods utilize neural networks to enhance image quality, effectively
addressing issues like low contrast, noise, and blurred details, making thermal images more
suitable for analysis. These methods also face challenges, including high computational demands,
reliance on large datasets, training instability, risk of overfitting, domain adaptation difficulties,
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noise sensitivity, and limited real-time processing capabilities. Ongoing research aims to mitigate
these issues, improving the robustness and practicality of learning-based approaches.

2.2 State Space Models (SSM)

A State Space contains the minimum number of variables describing a system. SSMs were initially
developed in control theory [26] to model dynamic systems and have since been adapted into deep
learning for their ability to handle sequential data effectively [17, 27]. In control theory, SSMs
represent systems where the current state is influenced by prior states and external inputs, making
them well-suited for capturing temporal dynamics. This framework allows for real-time tracking
of system evolution over time, which is essential in dynamic processes. When SSMs were
introduced into deep learning, they brought a distinct advantage: their powerful capability to model
long-range dependencies in sequential data, outperforming traditional recurrent architectures like
RNNs and LSTMs [28]. Unlike these traditional models, which often struggle with vanishing
gradients and computational inefficiency, particularly in long sequences, SSMs are designed to
maintain linear computational complexity. This makes SSMs far more efficient, allowing for the
processing of long sequences without the significant computational cost typically incurred by other
architectures. As a result, SSMs can handle both short-term and long-term dependencies in the
data, making them highly versatile.

State-Space Models for Linear Systems: SSMs provide a mathematical framework for
representing physical systems using inputs, outputs, state variables, and differential equations. An
SSM dynamically describes a system's behavior and is constructed using two types of equations:
the state equation and the output (or observation) equation.

o The state equation defines the temporal evolution of the system's state as a dynamical
system.

e The output equation defines how the internal state is observed or measured through
outputs.

The SSM order, or the number of differential equations required to represent a physical model,
depends on the system's input and output variables. SSM-based control, a fundamental tool, is
crucial in analyzing linear and non-linear systems with multiple inputs and outputs. Fig. 2(a)
illustrates a block diagram of a state-space model for a linear system with a feedback control loop
connected to the inputs and outputs. This model dynamically describes the system's behavior using
state variables h(t), inputs x(t), and outputs y(t). The following equations govern the state-space
model:

State Equation: hB(t) = A - h(t) + B -x(t)

This equation defines how the state evolves over time through the state transition matrix A, which
captures the influence of the current state on the next state. Matrix B describes the impact of the
input x(t) on the state changes. Here, h(t) represents the latent state at time t, and x(t) is the input
at the same time step. This equation demonstrates how the system changes based on both its current
state and the input it receives.

Output Equation: y(t) = C-h(t) + D - x(t)
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The output equation converts the state into an observable output. Matrix C controls how the latent
state h(t) is translated into the output y(t), while matrix D determines the direct influence of the
input x(t) on the output. Matrices A, B, C, and D are all learnable parameters that can be adjusted
to optimize the model's predictive accuracy. Figure 2(b) provides a visualization of both the state
and output equations. It shows how the state equation governs state evolution, with matrix A
capturing the influence of the current state on the future state and matrix B capturing how the input
X(t) affects state transitions.
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Fig. 3. Overall architecture of MTIE-Net (a), Enhancement and Denoising State Space Model (b), Enhancement and
Denoising Module (c).

Solving these equations aims to uncover the statistical relationships that predict the system's future
state based on the observed data (input sequences) and the previous state. This approach is
fundamental in control theory and signal processing, allowing for the modeling and analysis of
complex dynamic systems.

The efficiency and scalability of SSMs have drawn significant attention in areas that require
analyzing sequential data, such as natural language processing, time-series forecasting, and,
increasingly, computer vision tasks. In particular, SSMs have proven valuable in tasks that involve
long-range dependencies, such as video analysis and image enhancement techniques like dehazing.
By leveraging the strengths of SSMs, modern deep learning architectures can more effectively
model both spatial and temporal relationships, improving performance in tasks where temporal
and spatial consistency is critical. This ability to capture complex dependencies with high
efficiency positions SSMs as a key technology in advancing deep learning capabilities in both
time-dependent and spatially structured data domains.

2.3 Visual Mamba

The Mamba model, a dynamic state space model (SSM) with efficient selection mechanisms, is
gaining traction in computer vision due to its ability to handle long-range dependencies in data
while maintaining linear complexity. This significantly contrasts with traditional transformers,
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which face limitations due to their quadratic complexity as image sizes increase. Mamba has
demonstrated promising results in various visual tasks, including image classification, feature
enhancement, and multimodal fusion [29]. Its efficiency positions it as a strong contender to
replace CNNs and transformers as a foundational architecture for visual tasks.

TIR Image VIS Image Depth Map Hazy Image

Fig. 4. This figure shows original image from M3DF, corresponding VIS image, depth map and generated hazy image.

Since 2024, Mamba has been successfully applied to diverse applications such as image
enhancement, video analysis, and object detection [30]. These applications showcase their
versatility and potential to significantly improve computer vision systems' accuracy and efficiency.
By effectively managing long-range dependencies and maintaining computational efficiency,
Mamba offers a robust solution for modern visual tasks, paving the way for advancements in the
field. We adopted the integration of SSM into visual tasks, following the approach outlined in [31].
The SS2D module consists of three main operations: Scan Expanding, S6 blocks, and Scan
Merging. In our model, the input images first undergo the Scan Expanding operation,
systematically unfolding the image from its four corners toward the center. This process rearranges
the spatial structure of the image, effectively allowing the model to capture features from different
spatial regions. The height and width of the image are then flattened into a token length, turning
the two-dimensional image into a one-dimensional sequence. Once the image has been flattened,
each sequence is input into the S6 module, responsible for feature extraction. The S6 module
operations can be expressed as:
hs = Ah;_1 + Bx,

Ve = Chy,
where, x is the input variable, y is the output, and A, B and C are all learnable parameters. The

outputs from the four directions of extracted features are summed and merged, and the dimensions
of the merged output are readjusted to match the input size. Then, after processing the S6 blocks,
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the Scan Merging operation restores the spatial structure by reorganizing the flattened sequence
back into its original two-dimensional form. This combination of scan operations enables the SS2D
module to capture local and global features in the image effectively, improving feature extraction
for our visual tasks.

Hazy Orignal

Label

Fig. 5. This figure shows original image from M3DF, generated hazy image and generated label image.

3. Network Structure and Training

This section describes the proposed network and its training strategy for thermal image
enhancement.

3.1 Structure

Fig. 3(a) illustrates our MTIE-Net framework, which consists of an encoder-decoder structure,
capturing both local and long-range contextual features. Both processes are symmetric and divided
into two levels. Each downsampling level consists of an EDSSM (see Fig. 3(b)), and a
convolutional layer with kernel size of 3 x 3 (stride=2). Similarly, upsampling involves two levels,
each including a upsampling operation, a 1 x 1 convolution applied to the merged features from
the corresponding downsampling layer, and an EDSSM. Finally, a 3 x 3 convolution is applied to
the image to reduce dimensionality and restore it to grayscale with a single channel. EDSSM block
includes an Enhancement and Denoising (ED) module (see Fig. 3(c)) consisting of two branch
processing: the first branch outputs a single-channel feature map, which is element-wise multiplied
with the input image, enhancing contrast and preserving important edge information. The second
branch processes the input, and its output is added to the multiplied result from the first branch,
effectively removing noise and artifacts from the image.
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Input WTHE
Fig. 6. Qualitative comparison of MTIE-Net.

3.2 Training and Dataset

We selected the M3DF [32] dataset for training due to its unique provision of pixel-aligned TIR
and VIS image pairs. The dataset was captured using a synchronized system consisting of one
binocular optical camera and one binocular infrared sensor, ensuring accurate alignment between
the TIR and VIS images. The scenes feature diverse environments, including campus areas and
roads, with a total of 4,200 image pairs as well as an additional 300 pairs from independent scenes,
which we used as the test set. We employed the atmospheric scattering model (ASM) to create
synthetic hazy images widely used in dehazing methods [33]. ASM models a hazy image 1(x) as

1) = J() -t + A- (1 = t(),
where J(x) is the haze-free image, A the atmospheric light and
t(x) = e~ Bdx)

IS the transmission matrix [34] with £ being the atmospheric scattering coefficient and d(x) the
depth map. For this approach, both the image and its corresponding depth map are required. We
utilized corresponding VIS images to generate depth maps for the TIR images, as many depth
estimation algorithms work well for visible images. We used the DIFFNet [35] method for
generating depth maps, results shown in Fig. 4. The scattering coefficient g was selected uniformly
from the range [0.6, 1.8], while A from [0.2, 0.6], following [36]. Finally, we added Gaussian
noise to make the synthetic TIR images more realistic. For the ground truth label images, we
applied the Contrast Limited Adaptive Histogram Equalization [37] technique to enhance the input
images, using a clip limit 1.2.

Since thermal images inherently contain noise, we incorporated the Non-local Means
Denoising algorithm [38] to reduce noise levels while preserving important features. To retain
essential details that might be lost during denoising, we merged the denoised image with the
enhanced image using a coefficient of 0.4. We further combined this result with the original input
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image using a coefficient of 0.2 (as shown in Fig. 5). This multi-step merging process ensures that
the final output maintains the critical features of the original input while effectively denoising and
enhancing the image. The network was trained for 300 epochs using the Adam optimizer (Adaptive
Moment Estimation) with an initial learning rate of 1x10—4. Input images were cropped to
256x256 pixels to ensure consistent processing and to optimize the training efficiency.

3.3 Loss Function

The network training process minimizes the loss between the predicted images and the
corresponding high-quality ground truth images. We use the Mean Squared Error (MSE) metric,
which calculates the average of the squared differences between predicted and actual values. MSE
assigns greater weight to larger errors, making it sensitive to outliers and effective for minimizing
the overall error in the model. The loss function is defined as follows:

Lysg = MSE(Ipred:Igt)
where

MSE(Ipred' Igt) = ?il ij=1(1predi]- - Igti]-)z 1)
where I,..4 is the predicted image, I, is the ground truth image M, N are the width and height of

the image, respectively. The MSE ensures consistency between the network's predictions and the
reference images, guiding the model to improve its accuracy.

BBCNN IE-CGAN

Fig. 7. This figure shows our ability to recover both high-level and low-level features compared with BBCNN, IE-
CGAN and WTHE.
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Fig. 8. Performance of MTIE-Net on M3DF dataset.

4. Experimental Results

This section presents the experimental results of our proposed approach in comparison with several
existing methods, including AGCCPF [39], WTHE [40], BBCNN [41], and IE-CGAN [42].
Through this comparative analysis, we aim to highlight the strengths and weaknesses of each
method and evaluate the effectiveness of MTIE-Net against these techniques. MTIE-Net provides
a more robust foundation for object detection, tracking, and classification applications by
maintaining optimal visibility across various image degradation scenarios.

4.1 Qualitative Comparison

Figure 6 compares MTIE-Net qualitatively against other thermal image enhancement techniques.
As seen in the figure, IE-CGAN successfully reduces haze but makes the image too dark, leading
to the loss of crucial details. For example, in the third row, it fails to recover the traffic light and
loss of car information, which is critical for applications like pedestrian or vehicle detection.
AGCCPF and WTHE tend to over-enhance road textures, losing essential details, particularly in
lighter (hazy) areas. However, WTHE performs better in handling contrast in extremely dark
regions. BBCNN often produces unnatural sharpness and introduces halo artifacts, negatively
affecting overall image quality. In contrast, MTIE-Net provides a balanced enhancement of hazy
regions while preserving essential details, maintaining natural contrast and depth information as
shown in Fig. 7. It restores image details without introducing halo artifacts, making it more
applicable for real-world applications. Although to understand the generalizability of our
approach, we ran the algorithm on the original M3DF dataset, showing its performance on real-
world thermal images (see Fig. 8). MTIE-Net effectively enhances thermal images captured in
natural conditions, where haze, noise, and low contrast are naturally present. Unlike the previous
experiments with simulated hazy images, this evaluation demonstrates the model's robustness and
adaptability to complex, real-world degradations.

MTIE-Net successfully restores essential details and preserves natural contrast without
introducing halo artifacts. Also, using basic colorization methods on thermal images makes the
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results easier to interpret, giving a clearer and more intuitive view of the scene. This improvement
is crucial for tasks like autonomous driving and surveillance, where clarity and detail are vital.

4.2 Quantitative Comparison

To evaluate the effectiveness of MTIE-Net architecture, we utilize five image quality metrics:

(i) Peak Signal-to-Noise Ratio (PSNR), which measures the ratio between the maximum possible
signal power and the power of noise that affects image quality, commonly used for assessing the
reconstruction quality in lossy image compression codecs. Given a reference image | and a test
image J, both of size MxN, the PSNR between | and J is defined by:

2

PSNR(1,]) = 10 log(m

)

where MSE is defined in (1).

(ii) Structural Similarity Index Measure (SSIM) [20], which evaluates image degradation based on
perceived structural information. SSIM considers factors such as luminance and contrast masking
to assess the similarity between two images. SSIM is defined as:

SSIM(L,)) = (L)) - (L)) - s(I,))

where [(I,]) is the luminance comparison function that measures the closeness of the two images
mean luminance, c(/,]) is the contrast comparison function that measures the closeness of the
contrast between the two images (where contrast is measured by the standard deviation), and s(/, ])
is the structure comparison function that measures the correlation coefficient between the two
images [20, 43].

(iii) Measure of Enhancement (EME) [44], which assesses the entropy of block-wise image
contrasts rather than individual pixel values. This metric is crucial for evaluating the quality of
enhanced images, as it highlights contrast differences within blocks. The EME metric is defined
as:

15 B

EME(I) = —Z 20 In(—-"% )

n&d Iin T C
where | image is partitioned into n blocks, IX ., I¥ .. are the maximum and minimum values of
the k block, and c is a small constant to avoid division by zero.

(iv) Block-Based Information Measure (BDIM) [45], which evaluates the amount of information
present in image blocks by considering both local contrast and structural details. This measure
provides insight into the effectiveness of enhancement by focusing on small image regions,
ensuring that fine details are preserved and enhanced across blocks.

(v) Global Contrast Measure of Enhancement (MDIMTE) [46], which combines features
accounting for the human visual system, information theory, and distribution-based measures. This
metric provides a holistic view of enhancement quality, considering global contrast improvements
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that align with how humans perceive image quality and how efficiently information is distributed

throughout the image.

High scores across these metrics indicate superior image enhancement and a more natural

visual appearance. Table 2

presents the comparative | Table 2. Quantitative Comparison of MTIE-Net with Other State-of-the-

analysis results, | Art Methods
showcasing MTIE-Net

performance against AGCCPF | BBCNN

existing methods. Our | Measure
method outperforms both
traditional and CNN-based

approaches, achieving the PSNR T
highest average scores in SSIM 1
SSIM,  PSNR.  These
results underscore the
superior  capability  of EME 1
MTIE-Net in enhancing
thermal images while BDIM 1

preserving essential details
and maintaining a realistic = MPIMTE 1
look.

5. Ablation Study

We conducted a series of ablation
experiments to assess the contribution of the
SS2D and ED blocks to the thermal image
enhancement task. Specifically, we trained
MTIE-Net with and without these modules to
understand their impact on performance. In
one variant, only the ED block was retained
while the SS2D block was removed, and in
another variant, only the SS2D block was
retained while the ED block was removed. As
shown in Table 3, the highest PSNR, SSIM,
EME, BDIM and MDIMTE values were
achieved when both the ED and SS2D blocks
were integrated, indicating that their
combination significantly improves the
model's ability to enhance overall image

[39] [41]

15.204 22.638

0.852 0.909
1.600 1.688
0.922 0.928

52.987 54.931

IE-CGAN | WTHE | MTI-Net
[42] [40]

19.535 15.406 24.303

0.718 0.872 0.948

1.496 2.618 3.001

0.912 0.921 0.939

48.111 51.131 57.584

Table 3. Ablation Study on M3DF Dataset

Methods MTIE-Net MTIE-Net |MTIE-Net
w/o SS2D w/o ED

PSNR 1

SSIM 1

EME 1

BDIM 1

MDIMTE 7

22.915 23.143 24.303
0.911 0.932 0.948
2.837 2.877 3.001
0.934 0.934 0.939
56.821 57.193 57.584

quality. This demonstrates that integrating ED and SS2D is critical for achieving superior

performance in thermal image enhancement.

In addition to the experiments conducted on the M3DF dataset, we further evaluated the data
independence of MTIE-Net using real-world solar panel images provided by SOLARON LLC.
These images offer a diverse set of real-world conditions, enabling us to test the model's ability to

generalize beyond training data.
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AGCCPF BBCNN [E-CGAN WTHE MTIE-Net
Fig. 9. Qualitative comparison of MTIE-Net on Solar Panel Images.

Fig. 9 presents a qualitative comparison of MTIE-Net against other enhancement techniques on
the solar panel dataset. MTIE-Net consistently outperforms the other methods, making clearer and
more detailed images while maintaining critical features, such as panel textures and fault regions.
This demonstrates the robustness of MTIE-Net in handling different real-world datasets beyond
the original thermal images used for training. To provide a more detailed visualization,

1 : £ Eer B St S - F
WTHE MTIE-Net
Fig. 10. Detailed Visualization of MTIE-Net (our) and WTHE on Solar Panel Images (the best one).

Fig. 10 shows two selected solar panel images enhanced by the best-performing model from the
previous comparisons, with the simple colorization technique applied. These images highlight
specific visual improvements, such as better contrast and detail preservation. The results underline
the data-independent nature of MTIE-Net, confirming its ability to generalize effectively to new
datasets.

6. Conclusion

In conclusion, this paper introduces the novel MTIE-Net architecture for thermal image dehazing,
building upon the Mamba model to achieve superior performance. We enhanced feature extraction
capabilities by integrating an advanced ED module with the SS2D model, significantly improving
image quality and clarity. We also incorporated labeled thermal infrared (TIR) data for degradation
enhancement, utilizing depth information from aligned visible-infrared (VIS-TIR) image pairs.
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Our extensive quantitative and qualitative evaluations demonstrate that MTIE-Net outperforms
state-of-the-art methods such as IE-CGAN, BBCNN, AGCCPF, and WTHE on the M3DF dataset.
The results validate MTIE-Net’s robustness and reliability across various imaging scenarios,
showing consistently superior performance in both objective measures and visual assessments
compared to other approaches. MTIE-Net shows significant potential for advancing thermal
image-based applications. Future work will focus on developing a unified network capable of
processing multi-scale and multi-spectral images, thereby broadening the versatility and
applicability of our approach.

Additionally, we plan to integrate domain adaptation techniques to address the challenges of
different imaging conditions and environments, ensuring more generalized performance. We will
also explore real-time processing capabilities to make the network suitable for applications that
require immediate analysis, such as autonomous navigation, surveillance, and disaster response.
This ongoing development aims to enhance thermal imaging performance further, offering
valuable improvements for diverse applications, including environmental monitoring, security,
and beyond.
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AHHOTALIUA

ATMOC]epHble sBIIEHUS, TaKHE KaK J0X]b, CHET, FOPOJICKHE U JIECHBIE MOXKaphl, a TaK¥kKe
HCKYCCTBEHHBIE KaTaCTPO(bI, MOT'YT YXYIIIATh KAYECTBO H300paKEHHUS B PA3IMYHBIX 00JIACTSIX,
BKJIIOYAsi TPAHCIOPT, CHUCTEMbl IOMOUIM BOJAUTENSM, BHACOHAOIIOJCHIE, BOEHHBIE W
TEJIEKOMMYHHUKAIIMOHHBIE CHUCTEMBL. TEXHOJIOTMM yJaJleHHus TyMaHa C HM300paxKeHun
HaIpaBJIeHbl Ha CHUKEHHE TMOCJIEICTBUN TyMaHa, MbUIM U JIPYTUX aTMOC(EPHBIX HCKaKEHUH,
yay4iias KadecTBO H300pakeHUs s Oosiee  3((EKTUBHOTO  BBINOJHEHHUS — 3a1ad
KOMITBIOTEPHOTO 3peHus. TyMaH He TOJIbKO CKpPBIBAE€T NETAIM, HO M CHMXKAET KOHTPACT U
IIBETOBYIO TOYHOCTD, YTO CYLECTBEHHO BJIMAET Ha TOUHOCTh MOJIENEH KOMIIBIOTEPHOT'O 3PEHMS
(CV), wucnomb3yemblx i OOHAapyKEHHS OOBEKTOB, KiacCUPUKaUU HW300paKCHUH W
cerMeHTanuu. XOTs TeroBu3nOHHbIe u300paxenus (TIR) wacto mnpeamounrtaroTcs ISt
JAIIbHETO KOHTPOJISI U TEJICKOMMYHUKALIMK Oiarofaps UX CTOMKOCTH K TyMaHy, aTMOC(epHbIe
YCIIOBHUS BCE JXK€ MOTYT YXYAIIUTh MX KauyecTBO, OCOOEHHO B 3KCTPEMAaJbHBIX MOTOAHBIX
YCIIOBHSIX.

B sroit crarbe npeacrasien MTIE-Net — HoBast ceTh Ha ocHOBe Mamba [u1st ymy4iieHus
TEIUIOBU3MOHHBIX N300paKeHHH, HCKaKEHHBIX aTMOC(EPHBIMU SBJICHUSMHU, TAKUMHU KaK TyMaH
u apiM. MTIE-Net ucnonsizyer Enhancement and Denoising State Space Model (EDSSM),
KOTOpasi coueTaeT B cebe CBEpTOYHbIE HEHPOHHBIE CETH U MOJAEITUPOBAHUE COCTOSHUMN IS
3 PEKTUBHOTO yIAIECHUS IIyMa U YIy4IIeHUs H300pakeHUs. MBI CO3/1aéM CHHTETHYECKHE
M300paXEHUSI C TyMaHOM M TIPUMEHsAEM CIenu(pUIecKrue Jisd JOMEHa MpeoOpa3oBaHus,
aJIalITUPOBAHHbIE K XapaKTEPUCTUKAM TEIUIOBU3MOHHBIX HM300pXKEHUH, IS yIydIIeHUsS
oOydeHHs B YCIOBUSX HHU3KOM BUAMMOCTH. Hamm kirodeBble TOCTHIKEHUS BKJIIOYAIOT
UCIIOJIb30BaHUE apXUTEKTYpbl Mamba ¢ 2D u30uparenbHbIM CKaHUPOBAHUEM JUISl YIyUIIEHUS
TEIUIOBU3MOHHBIX M300paKeHUM, pa3paboTKy MOIyJNs I yAaJeHUs LIyMa U YIydlIeHUsS
u300pakeHHs, a TaKkKe Cco3AaHue Habopa JaHHBIX C CHHTETHYECKUM TYMaHOM JUIS
TEIJIOBU3MOHHBIX M300pakeHnid. OrneHeHHBIM Ha HaObope maHHbIX M3DF nmns nmanbHUX
TETUIOBU3UOHHBIX H300paxenuid, MTIE-Net nmpeBocXoIuT COBpeMEHHBIE METOIbl KaK II0
KonumdecTBeHHBIM TokazaTessiM (PSNR, SSIM), Tak 1 mo ka4ecTBEHHBIM OIICHKaM BU3YalbHOM
YETKOCTH M COXPAaHEHUS KpaeB. ODTO NOCTHUKEHHE 3HAUMTEIbHO YIYYIIaeT HAJEKHOCTb U
TOYHOCTh TE€JIEKOMMYHUKAIIMOHHBIX, CHCTEM HAOJIIO/IEHNS U aBTOMATHUYECKUX CHCTEM 3a CUeT
yAYUIIEHUS Ka4eCTBa U300paKEHUs B CIOKHBIX aTMOC(HEPHBIX YCIOBHUAX

KuroueBble ci10Ba: TEIIOBU3HOHHOE N300pakeHUE; YITyUIlIeHUE U300paKeHUS; YIIyqIleHUEe
TETIOBU3MOHHOTO U300paxkenus; Mamoa.
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