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Abstract

Salient object detection (SOD) aims to identify the most visually prominent objects in
images, crucial for tasks like image segmentation, visual tracking, autonomous
navigation, and photo cropping. While SOD has been extensively studied in natural scene
RGB images, detecting salient objects in remote sensing images remains underexplored
due to varying spatial resolutions and complex scenes.

This paper presents a novel framework for SOD called Multispectral Decomposition
Network (MSD-Net) in remote sensing 3-band RGB images, combining Multispectral
Decomposition and Frequency-based Saliency detection. The framework includes three
key steps: (i) Multispectral Decomposition: Decomposing a 3-band RGB image into 32
multispectral bands to enhance feature capture across spectral domains; (ii) Synthetic
RGB Reconstruction: Using a new entropy-based measure to select the most informative
bands in salient regions by analyzing frequency domain and constructing synthetic RGB
image; and (iii) Saliency Fusion and Object Detection: training a segmentation network
on the fusion of synthetic RGB image and input image for improved accuracy.
Comprehensive evaluations of public datasets demonstrate that the proposed method
performs better than state-of-the-art (SOTA) models and offers a robust solution for
detecting salient objects in complex remote sensing images by integrating multispectral
and frequency-based techniques.
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Automatic monitoring systems utilizing remote sensing technologies, such as satellite and UAV
imagery, have encountered significant challenges in recent years. Remote sensing image
processing [1] has numerous applications, including environmental monitoring, surveillance,
military operations, autonomous navigation, and visual tracking. Image content analysis is
critical across all these applications, encompassing object detection, localization, segmentation,
and classification. The complexities and challenges in these tasks stem from varying
environmental conditions, inconsistent image quality, and the diverse range of objects or regions
requiring analysis. To address these challenges, recent approaches have leveraged properties of
the human visual system. Humans possess an innate ability to automatically identify regions of
interest within complex scenes through the visual attention mechanism. Inspired by this capability,
salient object detection (SOD) enables computers to simulate this behavior, allowing them to
detect the most prominent and important objects or regions in a scene automatically. SOD's
adaptability and efficiency make it valuable in various applications, including foreground
annotation, image enhancement, segmentation, image quality assessment, and video

summarization.

Fig. 1. Examples of SOD. Input and expected outputs are in the first and second rows, respectively.

While recent advances in signal processing have somehow solved these issues by allowing
systems to detect predefined classes of objects with high accuracy, a more intricate problem arises
in saliency object detection (SOD). Unlike standard detection tasks, where the system is searching
for known objects, SOD involves identification of unknown objects or regions of interest [2]. Some
example images of salient objects and their corresponding masks are illustrated in Figure 1. In
[3], the authors have conducted an excellent review of the challenges in SOD and existing
solutions, as well as their pros and cons. While SOD has been extensively studied in natural scene
images, its application in remote sensing images brings more challenges, such as varying spatial
resolutions, highly heterogeneous and complex scenes, and the presence of background clutter and
noise in an image.

Early studies in salient object detection (SOD) showed promising results by using basic,
handcrafted features like image contrast and background information to identify important regions
in images. These early methods provided a foundation for the development of SOD techniques,
and a detailed review of these non-deep learning approaches can be found in [4]. An interesting
method proposed by [5] involved extracting spectral residuals from the frequency domain by
analyzing the log spectrum of the image. This process helped to create a saliency map in the spatial
domain. However, these methods had some limitations: (i) they struggled with complex textures
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and fine details, which led to blurred results, and (ii) it was sensitive to noise and image artifacts,
which affected their accuracy. Another recent algorithm, based on image contrast, was proposed
by [6]. This method used global contrast to detect saliency by separating large objects from their
surroundings. It assigned similar saliency values to similar regions, which allowed the entire object
to be highlighted evenly. The saliency of each region was mainly based on its contrast with nearby
areas, while distant contrasts had less influence. Although this method had difficulties with low
image contrast, it was hard to distinguish objects from their backgrounds. These early methods
were limited, especially in handling complex textures and low-contrast images. Further
advancements were needed to improve their effectiveness and reliability.

With the success of deep learning technologies in computer vision, an increasing number
of deep learning-based SOD methods [7] have emerged. Early deep SOD models generally utilized
multi-layer perceptron (MLP) classifiers to predict saliency scores based on deep features
extracted from individual pixels. These models significantly outperformed traditional, non-deep
learning SOD methods. However, the MLP-based models were limited in their ability to capture
spatial information effectively, as they lacked the structure to account for spatial dependencies
across the image.

Table 1. Existing methods and limitations.

Conv- . MSD-
SRS GCR NN VIiT Net
Simple and efficient + + - - +
Can handle complex structures - + + + +
Robust to noise and contrast + i + N N
variations
High accuracy - - + + +
Does not require large training data + + - - +
Low computational complexity + + + - +

Inspired by the success of fully convolutional networks (FCNSs) [8] in semantic segmentation,
more recent deep SOD methods have shifted toward using FCN-based architectures. These
approaches incorporate advanced backbones like VGGNet [9], ResNet [10], and MobileNet [11],
allowing end-to-end spatial saliency representation learning. By leveraging the strengths of these
convolutional networks, modern SOD models can efficiently predict saliency maps while
maintaining spatial coherence, significantly improving both accuracy and computational
efficiency compared to earlier methods. Visual transformer-based architectures, such as ViT [13],
have recently demonstrated significant potential in segmentation tasks. Several methods have
leveraged these architectures to propose transformer-based saliency detection approaches [14].
Furthermore, novel advancements in convolutional networks have emerged, achieving state-of-
the-art (SOTA) performance in salient object detection. For instance, GSANet [15] introduced the
Semantic Detail Embedding Module (SDEM), which explores the relationships between multi-
level features. It adaptively combines shallow texture details with deeper semantic information to
efficiently aggregate information entropy in salient regions. Despite these advancements, these
architectures have limitations, such as the quadratic computational complexity of visual
transformers and the dependency on large-scale pixel-wise human annotations, making them less
practical in specific scenarios. To develop effective SOD methods, it is crucial to address the
complexities of feature extraction, minimize irrelevant data, and enhance precision in challenging
environments such as low-light conditions, complex backgrounds, or high-noise environments.
Table 1 summarizes the limitations of existing approaches.
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This paper aims to overcome the primary limitations of current SOD methods by improving
feature extraction and precision to provide a robust solution for saliency detection across diverse
and complex environments. The key contributions of our work include:

1. Novel Entropy-Based Band Selection Measure to quantify the information within each
spectral band regarding salient objects. It guides the reconstruction of a synthetic RGB
image, enhancing the visibility and clarity of salient objects compared to the original
image.

2. Novel Framework for salient object detection in remote sensing applications, leveraging
multispectral decomposition and spectral frequency analysis. Specifically:

a. We employ a multispectral decomposition technique to distribute the image's
information across various spectral bands, effectively filtering out irrelevant details
such as noise, background clutter, or non-salient objects and retaining only pertinent
information for the segmentation process.

b. We integrate the selected spectral bands with a segmentation network fused with the
original image, improving the network's capacity to identify and delineate salient
objects accurately.

3. The presented Method has been rigorously evaluated against several SOTA approaches
using performance metrics and benchmark datasets. Furthermore, we tested its
performance on additional image sets, demonstrating the framework's generalization
capability across different domains and environmental conditions.

This comprehensive evaluation provides (i) strong evidence of the developed saliency detection
method's effectiveness and robustness and (ii) demonstrates improved precision and adaptability
in various contexts. This adaptability ensures that MSD-Net can be effectively applied in diverse
and complex environments.

2. Framework for Image Enhancement and Segmentation

The proposed framework begins with a histogram equalization-based enhancement applied to the
input image to improve its contrast, followed by gamma correction to adjust the brightness by
raising the pixel values to the power of gamma. This pre-processing step enhances visibility and
prepares the image for further analysis.

The core algorithm is divided into two main branches. The first branch generates a guidance
saliency map, which provides high-level information about potential object locations and shapes
while guiding further processing. The second branch decomposes the image into multiple spectral
bands, distributing information across different bands to facilitate the selection of relevant data
while minimizing noise or irrelevant details that could hinder the detection task. The next phase
involves band selection, where the framework measures the similarity between the guidance
saliency map and each spectral band. The top three bands from the "R," "G," and "B" spectrums
are selected based on their relevance and combined to create a synthetic RGB image. This
synthesized image is then summed with the original input image and passed to the segmentation
network, which produces the final output mask, indicating the segmented regions of interest.

Fig. 2 illustrates the overall workflow of the framework. The following chapters explain each
component's role in image enhancement and segmentation.
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2.1 Preprocessing Step: Enhancement of an Image

The goal of image enhancement techniques is to improve the characteristics and quality of an
image so that the resulting image looks better than the original when evaluated against specific
criteria. Image enhancement is crucial in various image processing applications, including digital
photography, medical image analysis, computer vision, remote sensing, object recognition, optical
character recognition, fingerprint recognition, industrial automation, face recognition, and
scientific visualization. It serves as a vital preprocessing step for numerous image-processing
applications and vision systems [16]. Several image enhancement algorithms have been developed
recently [16-24], which can be categorized into two main classes: spatial-domain processing and
transform-domain processing. Spatial-domain methods operate directly on pixel values.
Representative methods in this category include gray-level histogram techniques, histogram
equalization, adaptive histogram equalization like Contrast Limited Adaptive Histogram
Equalization (CLAHE), adaptive gamma correction, human visual system-based methods, unsharp
masking, ratio image methods, fuzzy entropy approaches, empirical mode decomposition-based
methods, partitioned iterated function systems, linear filters, among others (see details in [25]).
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Fig. 2. Overall architecture and workflow of MSD-Net.

_—— i ———

/ Synthetic RGB

This article uses a combined CLAHE and gamma correction method as a preprocessing step.
Ionn = (CLAHE(I))” wherey = 1.5.

where I is the input image, and 1., is the enhanced output. This approach leverages the strengths
of both techniques to enhance image quality effectively:
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1. Contrast Limited Adaptive Histogram Equalization (CLAHE) [25]: CLAHE improves
local contrast by applying histogram equalization to small regions (tiles) of the image rather
than the entire image. This method limits contrast amplification to prevent noise
enhancement, making fine details more visible without over-saturating the image.

2. Gamma Correction [26]: Gamma correction adjusts the brightness of an image by
applying a non-linear transformation to the pixel intensity values. It corrects the non-linear
way humans perceive light and color, ensuring that the image has appropriate luminance
levels—neither too dark nor too bright.

Combined benefit: By integrating CLAHE and gamma correction, we aim to enhance both the
local contrast and overall brightness of the image:

o Step 1: Apply CLAHE to the input image to enhance local contrast. This step emphasizes
edge details and textures, making subtle features more discernible.

e Step 2: Perform gamma correction on the CLAHE-processed image. Adjust the gamma
value to fine-tune the image brightness according to the application's specific requirements.

Input Image (1.5)

Fig. 3. Input image; CLAHE enhanced; gamma corrected with different gamma parameters.

This combined method enhances fine details while maintaining proper brightness and contrast
levels, making an image more suitable for further processing or analysis information during
decomposition and more accurate detection of proposal regions by the spectral residual algorithm.
Figure 3 demonstrates the effect of CLAHE and gamma correction with different gamma
parameters. Experiments showed the best gamma to be selected 1.5, as it does not over-enhance
or under-enhance the image. In Fig. 4, spectral residual saliency algorithm is used before (b) and
after enhancement (c). We can observe the difference of saliency masks compared to ground truth
masks. This difference shows the effect of the enhancement preprocessing part.

2.2 Spectral Residual Saliency Object Detection

The algorithm [5] is designed to detect salient regions in an image by analyzing its spectral
properties. The key intuition behind this approach is that salient regions are distinguished from the
surrounding background in terms of their spectral characteristics. By working in the spectral
domain (using the Fourier Transform), the algorithm can efficiently highlight these regions by
identifying and manipulating the spectral residual, which captures the unique, non-redundant
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information in the image. The algorithm begins with median blurring with kernel size 5 to reduce
noise while preserving edges. Next is the Fourier Transform step: the image I (x, y) is transformed
into the frequency domain:

F(u,v) = F(I(x, y))

yielding complex values with amplitude and phase information. A logarithm transformation is
applied to the magnitude spectrum, followed by smoothing kernel convolution.

A(u,v) = |F(u,v)|
L(u,v) =log (A(u, v))

S(w,v) = h*L(u,v)

Fig. 4. Spectral residual saliency (SRS) detection: (a) input image, (b) output of SRS w/o enhancement, (c) output of
SRS after enhancement, (d) ground-truth mask.

The spectral residual is computed by subtracting the smoothed spectrum from the original and is
exponentiated and combined with the original phase to reconstruct the frequency domain:
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R(u' 'U) = L(u' 1.7) - S(u' 'U),
M(u,v) = eRWY  F'(u,v) = M(u,v) - e/0@¥),
Output(u,v) = g(x) - F1(F'(w,v)).
An inverse Fourier transform followed by a gaussian filter g(x) with (o = 8) generates the
Saliency Map. There is a final optional step, which subtracts saliency map from original image to
get an anomaly map, but we do not use that step in our article. Fig. 4 illustrates some examples of

spectral residual algorithms.

2.3 Multispectral Decomposition

Multispectral and hyperspectral images play a crucial role in understanding the physical attributes
of objects in an image. While RGB images are limited to three channels (red, green, and blue),

H=0.46 H=1.35 H=1.18 l H=1.47 H=1.89

H=0.84 H=1.5 H=3.21 H=3.26 H=2.72

H=1.31 H=3.1 H=2.84 H=2.87 H=2.61

L= — =
Input Image H=1.67 H=2.41 H=2.84 H=2.34 H=2.28 Synthetic RGB

Fig. 5. From left to right: input image, multispectral decomposition bands (indices 1, 7, 15, 22, 30) with entropy
measures below, Synthetic reconstructed RGB

multispectral images capture data across a broader range of wavelengths, typically tens to
hundreds of spectral bands. This expanded range allows for a more detailed analysis of material
properties, surface textures, and object distinctions that might not be visible in standard RGB
images.

As obtaining multispectral images can be costly, a significant amount of research aimed at
developing methods to predict multispectral information from standard RGB images. Therefore,
considerable interest has been in constructing datasets that facilitate RGB-to-multispectral
conversions (predictions) through deep learning and other techniques [27]. One such method is the
Multi-stage Spectral-wise Transformer (MST++) [28], known for its high accuracy and low
computational complexity. The MST++ architecture is based on a convolutional autoencoder
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(CAE) design consisting of multiple stages of spectral-wise transformers. Each stage includes an
encoder, a bottleneck, and a decoder, with spectral-wise attention blocks (SABs) and
deconvolution layers. Skip connections between the encoder and decoder are employed to preserve
important spatial information throughout the transformation process. The output of this module
consists of 32 spectral bands, with the first 11 bands capturing information from the red channel,
the next 11 bands for the green channel, and the remaining 10 bands for the blue channel.

MST++ is employed as the decomposition network in this work, which converts an RGB
image into 32 spectral bands, providing a richer, more informative spectral representation of the
scene. This arrangement allows for an efficient distribution of information across the channels,
ensuring that the decomposition captures subtle variations and essential features in each color
channel. Fig. 5 shows an example of anRGB image and some corresponding bands after
conversion to a multispectral image. It is easy to see that certain bands contain more information
about salient objects than others. The goal is to identify and select the most informative bands to
be used as supplementary input for the segmentation module [29]. It can reduce the noise and other
information that can bring false positives during the segmentation.

2.4 Novel Entropy-Based Band Selection Measure

Definition 1: To efficiently identify the most informative spectral bands, we compute the entropy-
based band selection measure (H) for each band k using the following formula:

N M
H® = ZZWUHikj,

i=0 j=0

where the entropy Hl-""j of each block is calculated.
Hf; = 20(=pf; log (p) ),

° p{‘j ~ 0.5: indicates a balance between AC and DC components, meaning the block has both
structure (variation) and intensity, which suggests high information content.

° p{‘j ~ 0: indicates that the block is homogeneous with slight variation (dominated by DC),
meaning low information content.

° p{‘j ~ 1: indicates that the block is dominated by high-frequency noise or excessive variation
without meaningful structure (dominated by AC), also leading to low information content.

Hi’j- is the entropy calculated for the ij-th block of the k-th band, and w;; is the average value of
the corresponding ij block in the guidance map. Hl-""j is calculated with the following steps:

1. For each block B;; of the image, a Fourier Transform is performed to obtain the DC and AC
components.
hi .
Fi; = FFT(By), Fj Yt = FFTShift(F;)

k
DCy = IE T OO, Acy= Y IE T @yl

x=1,y=1

a and S coefficients are selected experimentally at 0.6 and 2, respectively.
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2. A probability value p{‘j is computed from the ratio of the AC and DC components from k-th
band.

ko — _Ach
P~ ack + pck

After calculating H® for each k-th band, the top 3 bands are selected with the highest scores from
each range (1-10, 11-21, 22-32). The selected bands construct a new synthetic RGB image that
captures the salient object information more effectively than the original image. Some example
bands and their corresponding entropy scores are illustrated in Figure 5. The final column shows
the RGB image reconstructed from the selected bands. This synthetic image and the original image
are merged by taking their average, as some features can be lost in synthetic RGB, which can be
crucial for segmentation.

2.5Segmentation Network Module

For the segmentation module, the merged image is passed through DeepLabV3 [30] network with
a ResNet50 backbone. DeepLabV3 is a well-known standard in image segmentation tasks. It is
part of a family of segmentation architectures that employ atrous convolution and multi-scale
context aggregation to capture fine details in images. These architectures are widely used due to
their efficiency and accuracy in pixel-level predictions. In this work, the network was chosen
primarily to validate the concept of the proposed framework rather than to focus on optimizing
segmentation performance, as it provides a robust and reliable baseline for evaluating the
effectiveness of the approach.

2.6 Loss Functions

For training the network, we utilize two loss functions: Binary Cross Entropy (BCE) and Mean
Squared Logarithmic Error (MSLE).

N

1
Lpce = Nz yi -log(p;) + (1 — y;) - log(1 — py),
i=0
1 N
Lusi = ) (0g(1+ p) = log(1 +¥))?
i=0

BCE is commonly used for binary classification tasks, and in our case, it helps classify all pixels
as either salient or non-salient regions. MSLE, similar to Mean Squared Error (MSE), introduces
a logarithmic transformation to reduce the impact of large outliers, effectively treating them on the
same scale as smaller values. This property makes MSLE particularly useful for creating a
balanced model that is robust to noise and outliers.
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2. Experimental Results

3.1 Dataset

To train and evaluate the proposed framework, we selected the most suitable benchmark dataset
for optical remote sensing SOD. The first publicly available SOD dataset was ORSSD, introduced
by [31]. It includes 600 training and 200 testing images, each with pixel-wise annotations for
salient regions. Despite its importance to the SOD field, this dataset had limitations, particularly
due to the small amount of data. To address this issue, [15] introduced an extended version called
the EORSSD dataset. This dataset adds 1,200 optical remote sensing images collected from
Google Earth to the existing ORSSD dataset, encompassing more complex scenes, objects, and
regions. Pixel-wise saliency maps were generated using Photoshop tools, resulting in overall
2,000 images with ground-truth annotations (1,400 for training and 600 for testing). The EORSSD
dataset presents several challenges: (i) multiple objects can appear in one single image, (ii) object
sizes in optical remote sensing imagery (RSI) vary significantly due to the diverse satellite and
airborne imaging platforms, making small object detection particularly difficult, and (iii) the
dataset
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Fig. 6. Statistics about datasets object types, sizes, and counts.

includes a variety of objects such as buildings, streets, ships, aircraft, cars, water bodies, islands,
and roads. In summary, the EORSSD dataset is diverse and challenging, making it a valuable
resource for training and evaluating SOD models in complex remote sensing scenarios. Some
statistics about the dataset are presented in Figure 6.

We evaluate MSD-Net on other remote sensing scenarios as well. To show the
generalizability of the proposed method, we also evaluate it on images from the NWPU-RESISC45
[32] dataset, which was initially intended for remote sensing image scene classification. Besides
that, we show the performance on solar panels images taken from the PVV01 dataset [33], without
providing any training example to the network.

3.2 Evaluation Metrics

To quantitatively evaluate the proposed method, we calculate four metrics, with different settings:
adaptive, mean, and max S-measure (S,) [34], mean absolute error (MAE), adaptive, mean and
max E-measure (E¢) [35] and adaptive, mean and max F-measure (Fg) [36]. The S-measure
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calculates object similarity considering the structural similarity between the predicted and ground
truth masks.

N M
1
MAE——MZZ 1Sal(i, /) = GT(i, )|, Sy= @ X S+ (1—a) xS,
:1 =1

N M
1 Z z o P (1 + B?) X Precision x Recall
 NM 4 ¢, Fg = B2 x Precision + Recall

l: ]:

a = 0.5, Sy and S, are object and region similarities, respectively. MAE calculates the mean
absolute distance of predicted and actual saliencies. The E-measure is an improved metric
designed to calculate the degree of correspondence between global averages and individual local
pixels. & is the enhanced alignment matrix, capturing pixel-level matching and image-level
statistics. Finally, F-measure calculates the weighted harmonic mean of Precision and Recall. 8
is the weight coefficient and is set at 0.3 in our experiments. For each measure, we have three
settings: adp (adaptive), mean, and max.

(b)

Fig. 7. Comparison of MSD-Net with others. (a) input image, (b) SRS, (c) GCR, (d) DeepLabV3, (¢) GCANEet, (f)
MSD-Net, (g) ground truth.
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Table 2. Quantitative comparison of proposed method against others on eorssd dataset.

S-MeasureT MAE! adpEMT meanEMT maxEM T adpFM T meanFM T maxFM T
SRS 0.485 0.178 0.647 0.524 0.612, 0.323 0.192, 0.253
GCR 0.568 0.158 0.484 0.577 0.670 0.204 0.330 0.403
DeepLabV3 0.826 0.018 0.826 0.874 0.902 0.602 0.682 0711
GSANet 0.801 0.025 0.834 0.856 0.871 0.616 0.67 0.689
MSD-Net 0.841 0.017 0.854 0.881 0.912 0.637 0.703 0.731

3.3. Experiments Setup

For a fair comparison, we train all the deep learning-based methods in our dataset split and evaluate
with the same code and pipeline. For all training, the Adam optimizer was used with a learning
rate 10, Two loss functions have equal coefficients during the training. Random horizontal and
vertical flips, rotations, and shifts were used for data augmentation. Batch size and epochs were
selected 16 and 200, accordingly. The patch size for the Fourier Transform was set to K = 16, and
for the entropy measure, K = 10. These parameter values were chosen based on extensive computer
simulations and experimental results.

3.4 Comparison with Other Methods

For the comparison with other methods, we choose 2 non-deep learning-based algorithms,
including spectral residual SOD (SRS) [5] and Global Contrast-based SOD (GCR) [6]. While they
have successfully found salient objects in some simple cases, they fail if some challenges are
present in images, such as complex background scenes or low contrast. To this end, we also
compare 2 deep learning based SOTA models: one for general semantic segmentation task
(DeepLabV3) [30], and another trained exactly for SOD task (GCANet) [15]. As mentioned, for
fair comparison, we use the code they published and train ourselves on our data and our experiment
settings. Despite the promising results and improvements compared with non-deep learning
methods, they still have some limitations. Visual comparison of the proposed framework with
other methods is presented in Fig. 7. On the contrary, MSD-Net has successfully detected the
salient objects and has better boundaries, compared to those having non clear object boundaries,
false positive detected pixels, as well as missing some parts of objects. While SRS (Fig. 7-b)
detected the approximate location of salient objects, it smoothed them and lost a lot of details. On
the contrary, GCR (Fig. 7-c) has not lost any details and processed textures well, but it has a lot of
false positive cases. Deep learning-based methods have shown better performance. [15] and [30]
have false positive cases on the first and fourth images and missed one object in the second image
and part of the object in the third image. The fifth image is smooth, but details are lost in both
cases. On the other hand, MSD-Net successfully managed to detect better masks of salient objects.
Besides qualitative comparison, we also evaluate our method quantitatively using the metrics
defined above. Table 2 shows that MSD-Net shows better performance compared with others on
all metrics.

We demonstrate the generalizability of the MSD-Net by running it on other images taken
from the dataset introduced in [32]. Although this dataset does not provide ground truth masks, as
it is not designed for saliency object detection (SOD), we observe visually good masks on various
image types. While quantitative evaluation is not possible in this case, we can conduct a qualitative
assessment (see Fig. 8-a). We also evaluate the performance of our method on out-of-distribution
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solar panel images (Fig. 8-b), demonstrating strong generalization capability. In future work, we
aim to further improve the accuracy and efficiency of panel detection.

Fig. 8. Predictions of the MSD-Net on samples of (a) NWPU-RESISC45 dataset, (b) PV01 dataset.

3.5 Ablation Study

To investigate the effectiveness of each component, we first train the segmentation network
without applying any pre-processing or synthetic RGB reconstruction steps, establishing a
baseline. We then incrementally add components to the pipeline. Second, we integrate a single
branch using the spectral residual saliency map, which is generated and fused with the input image
to guide the segmentation network in more easily identifying salient objects. This addition
improves the metrics a little. Finally, we incorporate the decomposition module, which results in

Table 3. Ablation study analysis

S-Measure T MAE | adpEM T meanEM T maxEM 1T adpFMT meanFMT maxFM T
Segm. onIy 0.826 0.018 0.826 0.874 0.902 0.602 0.678 0.711

segm. + guide 0.832 0.018 0.841 0.881 0.912 0.622 0.682 0.720
MSD-Net 0.841 0.017 0.854 0.886 0.915 0.637 0.703 0.731
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the highest performance scores when using the full pipeline. The metric values for each scenario
are presented in Table 3, demonstrating the contribution and effectiveness of each block and
branch in MSD-Net.

4. Conclusion

In conclusion, this paper presents MSD-Net, a novel framework for salient object detection (SOD)
in remote sensing RGB images. MSD-Net enhances feature representation and improves detection
accuracy in complex remote sensing scenarios using multispectral decomposition and frequency-
based saliency detection techniques. Additionally, we introduce an entropy-based similarity
measure for effective band selection and synthetic RGB reconstruction. Experimental results on
the EORSSD dataset demonstrate that MSD-Net significantly outperforms state-of-the-art
methods on public datasets. Furthermore, we evaluate the framework on various datasets and
conduct an ablation study to analyze the contribution of each component.

References

[1] L.Zhangand Li.Zhang, “Artificial intelligence for remote sensing data analysis: A review
of challenges and opportunities”, IEEE Geoscience and Remote Sensing Magazine, vol.
10, no. 2, pp. 270-294, 2002.

[2] X.Wang etal., “Salient object detection: a mini review”, Frontiers in Signal Processing,
vol. 4, 1356793, 2024.

[3] W.Wang et al., “Salient object detection in the deep learning era: An in-depth survey”,
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 6, pp.
3239-3259, 2021.

[4] A. Borji et al., “Salient object detection: A benchmark”, IEEE Transactions on Image
Processing, vol. 24, no. 12, pp. 5706-5722, 2015.

[5] X. Hou and L. Zhang, “Saliency detection: A spectral residual approach”, IEEE
Conference on Computer Vision and Pattern Recognition, 2007, DOI:
10.1109/CVPR.2007.383267

[6] Cheng Ming-Ming, et al., “Global contrast based salient region detection”, IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no.3, pp. 569-582,
2014.

[7] Li. Guanbin and Yu. Yizhou, “Visual saliency based on multiscale deep features”,
Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition. 2015.

[8] J. Long, E. Shelhamer and T. Darrell, “Fully convolutional networks for semantic
segmentation”, Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, DOI: 10.1109/CVPR.2015.7298965

[9] K. Simonyanand A. Zisserman, “Very deep convolutional networks for large-scale image
recognition”, arXiv preprint arXiv:1409.1556 (2014).

[10] K. He et al., “Deep residual learning for image recognition”, Proceedings of the IEEE
Conference  on  Computer  Vision and  Pattern  Recognition, 2016,
DOI: 10.1109/CVPR.2016.90

[11] A. Howard, “Mobilenets: Efficient convolutional neural networks for mobile vision
applications”, arXiv preprint arXiv:1704.04861, 2017.

[12] G. Fang et al., “Video saliency detection using object proposals”, IEEE Transactions on


https://doi.org/10.1109/CVPR.2007.383267
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/CVPR.2016.90

108

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

A Multispectral Decomposition and Frequency-Based Framework for Salient Object Detection

Cybernetics, vol. 48, no.11, pp. 3159-3170, 2017.

A. Dosovitskiy, “An image is worth 16x16 words: Transformers for image recognition at
scale”, arXiv preprint arXiv:2010.11929, 2020.

N. Liu et al., “Visual saliency transformer”, Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021.

Q. Zhang et al., “Dense attention fluid network for salient object detection in optical
remote sensing images”, IEEE Transactions on Image Processing, vol. 30, pp. 1305-1317,
2020.

S. C. Nercessian, K. A. Panetta and S. S. Agaian, “Non-Linear Direct Multi-Scale Image
Enhancement Based on the Luminance and Contrast Masking Characteristics of the
Human Visual System”, IEEE Transactions on Image Processing, vol. 22, no. 9, pp. 3549-
3561, 2013.

J. Xia, K. Panetta and S. Agaian, “Wavelet transform coefficient histogrambased image
enhancement algorithms”, Proc. SPIE 7708, 770812, 2010.

A. Grigoryan, J.Jenkinson and S. Agaian, “Quaternion Fourier transform based alpha-
rooting method for color image measurement and enhancement”, Signal Processing, vol.
109, pp. 269-289, 2015.

E. Wharton, K. Panetta and S. Agaian, “Human visual system based multihistogram
equalization for non-uniform illumination and shadow correction”, Proceedings of the
IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 1, pp.
I-729-1-732, 2007.

S. Nercessian, S. Agaian and K. Panetta, “An image similarity measure using enhanced
human visual system characteristics”, Proceedings of the SPIE, Mobile Multimedia/Image
Processing, Security, and Applications, vol. 8063, p. 806310, 2011.

S. Agaian, “Visual morphology”, Proc. IS&T/SPIE's Symposium on Electronic Imaging
Science & Technology, vol. 3304, pp. 153-163, 1999.

R. Kogan, S. Agaian and K. Panetta, “Visualization using rational morphology and zonal
magnitude reduction”, IX Proceedings of IS&T/SPIE's Symposium on Electronic Imaging
Science & Technology, San Jose, CA, vol. 3304, pp. 153-163, 1998.

H. D. Cheng, Y.-H. Chen and Y. Sun, “A novel fuzzy entropy approach to image
enhancement and thresholding”, Signal Process, vol. 75, pp. 277-301, 1999.

S. Agaian, B. Silver and K. Panetta, “Transform coefficient histogrambased image
enhancement algorithms using contrast entropy”, IEEE Trans. Image Process., vol. 16,
pp. 741-758, 2007.

A. M. Reza, “Realization of the contrast limited adaptive histogram equalization
(CLAHE) for real-time image enhancemen”, Journal of VLSI Signal Processing Systems
for Signal, Image and Video Technology, vol. 38, pp. 35-44, 2004.

T. Trongtirakul, S. Agaian and S. Wu, “Adaptive Single Low-Light Image Enhancement
by Fractional Stretching in Logarithmic Domain”, IEEE Access, vol. 11, pp. 143936-
143947, 2023.

B. Arad et al., “Ntire 2022 spectral recovery challenge and data set”, Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.

Y. Cai et al.,, “Mst++: Multi-stage spectral-wise transformer for efficient spectral
reconstruction”, Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022.

H. Gasparyan, T. Davtyan and S. Agaian, “A novel framework for solar panel
segmentation from remote sensing images: Utilizing Chebyshev transformer and
hyperspectral decomposition”, IEEE Transactions on Geoscience and Remote Sensing,
vol. 62, 2024, DOI: 10.1109/TGRS.2024.3386402


https://doi.org/10.1109/TGRS.2024.3386402

[30]

[31]

[32]
[33]

[34]

[35]
[36]

[37]

H. Gasparyan 109

Li.-Ch. Chen, “Rethinking atrous convolution for semantic image segmentation”, arXiv
preprint arXiv:1706.05587, 2017.

Ch. Li et al., “Nested network with two-stream pyramid for salient object detection in
optical remote sensing images”, IEEE Transactions on Geoscience and Remote Sensing,
vol. 57, no. 11, pp. 9156-9166, 2019.

G. Cheng, J. Han and Xi. Lu, “Remote sensing image scene classification: Benchmark
and state of the art”, Proceedings of the IEEE 105.10, pp. 1865-1883, 2017.

H. Jiang et al., “Multi-resolution dataset for photovoltaic panel segmentation from satellite
and aerial imagery”, Earth System Science Data 13.11, pp. 5389-5401, 2021.

D.-P. Fan et al., “Structure-measure: A new way to evaluate foreground maps”,
Proceedings of the IEEE International Conference on Computer Vision, 2017.
DOI: 10.1109/1CCV.2017.487

D.-P. Fan et al., “Enhanced-alignment measure for binary foreground map evaluation”,
arXiv preprint arXiv:1805.10421, 2018.

R. Achanta et al., “Frequency-tuned salient region detection”, IEEE Conference on
Computer Vision and Pattern Recognition. IEEE, 2009.

B. Silver, S. Agaian and K. Panetta, “Contrast entropy based image enhancement and
logarithmic transform coefficient histogram shifting”, Proceedings of IEEE ICASSP, pp.
633-636, 2005.

Puqiuuytlnpuw); mpnhnd b hwdwpuljuinipyut ypu
hhdujwé opowtiul) hknwhwnnppulgdw MunljEptbpnid

wljuhwyn opjkjnutph hwynbwptpdwb hudwp
Zuyly U.. Guuyupjut

Eplwth whnwlwt hwdwjuwpwi, Bplwl, Zwujwunwt
e-mail: hayk.gasparyan@ysu.am

Udthnthnid

Uluhwyn  opjijnnutph hwyntwpbpnudp (SOD) twwwwl nitp

nruwtljupubpnud  hwyntwptpl] wdbkbtwwltwent opjlwnutpp, husp
Yupbnp £ wjbyhup jutghpubph hudwp, htswhupp &u® wunytpbph
ubquEunwughwt, wbunnqulijut htnbnudp, hupttwdup twhqughwi b
nruwupubph jpdunnidp: Bkl SOD-p jujunptu ntunidbwuhpyb) b
puwjut wmbkuwpwttph RGB wwwnltpubpnd, hinwhwnnppuygdwi
wuwnlkpubpnid  wljtwent  opjijnnutph  hwynbwpbpnudp dund  E
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Multispectral Decomposition Network (MSD-Net) hknwhwunnpnulgiwi 3-
otipnn RGB wyuwwnlbptubpnid, npp hwdwnbnnid E puquuuwy Ejnpughte
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uhtptwunhl RGB wwwnlkp; b (iii) Saliency Fusion and Object Detection.
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Uniinpughtt wuwnlbph dhwdmpdwh Jpu pupbpu]jus £ogpuinipyui
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opykljinttkpp huwyniwpkplm hwdwp hnbgpliny puquuuwblnpughb b
hwwwljuinipjut ypuw hhdugwsd mbjuthljwubtp:
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My.IILTI/ICHeKTpaJILHOC PA3JI0KCHHUEC U HACTOTHAA OCHOBA /IJIA
BBIACJICHUA 3aMETHBIX 00bEKTOB Ha n306pa>1<enmlx
AUCTAHIUOHHOI'O 30HAUPOBAHUA
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AHHOTALIUA

Oo6napyxenue 3ameTHbIX 00bekTOB (SOD) HampaBiieHO Ha UACHTU(DUKAIIIO
HauboJsee BU3yalIbHO BBIIEISIONINXCS 00bEKTOB Ha H300PaKEHUSX, UTO BAXKHO JISI
3a/la4 TaKWX, KaK CEeTrMEHTAlus W300paXeHHii, BHU3yaJbHOE OTCIICKHUBAHUE,
aBTOHOMHAsi HaBuranus M KaapupoBanue (ororpadumii. Xors SOD akTtuBHO
U3ydyasnach B U300pakeHUAX eCTECTBEHHBIX clieH B RGB, oOHapyxeHue 3aMeTHBIX
O0OBEKTOB Ha H300paXKEHUSX IUCTAHIIMOHHOTO 30HIUPOBAHHS  OCTACTCS
MAQJIOU3YYCHHBIM W3-32 HW3MEHUMBOCTH TMPOCTPAHCTBEHHBIX pa3pEIICHHH WU
CJIO’)KHOCTH CIICH.

B nannoii pabote mpencrasieH HOBbIM (periMBopk ans SOD, HazbiBaeMblii
Cerpto Mynbrucnekrpansaoro Paznoxenus (MSD-Net) B 3-monocHeix RGB
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U300pasKeHUSIX JMCTAHITHOHHOTO 30HIUPOBAHHS, 00bETUHSFOTIIU I
MYJIBTUCIIEKTPAIBHOE PA3JIOKECHUE H OOHAPYKEHNE 3aMETHOCTH Ha OCHOBE YaCTOT.
OpeiiMBOpPK  BKJIIOYAaeT TpH KimoueBblx mara: (i) MysbTHCIEeKTpaIbHOE
pasznokeHue:  pasnoxkeHue  3-momocHoro RGB  um3obpaxkenuss Ha 32
MYJIbTHCIIEKTPAJIbHBIE TIOJIOCH JIJISl YJIYYIICHHS 3axBaTa IPHU3HAKOB depe3
cektpaibHbie  gomeHbl; (i)  Cunrermueckas RGB  pekoncrpykums:
UCTIOI30BaHUE HOBOW MeEphl Ha OCHOBE OJHTPOINWHU Ui BhIOOpa Hamboee
MH()OPMATHUBHBIX ITOJIOC B 3aMETHBIX PErMOHAX ITyTEM aHAJIN3a YaCTOTHOTO IOMEHA
U mocTpoeHust cuHTeTndeckoro RGB u3obpaxenus; u (iii) CnusHue 3aMeTHOCTH U
oOHapyXeHHe OOBEKTOB: OOy4YeHHE CETMEHTAI[MOHHON CEeTH Ha CIHSHUH
BBIOPAaHHBIX TIOJOC M BXOJHOTO H300paKCHUsI IS TIOBBIIMICHHUS TOYHOCTH.
OOmmpHBIE OIEHKM Ha NyONWYHBIX HaOOpax JaHHBIX MOKa3bIBAIOT, YTO
NPEUIOKEHHBI METOJ MPEBOCXOAMUT CYNICCTBYIOIIME MOJCIU W TpeasiaraeT
HaJISKHOE pEIICHUE JUIS OOHApY)KEHHs 3aMETHBIX OOBEKTOB Ha CIIOKHBIX
U300pasKeHUSIX JMCTAHITHOHHOTO 30HIUPOBAHMUS, UHTETPUPYS
MYJIbTHCIIEKTPATIbHBIC U YaCTOTHO-OPUCHTUPOBAHHBIC TEXHUKH.

KiroueBble  cioBa:  Kapta  OYCBHUIHOCTH;  OOHapy)KeHHE  OOBEKTOB;
MYJIBTUCIICKTPAIBHOE  PA3NOKEHUE,  BBHIOOp  TOJOCH;  JUCTAHIIMOHHOE
30HIMPOBAHKE; YHTPOIIHUS
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