Mathematical Problems of Computer Science 62, 82-92, 2024.
doi:10.51408/1963-0123

UDC 519.651

Analyzing steady state Variance in Hebbian Learning:

A Moment Closure Approach

Edgar A. Vardanyan

Russian-Armenian University, Yerevan, Armenia
e-mail: edgarvardanyan1999Q@gmail.com

Abstract

Hebbian learning, an important concept in neural networks, is the basis for various
learning algorithms that model the adaptation of neural connections, also known as
synapses. Among these models, Oja’s rule stands out as an important example, giving
valuable insights into the dynamics of unsupervised learning algorithms. The fact
that the final steady-state solution of a single-layer network that learns using Oja’s
rule equals the solution of Principal component analysis is well known. However, the
way in which the learning rate can affect the variance of the final parameters is less
explored. In this paper, we investigate how different learning rates can influence the
variance of parameters in Oja’s rule, utilizing the moment closure approximation. By
focusing on the variance, we offer new perspectives on the behavior of Oja’s rule under
varying conditions. We derive a closed-form equation that connects the parameter
variance with the learning rate and shows that the relationship between these is linear.
This gives valuable insights that may help to optimize the learning process of Hebbian
models.
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1. Introduction

In recent decades, intensive research has been conducted on synaptic plasticity and learning.
Much of this work was inspired by Hebb’s postulate [1]. The main idea of Hebbian learning
is that changes in synaptic transmission efficiency are driven by correlated firing activities
of neurons connected by the synapse. Hebbian theory postulates that connections between
neurons become stronger when they are activated at the same time.

Synaptic wiring processes are widely believed to be an integral part of the encoding of
memories in the brain [2]. As a result, Hebbian learning has been studied as a biologically
plausible algorithm for extracting patterns from different types of data. Unlike backpropoga-
tion, Hebbian learning does not require any labeled data and is an unsupervised learning
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algorithm. It is believed that this unsupervised approach is the most common way the brain
learns. This makes Hebbian Learning particularly interesting because of our desire to un-
derstand the human brain and because of the scarcity of labeled data in many problems [3].
As a result of this, Hebbian learning has found numerous applications in various fields such
as computer vision and modeling of human memory [4, 5].

In a single-layer architecture, Hebb’s rule can be formally expressed using the weight
update equation:

wilt +1) = wi(t) + aF(w(t), z:(t), y(y))

where w;(t) is the synaptic coupling strength of the i-th input neuron at time step ¢, z;(t)
is the ¢-th input neuron value, y is the output neuron value, and a will be referred to as the
learning rate of the system.

This is the general form of Hebbian learning. F" here is an undetermined function with an
important limitation being the exclusion of any argument other than the existing synaptic
coupling strength and the values of pre-synaptic and post-synaptic neurons [6]. Building on
Hebb’s rule, different specific forms of learning rules have been developed over timel7, §].

The analysis provided in this paper will focus on studying the Oja’s rule. Oja’s rule
solves stability problems encountered in other learning rules. It projects high-dimensional
data into lower dimensions while preserving the maximal variance, thus generalizing the
Principal Component Analysis. The updating rule for the weights in Oja’s Rule is given by:

wi(t +1) = w;(t) + afz;(t)y — y*w;(t)] (1)

where w;(t) is the weight of the i-th variable at time step ¢, x;(t) is the i-th input variable,

y is the output, and « is the learning rate. The term y*w;(¢) in the update rule ensures

that the weights do not grow indefinitely, overcoming the stability limitation frequently
encountered in Hebb’s rule [9].

When creating artificial neural networks with Oja’s rule or other similar rules, learning
rate becomes one of the most important parameters. High learning rates may cause diver-
gence, while low learning rates may cause slower training time. This creates a tradeoff, which
can be controlled by adjusting the learning rate.

In backpropogation-based neural networks, learning rate schedulers that adapt based
on the loss function are commonly used to enhance the convergence of the network [10].
However, in the context of Oja’s Rule, there is no explicit loss function, and thus, traditional
learning rate schedulers cannot be employed. This necessitates alternative approaches for
learning rate adjustment in Hebbian learning models. Further research is needed to explore
these possibilities and to understand the impact of learning rate on the convergence and
stability of Hebbian-based networks.

This paper concentrates on analyzing the impact of the learning rate on final variance
of the parameters in Oja’s Rule. A closed-form formula is derived that connects the final
variance of parameters with the learning rate of the system for a bivariate normal distribution
data using the moment closure approximation [11, 12, 13]. This formula is validated using a
comparison with numerical values derived from computer simulations. Understanding these
variance relations can help in establishing metrics on how well converged is the lossless
network that can be controlled simply by adjusting the learning rate.
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2. Problem Setup

In this work, we consider a two-variable case, wherein the two variables are denoted as x;
and xy. The data for these variables is assumed to be generated from a bivariate normal
distribution. Without loss of generality, we focus on normalized data. This assumption is
crucial as it simplifies the covariance matrix and aids in further analysis.

The data (z1,x2) is modeled as a bivariate normal distribution with the following prop-
erties:

1. The mean of the distribution is 0 for both variables, i.e., p,, = ptz, = 0.

2. The data is normalized, so the variances o and o2, are both 1.

xr1
Given the above, the covariance matrix X of the distribution is:

(21

where p is the correlation coefficient between z; and x,. The value of p lies in the
interval [—1,1], where p = 1 indicates a perfect positive correlation, p = —1 indicates a
perfect negative correlation, and p = 0 indicates no correlation.

Given the above properties, the distribution of (x1,x2) is denoted as:

(x1,22) ~ N (0, %) (2)

where 0 is a vector of zeros representing the mean, and ¥ is the covariance matrix as
defined previously.

The specific structure of the covariance matrix has significant implications for learning in
neural networks employing Oja’s Rule. It has been shown that Oja’s rule extracts principal
components from the data, trying to create the signal with the highest variance [9]. As the
data comes from a normalized distribution with known correlations, the learning dynamics
and, as we will see in Section 4, the final variance of the parameters in Oja’s Rule can be
analyzed as a function of the learning rate o and the correlation coefficient p.

3. Steady State Solution

It is known that the stable steady state solution of Oja’s rule matches with the solution of the
Principal Component Analysis(PCA), meaning that our weight vector will be an eigenvector
of the covariance matrix that corresponds to the biggest eigenvalue (other eigenvectors are
non-stable solutions, which means that if you move w a little away from this solution, it
won’t come back)[14, 15, 16, 9].

A sketch of the proof will be provided, and the exact stable solutions for the bi-variate
case will be calculated in this section. Let’s first define x and w as:

X1 w1

X2 Wa
X = , W= .

T, W,

Now we can derive the steady state solution by asserting that the expected value of the
change of the weights is equal to zero.
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E[Aw(t)] = Elyz — y*w]

el

[
= Elzy —y’u)
= El(za")w — (w'z) (2" w)u]
= E[(zz")]w — (w' E[zz"|w)w
= Yw— (w'Sw)w =0

From this, we have that at the steady state w is an eigenvector of 3, whose eigenvalue A
is equal to (w?Xw). From this we can derive the L? norm of the steady state solution.

A= (w'Zw) = w'w = "w
wiw = 1
lwlz = 1

This will allow us to find the steady state solution for our bi-variate case. If our correlation
p is positive, the largest eigenvalue will be A = 1 + p, and the steady state solution will be

V2
B
2
If p is negative, we will have A =1 — p and
V2
w:i[_%ﬁ]
2

The sign of the steady state solution will depend solely on the initial values of the weights.

4. Variance of the weights at the Steady State

Let’s define the mean and the variance of the weights during the steady state solution.

Vit) = El(wi(t) = i(t))’]
Vis(t) = Bllwi(t) = u(t)(w;(t) = 1y ()]
fi = tliglo:ui(t):?
Vio= Jim Vi(t), Vi = Jim Vis(t) (3)

From this point on, we will do the calculations only for the positively correlated pairs.
The same calculations will hold if p is negative as well. Let’s introduce auxiliary variables
w; and wy for describing the state of our system as the difference between the weights and
their steady state solutions.
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This notation is natural as the variances whose steady state solution we are trying to
calculate can be expressed by these variables using (4) and (3) as Vi = E[w;?], Vo = E[wy?]
and Viy = E[wyws]. According to (1), those variables will be updated at each step by the
following rule.

By (t+ 1) = 01 () + o [ (Dy(t) — y(t)wi ()] (5)
Wa(t+ 1) = w(t) + o [22(t)y(t) — y(t)*wa(t)]

If we substitute the values of y, w; and ws in this by their representations through xy, x,,
w; and wsy, we get the following update rule for our auxiliary variables after the expansion

of (5)%.

1 Wy Wo?
_ - — =2 2
+ ( — — iy — V2l — —= — W | 22

22 2 V2
+ (—2’(171 - \/5’11712 - 2\/511711[72 — 2117121172) I1$2> (6)
1 by 31,2
Wy < Wy + a((m—u;—j%—wf):pg

1wy S
+ e — 2 b — V200 — —= — Wl T
< 2\/5 2 ! 2 \/§ 2 !

+ (—21[)2 — \/511522 — 2\/5”&72151 — 21[72%171) 1'1232> (7)

From the symmetry of the problem, it is obvious that Vi = V,. This means, that to
calculate the steady state variances tracking the expected values of w;? and w,w, is sufficient.
Rules of their update can be calculated by multiplying (6) with itself and with (7). After
these multiplications, we will have the following update rule.

- - b xx? it B 1 RIS
w? w%+a2<81— 142+§2 + a*y? —Exfx§+72
+ w1w2< — 2073 + o?( — 2232y + 6175 + 2:53‘))
+ u;% (a (—xf —4dxi19 — x%)
5z Ty
+  ao? <—41 + 2hy + 62325 + 3105 + 42> )

+ w f1(w1, 2) + Wafa(1, T2) + Z (wiw%fij(l"b@)) (8)

i+j>3

IFor simplicity from now on we will use F'(wy,ws) < G(wy,ws, x1,72) to notate update rules of the form
Fw(t+1),wa(t + 1)) = G(wi(t), wa(t), z1(t), x2(t)).
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2.2 4
o o 2 x1 TiTy Lo
(_ _ - =
W1 W2 W Wy + < 8+ 1 8)
5 3 3
+ w2 —Ozx% + o? x‘ll + itz 1%
2 2
Srixs  adx
+ Wy | —axs + o |75 + 2 T
2 2
+ W1 Wa <a (—xf —4x1x9 — x%)
4 13 2.2 4
+ o (—Zl + 2232, + $21x2 + 22175 — %
+ W g(1, x2) + Wag(1, x2) + Z (wiwégzj(l’h Iz)) 9)
i+j2>3

Here fi, fa, fij, g1, 92, and g;; are polynomial functions of two variables. To estimate
the steady state variances we must calculate the expected values of both sides of the above
equations at the limit of ¢ — co. In order to complete these calculations we must take into
account the following.

e At the limit of ¢ — oo we conclude from the symmetry of our multivariate Gaussian
data distribution that V1 V2 We will notate this variance using V.

e Since w;(t) and x;(t) are independent for any i and j

E [F (:cl (1), xQ(t)> G (w{(t), w{(t)) ] =’ [F (.751 (t), Ts (t)) ] E [G <w1_(t), w{(t))]

e z(t) and x5(t) are coming from a multivariate normal distribution, their moments can
be calculated using Isserlis’ theorem[17, 18].

Elzi(t)] = Elz2(t)] = 0
Elzi(t)] = E[z3(t)] = 0
E[a3(t)xa(t)] = Elz3(t)z1(1)] 0
El23(t)] = Elz3(t)] = 1
Elzi(t)za(t)] = p
Elzi(t)a3(t)] = 1+2p?
Ela}(t)as(t)] = Elas(t)zi(t)] = 3p
E[xz1(t)] = Elxy(t)] 3

For calculating the expected values of polynomials involving w; and wy we will use the
second-order moment closure approximation [11, 12, 13]. We will also keep in mind that at
the limit of ¢ — oo expected values of w; and wy are equal to zero.

EF(iyis)] ~ ;(@F (ondy) | OF (“““’2))\/ 4 (W”UQ)) Via

0%, 0210, 0w, 0Wo
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Thus, we may obtain the following equations for the expected values of polynomials
involving w; and ws

Efwn] = E[w,] = 0

Ewt] = Vi

Euwy] = Vo

B, = Vi

Ifi+j >3, thenE[ww] =0

Now we can finally calculate the expected values of both the right-hand sides and the
left-hand sides of the update rules described in (8,9). We will do all calculations for the limit
of t — o0.

12 . .
45—%»+@Q—4p+m7+mp+nfnv+@a+aw+1m»m2: 0

12 . .
M—§+%J+b&+am+1mnv+04—4p+M5+mp+Bﬁ»m2: 0

These two equations will allow us to calculate the steady state solutions V and Vi,. Since
a < 1, V < 1 and Vlg < 1, we can neglect all terms that include aV or aV12 Thus, we
obtain the following closed- form formula for calculating the variances at the steady state.

. 1—
V=a—— p

8lp|
Vip = —V. (11)

(10)

As we can see after sufficiently long iterations the correlation between w; and ws is equal
to —1. This means that they jump around the steady state solutions, always being on
the different sides of it. Their individual variance is proportional to the learning rate, which
means that the decaying learning rate once the steady state is reached will also proportionally
decrease the variance of the parameters, thus attributing to the better convergence of the
model.

5. Experiments

To validate the results of (10) and (11), we have created a simple experimental setup. Ini-
tially, we set w; = 0 and wo = 1. At each iteration, we generate a new data point from
the bi-variate Gaussian distribution (2). Then we train for sufficiently long iterations until
the steady state distribution is reached. We repeat this training process from scratch 500
times, save the final weights after each training process and calculate the variance of these
500 weights?. Then we repeat this same process for different learning rates to capture the
relation between the final variance of the weights and the learning rate a.

2Since the sign of the steady state solution depends on the initial weights every time we set the same
value for the weights at the beginning. The same variance will be obtained for other initial conditions as
well, while the mean steady state value may differ in sign.
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Correlation = -0.3

Correlation = -0.7
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Fig. 1. If we train the system from scratch many times and calculate the variance of the final

weight wq, it will be very close to the analytically calculated value of (10) for learning rates that
are sufficiently small for converging. Here it is checked for 4 different correlation coefficients, both
positive and negative.

This same process is repeated for different sets of data points generated from multivari-
ate normal distribution with different correlation coefficients p to check the dependence of
variance on correlation found in (10). Comparisons of the variances with the analytic values
obtained in the previous section are represented in Fig. 1. 3

6. Conclusion
This article proposes an analysis of parameter variance in Oja’s Rule using moment closure

approximation. The steady state variance is studied, leading to a closed-form equation
connecting variance to the learning rate by a linear relation.

3The results of those experiments can be the at

https://github.com/edgarvardanyan/oja_variance.

reproduced by following steps
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A key finding is the linear relationship between parameter variance and learning rate,
showing that variance measures convergence. For small learning rates, variance is directly
proportional to the learning rate, derived from a simple closed-form equation and validated
through simulations across various input correlations.

These results have potential applications in optimizing learning rate schedulers and al-
gorithms by controlling variance, thus improving convergence efficiency without extra com-
putational cost. This can guide unsupervised learning models based on the Ojas Rule in
achieving better results without a loss function.

As we can see, once the learning rate is small enough for the convergence of the
model(usually achieved with o < 0.1 for the provided synthetic data), our closed-form
formula is able to estimate the final variance of parameters with good enough accuracy.
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AnHoTanuys

OOyueHne Xe00a, BaKHOe MOHATHE B HEUPOHHBIX CETHAX, SIBASETCA OCHOBOU
AN PA3AMUYHBIX AATOPUTMOB OOYYEHUS, MOAEAUPYIOIINX aAQITAlUI0 HEWPOHHBIX
COEAVHEHHM, TaK)Xe M3BEeCTHBIX KaK CHUHAICHL. Cpear 3TUX MOAEAEU BBIAEASIETCS
npaBuAro OiM, KOTOPOe MPEeAOCTaBASET IIeHHbIe CBEAEHUS O AMHAMUKE aATOPUTMOB
o0OyueHUsa Oe3 y4duTeAsd. XOPOIIO M3BECTHO, YTO WTOTOBOE YCTOMUYUBOE COCTOSTHUE
OAHOCAOWHOMN ceTH, oOyyarllencda no npaBuAy ONnH, COBINAAAeT C pelleHueM
MeTOAA T'A@BHBIX KOMIIOHEHT. OAHAKO BAMSHUE CKOPOCTH OOy4YeHUS Ha AUCIIEPCHUIO
KOHEYHBIX [IapaMeTpPOB U3yYeHO HEAOCTATOUYHO. B AaHHOM paboTe MBI NCCAEAYEM, KaK
pPasAMYHBIE CKOPOCTU OOy4YeHUS BAMSIOT HA AUCIIEPCHIO IapaMeTpoB B ITpaBuae Ouy,
HWCIOAB3YS IIOAXOA MOMEHTHOIO 3aMblKaHug. C@OKyCHpPOBABIIWCH HAa AMCIIEPCHUH,
MBI ITPEAAATaeM HOBBIE B3TASIABI Ha IOBeAeHUMe npaBura Oy B pPa3HBIX YCAOBUAX.
MEI BEIBOAMM @HAAUTHUYECKOE YpPaBHEHME, CBA3bIBAIOIlee AUCIIEPCHUIO ITapaMeTPOB CO
CKOPOCTBIO OOy4YeHUs, ¥ IOKAa3bIBaeM, YTO 3Ta 3aBUCUMOCTD IBASIETCSA AMHEMHOMN. JTO
IIPEAOCTaBASIET IIeHHBIE AQHHBIE, KOTOPBIE MOTYT IIOMOYb B ONTUMM3AIIUU IIPOIlecca
oOyueHus Moperent Xeb0a.

KaroueBele caoBa: npaBuao Oum, oOyueHue Xe00a, CKOPOCTbL OOydYeHUd,
HEeUpPOHHBIE CEeTU, TTOAXOA MOMEHTHOTO 3aMbIKaHMUSI.
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