Mathematical Problems of Computer Science 62, 72-81, 2024.

doi:10.51408/1963-0122

UDC 004.725:004.852

Obfuscated Malware Detection Model

Timur V. Jamgharyan, Vaghashak S. Iskandaryan and Artak A. Khemchyan

National Polytechnic University of Armenia, Yerevan, Armenia
e-mail: t.jamharyan@politechnic.am, Vagharshak.iskandaryan@gmail.com, a.khemchyan@politechnic.am

Abstract

The paper presents the research results on the detection of obfuscated malware
using a method based on mean shift. The research aimed to train neural networks
included in the intrusion detection system to detect obfuscated malware. Detection of
obfuscated malware using deterministic obfuscators is also discussed. Software
solutions Dotfuscator CE, Net Reactor, and Pro Guard were used as deterministic
obfuscators. Athena, abc, cheeba, dyre, december_3, engrat, surtr, stasi, otario, dm, v-
sign, tequila, flip, grum, mimikatz were used as test malware. The results were verified
using the IDA Pro tool and various intrusion detection systems. Process modeling was
carried out in the Hyper-V virtual environment.

Keywords: Obfuscation, Reverse engineering, Data flow, Convolutional neural
network, Machine learning, Clustering, IDA Pro, Mean shift.

Article info: Received 25 September 2024; sent for review 15 October 2024; accepted
18 November 2024.

1. Introduction

Training neural network models requires a large amount of training data, high-performance
computing resources, and time. When training neural networks, it is important to evaluate the
choice of machine and deep learning methods [1]. The use of neural networks for obfuscation of
malware has created new requirements for the elements of the infrastructure protection system. In
the case of obfuscated polymorphic and/or metamorphic malware, the situation is more
complicated. Attackers who develop polymorphic and/or metamorphic malware obfuscate the zero
version of the source code, then, due to the specific functioning of polymorphic and/or
metamorphic malware, the source code changes, both with different replicas of this software and
when the operating environment changes. All this is forcing network infrastructure (NI) security

72

T. Jamgharyan, V. Iskandaryan and A. Khemchyan 73

researchers to develop new methods to improve security. One of the problems that has not been
completely solved is the detection of obfuscated malware. In particular, the [2] research defined
the central task of the theory of obfuscation in relation to deterministic obfuscation means, and the
researcch [3] formed a strict definition of «ideal» obfuscation. Reverse engineering of obfuscated
malware leads to a certain version of this software, at best zero, but obfuscated, which allows you
to hide the true signature of the malware. As indicated in [2], another unsolved problem is
determining the potential of software that can be subjected to the obfuscation procedure. Solutions
to obfuscate the source code of programs, before the advent of artificial neural networks, were
mainly based on two fundamental algorithms: Kohlberg’s and ChenxiWang’s algorithms [4, 5].
Based on them, obfuscating malware has been developed (Dotfuscator CE, Net Reactor, Pro
Guard, COBF, Hanzolnjection, Chimera, etc.) that performs various types of obfuscation (lexical,
preventive, data structures, data flow [6]). There are also obfuscators that are specific to a particular
programming language [7]. But these obfuscators have one common property - determinism,
which allows reverse engineer the protected software, if you have the appropriate hardware and/or
time resources. Fig. 1 shows a part of the Net Reactor obfuscator menu, which allows you to
protect software source code using various obfuscation methods.

Quick Settings

¥ HecroBit 4%

| ¥ Anti ILDASM £} (7) M Obfuscation LF (7) M Create Mapping File 1}

I Anti Tampering)] String Encryption 4F |l Compress & Encrypt Resources

¥l Anti Debug Il Hide Method Calls 4F '-_: ¥ Code Virtualization

¥ Control Flow Qbfuscaton _'— Level 7

Fig. 1. Net Reactor obfuscator menu

The development of machine learning (ML) has taken obfuscation tools to a new level.
Researchers are experimenting with different types and combinations of neural networks for
software obfuscation [8, 10]. In [11], it is determined that «computational resources for the
operation of a neural network obfuscator are proportional to the number of trainable parameters»,
that is, an increase in obfuscation parameters increases the consumed hardware resource when
used as a tool for obfuscation of neural networks. The use of ML methods makes it possible to
increase the degree of obfuscation of malware due to the introduced stochastic element. The
algorithms used (piecewise hashing, context-triggered piecewise hashing, statistically improbable
features, block-based rebuilding) [12, 14]), on the basis of which some malware detection tools
are implemented, become ineffective when an attacker uses ML methods. Accordingly, an
intrusion detection system (IDS) may miss this type of malware. When working with ML, an
important task is to activate the necessary event handler (neural network) for a given type of
malware. Inputting datasets into a detection neural network on which it is not trained increases the
number of both type 1 and type 2 errors. Methods based on reverse engineering can partially solve
this problem, but to do this, obfuscated malware must first be detected. Adding a stochastic
element inherent to neural networks can «unmask» the source code of obfuscated malware by
increasing the entropy value. IDS are capable of detecting obfuscated malware by analyzing the
contents of the transmitted data packet. Attackers, trying to disguise malware in the network traffic
flow, change the packet size of the transmitted data [15]. Accordingly, an urgent task is to detect
malware obfuscated using neural networks in network traffic. Some researchers propose various
methods and implementation tools to solve this problem [16, 18]. In this research, a clustering-

74 Obfuscated Malware Detection Model

based method using mean shift! is proposed to detect obfuscated malware. The choice of this
method is based on the observation that when obfuscation by neural networks occurs, the entropy
of the software source code increases, which can be detected by clustering code blocks and
measuring the vector shift from the primary, «true» code. Solving this problem allows for more
accurate calibration of IDS with ML in the mode of detecting obfuscated malware.

2. Formulation of the Problem
Research a model for using a mean shift-based method to detect obfuscated malware.

3. Proposed Solution

As a detector of obfuscated malware, it is proposed to use obfuscated malware trained on
datasets of various dimensions: athena, abc, cheeba, dyre, december_3, engrat, surtr, stasi, otario,
dm, tequila, flip, grum, v-sign, mimikatz convolutional neural network. The choice of a
convolutional neural network is determined by the architecture of the network, which allows its
variable restructuring. The mean shift method was used to detect changes in the code grouping
value (constructing a clustering map by features) (1) [19]. Using mean shift as a research method
enables the training of a convolutional neural network not only on the given datasets but also on
additional ones within the shift vector. In this case, the shift vector is the number of changes to the
malware source code obtained based on the clustering map.

m(X):ineN(x)K(Xi_X)Xi X @
2 nenoo K (% —X)

m(Xx) —mean shift,

x —candidate centroid,

K(x)=1, x— 0, otherwise K(x)=0,

N (x)as the neighborhood of samples within a given distance around x.

Boundary conditions
e The size of the search vector is set manually (depending on the number of training datasets).

e K(x) = 0, recognition does not occur due to the combination of «false» and «true» source
code of the analyzed software.

e The proposed solution is not scalable due to limitations of the algorithm itself.

e A change in the centroid by a value less than m(x) will not be detected (the source code itself
changes and the software becomes inoperable).

4. Description of the Experiment

The Hyper-V role is installed in the Windows Server 2019 operating system environment. In
the virtual environment installed IDS Snort, based on pfSense, IDS Suricata based on the

! Mean shift is a non-parametric feature-space mathematical analysis technique for locating the maxima
of a density function, a so-called mode-seeking algorithm [19].

T. Jamgharyan, V. Iskandaryan and A. Khemchyan 75

OPNsense and IDS ML based on Ubuntu v20.04 OS [20, 21]. All of them are united into a virtual
local network. The convolutional neural network was trained on the basis of datasets obtained from
the source code, software under study and sources [22, 27]. Training was carried out using the
«unsupervised»2 method. Parrot OS is also installed with the Metasploit framework installed to
inject malware code into Windows Server 2019 with the «test.local» domain controller role
installed, simulating the attacked server. Windows Server 2019 OS has 3 virtual network interfaces
installed in different subnets with addresses (172.16.1.6/30, 172.16.2.6/30, 172.16.3.6/30). The
networks of the second virtual adapter (Private 2) are displayed in a separate VLAN (Virtual Local
Area Network, VLAN) using the hypervisor. All IDS are configured 1:1 NAT (Network Address
Translation, NAT) for access from the external (Wide Area Network, WAN) interface to the
domain controller. Using the Metasploit tool, obfuscated malware was injected into a domain
controller deployed on Windows Server 2019. The virtual network diagram is shown in Fig. 2.
The neural network was built from 20 neurons, with 37 weights for each. Initially, all the neural
network weights were initialized to zero, to check the inputs/outputs and layers of the neural
network and mean shift. The number of filters between the layers of the neural network, variable,
depends on the mean shift step. The results were visualized using the Tensor Board library. The
training datasets are converted to JSON (Java Script Object Notation, JSON) format. Traffic
containing obfuscated malware first passed through various IDS before reaching the domain
controller for comparison.

Private Virtual adapter 1 Private Virtual adapter
10.10.10.%724 2 (wlan 100,101,102}
ILAN)

172.16.1.2/28
(vlan 100)

172.16,1.3/28 (vlan 104)

172.16.5.3/28 (vlan 102)

IDS Snort
(pfSense)

172162 128
(wlan 101}

IDS Suricata
(OPMNsansa)

Parrot OS AD DC stest locals
(Metasploit)
1721632728
{vlan 102}

Fig. 2. Virtual network diagram

2 Unsupervised learning is one of the methods of machine learning in which the system under test
spontaneously learns to perform a given task without intervention from the experimenter.

76 Obfuscated Malware Detection Model

Table 1. Obfuscated malware detection results

Malware detection (%)

Snort Surncata DS ML
;]] = =]] = = 1] =
i \/ 5 - = = 5 - = |5 |5 =
Mawme s LSS S| E & SR s B S| E el s ElEleElali]t
Obfuscaror | S | E |2 | s | 5| &|Z|E]s|s| 25| &|Z2|E]=]|S|2]= LSS S
1] [W - s [~ [} W - s [~ [} W -

Dorfuscaror CE| 64 | 83 | 114 34 | 87 | 146 87 | 57 |113| 107|153 | 164 | 61 | 83 | 186|103 68 | 173|164 | 201|202 103|137 | 223|114 &3

5795|157 38 [136]153| 74 | 43 | 145 84 [103)82 72 | 76 | 153] 9.2 | 5.4 |203] 152|224 | 23,7 105 [104 | 204 32 | 106

FPro

83 |103) 82 | 46 |143]107) 24 | 8.6 | @3 | 136|127 142 62 | 103|167 118 | 10,7162 183 [185 | 264 | 142 | 13,6 | 223 | 55 | 168
Guard
CAN 3 | 5763|2658 |64 7353|2464 477681)as]| 728758548255]|1s|176]s2|ws]132]12]e7

Figures 3,4,6, and 7 show visualized results of detecting obfuscated software athena, dyre,
surtr, grum, mimikatz. Fig. 5 shows the reverse-engineered mimikatz malware obfuscated using a
neural network.

Metwerk traffic with malware embedded @ any data @ cyre @ e t mimikatz @ @

Network traffic with malware embedded @ dyre @ any data @ [kat: @ grum @8

(] _ =
JeL* o
T Y L e
oy

&

[
Fig. 3. Results of detection of obfuscated malware Fig. 4. Results of detection of obfuscated malware athena,
athena, dyre, surtr, grum, mimikatz. dyre, surtr, grum, mimikatz.
I learning epoch 111 learning epoch

As can be seen from Fig. 5, the neural network adds libraries to the source code, which,
without having an algorithmic effect on the execution of the code, create additional blocks of data,
which change the software signature. Knowing the range of change for a given set of data it is
possible to carry out a procedure for clustering their values. It is possible to predict which part of
the code will be obfuscated at the next iteration (learning epoch) only probabilistically, which is
consistent with the machine learning paradigm.

One of the differences between neural networks and deterministic obfuscators in the context
of software obfuscation is that when obfuscating by neural networks, the source code of the
obfuscated malware changes both at each iteration and at each training epoch. During an iteration,
the values of the generated code variables change, and with a new training epoch, a new code is
generated.

T. Jamgharyan, V. Iskandaryan and A. Khemchyan 77

File Edit Jump Search View Dehugger Options Windows Help

Bl @ 1 1Al A@® ELAE-Oa ¢ P[00 Lo wndmsdbuger v| T [52 5 2
i IIIIIIII\I\IIIIIIII IIIII\I\III I IR Y ___F
Library function [l Reguiar function [l Instruction Data Unexplored External symbol [l Lumina function
7] Funciors 0s x| 2 IDA View-A B B Hex View-1 Local Types 2=l Imports B Exports

Function name &
sub_140081580 ’5 <]
sub_1400815%0
sub_140081540
int *_wertomb_s_l{int * const,char * const, e S iidonall ot frbhis time
sub_1400815C0 i Att fi
int *_wertomb_s_I{int * const,char * const,
sub_14008 150 unknown_Libname
tnknown_lioname_35 push | rbx
sub_140081680 sub rsp, 26h
sub_1400815A0 jmp short loc_148883169

int “CMFCVisualManagerWindows::OnErase

int "CMFCVisualManagerWindows::CnErase i

sub_1400816D0 oﬁ?

int *CMFCPropertyGridProperty: :0nDrawBL rom: | unknown_libname 98+44
int “CMFCPropertyGridProperty::OnDranBL I—I
sub_140081700 loc_142883169: loc_14688315C:

int *CMFCPropertyGridProperty: :0nDrawBL ol iBlock mov edx, 1@h

int “CMFCPropertyGridProperty::0nDrawbL rbx, rbx mov rex, rbx 3 Block,
sub_140081730 jnz short loc_148083128 call
sub_140081740
sub_140081780

98 proc near

333 5 free

el]

Y Y
1 sub_140081790 Baz Baz
r add rsp, 2eh
known_libr [4
Iﬂ — loc_148083128: pop rbx
mov rax, [rbx] retn

i 2 = Sl el el g

Line 4304 of 4304, /unknown_libname_9% 100_00% (-295,-25) (748,203) 000B2520 00000001400B3120: unknown_libname 53 (Synchronized with Hex View-1)

Fig. 5. Reverse engineering mimikatz malware using the IDA Pro tool

The use of the mean shift method allows you to increase the detection of obfuscated malware
by an average of (7+9) % when it is obfuscated with deterministic obfuscators, and by (3+5) %
when obfuscated using neural networks (Table 1, Figures 6 and 7). In all cases, a training dataset
is required, with a training sample value of at least 12% of the source code. During the learning
process, when constant numerical values are received at the input of the neural network within the
current iteration, the space of possible output values of the neural network is narrowed to the
maximum value of the mean shift step. The best detection rate ((3+5) %) was obtained by variable
restructuring of the numerical value of the neural network activators when all weights were
initialized with different random values. Constructing a clustering map of obfuscated malware
using the mean shift method requires significant computing resources (the convolutional neural
network used in the experiment was trained for 43 hours on equipment with a hardware
configuration of RAM - 128 Gb, CPU - Intel Xeon E5-2694).

b e

athena abc

Fig. 6. Results of detection of obfuscated malware athena, abc, cheeba, dyre,
december_3, mimikatz using Suricata IDS

78 Obfuscated Malware Detection Model

i

athena abc

Fig. 7. Results of detection of obfuscated malware athena, abc, cheeba, dyre,
december_3, mimikatz using IDS with ML (mean shift method)

The use of the mean shift method allows you to increase the detection of obfuscated malware
by an average of (7+9) % when it is obfuscated with deterministic obfuscators, and by (3+5) %
when obfuscated using neural networks (Table 1, Figures 6 and 7). In all cases, a training dataset
is required, with a training sample value of at least 12% of the source code. During the learning
process, when constant numerical values are received at the input of the neural network within the
current iteration, the space of possible output values of the neural network is narrowed to the
maximum value of the mean shift step. The best detection rate ((3+5) %) was obtained by variable
restructuring of the numerical value of the neural network activators when all weights were
initialized with different random values. Constructing a clustering map of obfuscated malware
using the mean shift method requires significant computing resources (the convolutional neural
network used in the experiment was trained for 43 hours on equipment with a hardware
configuration of RAM - 128 Gb, CPU - Intel Xeon E5-2694).

5. Conclusion

This paper studies the use of the mean shift method for detecting obfuscated malware using a
neural (generative-adversarial) network. The results obtained make it possible to more accurately
calibrate the IDS with ML, as well as to construct a map of clustering features, which creates an
additional learning model for neural networks from the IDS with ML. Compared to similar studies,
the use of the mean shift method is justified if there are appropriate training datasets that correlate
with the «true source code». As the training epoch increases, the number of type 2 errors also
increases leading to overfitting. The use of the mean shift method is to search for obfuscated
polymorphic malware is unjustified, since the algorithm converges at a small value of centroids,
which is important for polymorphic malware. The proposed method makes it possible to increase
the reliability of the operation of IDS with ML while simultaneously activating several neural
networks in the mode of detecting obfuscated malware. Based on the results obtained,
improvements were made to the IDS with ML and other elements of the network infrastructure
according to the specified parameters [29]. All research results are presented in [30].

T. Jamgharyan, V. Iskandaryan and A. Khemchyan 79

References

[1]
[2]
[3]

[4]
[5]
7
[8]
[9]
[10]
[11]

[12]

[13]

[14]

[15]

[16]
[17]
[18]

[19]

[20]

Microsoft official website https://learn.microsoft.com/ru-ru/azure/machine-
learning/concept-deep-learning-vs-machine-learning?view=azureml-api-2

Yu. Livshits, laboratory of mathematical logic at PDMI, “Obfuscation of programs”, 2004.
https://logic.pdmi.ras.ru/~yura/of/surveyl.pdf

B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan and K. Yang,
“On the (im) possibility of obfuscating programs”, Advances in Criptology Crypto 2001,
LNCS 2139, Springer-Verlag, pp. 1-18, 2001.

C. Collberg and Jasvir Nagra, Surreptitious Software: Obfuscation, Watermarking, and
Tamperproofing for Software Protection, Addison-WesleyProfessional, 2009.

C. Wang, J. Hill, J. Knight and J. Davidson, “Software tamper resistance: obstructing
static analysis of programs”, Technical Report. University of Virginia, Charlottes ville,
VA, USA,, 18 p., 2000.

K. Monappa, Learning Malware Analysis, Packt, Birmingem-Mumbai, 2019.

Official website of the Java programming language obfuscator, Zelix.
https://www.zelix.com/

M. S. Karvandi et al., “The reversing machine: reconstructing memory assumptions”,
https://doi.org/10.48550/arXiv.2405.00298

C. Patsakis, F. Casino and N. Lykousas, “Assessing LLMs in malicious code deobfus-
cation of real-world malware campaigns”, https://doi.org/10.48550/arXiv.2404.19715
S. Hasan and A. Dhakal, “Obfuscated malware detection: investigating real-world
scenarios through memory analysis”, https://doi.org/10.48550/arXiv.2404.02372

V. Eliseev, “Artificial neural networks as a mechanism for obfuscation of calculations”,
https://doi.org/10.17223/2226308X/12/46

J. Kornblum, “ldentifying almost identical files using context triggered piecewise
hashing”, Digital Investigation, vol. 3, Supplement, pp. 91-97, 2006, doi:
10.1016/j.diin.2006.06.015

L. Chen and G. Wang, “An efficient piecewise hashing method for computer forensics”,
First International Workshop on Knowledge Discovery and Data Mining (WKDD
2008), Adelaide, SA, Australia, pp. 635-638, 2008, doi: 10.1109/WKDD.2008.80

V. Roussev, “Building a better similarity trap with statistically improbable features”
2009 42nd Hawaii International Conference on System Sciences, Waikoloa, HI, USA,
pp. 1-10, 2009, doi:10.1109/HICSS.2009.97

M. Alyami, A. Alghamdi, M. Alkhowaiter, C. Zou and Y. Solihin, “Random
segmentation: new traffic obfuscation against packet-size-based side-channel attacks”,
https://doi.org/10.48550/arXiv.2309.05941

I. Nunes, S. Hwang, S. Jakkamsetti, G. Tsudik, “Privacy-from-Birth: protecting sensed
data from malicious sensors with VERSA”, https://doi.org/10.48550/arXiv.2205.02963
M. Rosen, J. Parker and A. Malozemoff, “Balboa: bobbing and weaving around network
censorship” https://doi.org/10.48550/arXiv.2104.05871

L.Wang, H. Kim, P. Mittal and J. Rexford, “Programmable in-network obfuscation of
traffic”, https://doi.org/10.48550/arXiv.2006.00097

Y. Cheng, “Mean shift, mode seeking, and clustering”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 17, no. 8, pp. 790-799, Aug. 1995, doi:
10.1109/34.400568

T. V. Jamgharyan, “Research of obfuscated malware with a capsule neural network”,
Mathematical Problems of Computer Science, vol. 58, pp. 67-83, 2022. doi:
10.51408/1963-0094

https://learn.microsoft.com/ru-ru/azure/machine-learning/concept-deep-learning-vs-machine-learning?view=azureml-api-2
https://learn.microsoft.com/ru-ru/azure/machine-learning/concept-deep-learning-vs-machine-learning?view=azureml-api-2
https://logic.pdmi.ras.ru/
http://www.pdmi.ras.ru/
https://logic.pdmi.ras.ru/%7Eyura/of/survey1.pdf
https://www.zelix.com/
https://arxiv.org/search/cs?searchtype=author&query=Karvandi,+M+S
https://doi.org/10.48550/arXiv.2405.00298
https://arxiv.org/search/cs?searchtype=author&query=Patsakis,+C
https://arxiv.org/search/cs?searchtype=author&query=Casino,+F
https://arxiv.org/search/cs?searchtype=author&query=Lykousas,+N
https://doi.org/10.48550/arXiv.2404.19715
https://arxiv.org/search/cs?searchtype=author&query=Hasan,+S+M+R
https://arxiv.org/search/cs?searchtype=author&query=Dhakal,+A
https://doi.org/10.48550/arXiv.2404.02372
https://doi.org/10.17223/2226308X/12/46
https://doi.org/10.1016/j.diin.2006.06.015
https://doi.org/10.1016/j.diin.2006.06.015
https://doi.org/10.1109/WKDD.2008.80
https://doi.org/10.1109/HICSS.2009.97
https://arxiv.org/search/cs?searchtype=author&query=Alyami,+M
https://arxiv.org/search/cs?searchtype=author&query=Alghamdi,+A
https://arxiv.org/search/cs?searchtype=author&query=Alkhowaiter,+M
https://arxiv.org/search/cs?searchtype=author&query=Zou,+C
https://arxiv.org/search/cs?searchtype=author&query=Solihin,+Y
https://doi.org/10.48550/arXiv.2309.05941
https://arxiv.org/search/cs?searchtype=author&query=De+Oliveira+Nunes,+I
https://arxiv.org/search/cs?searchtype=author&query=Hwang,+S
https://arxiv.org/search/cs?searchtype=author&query=Jakkamsetti,+S
https://arxiv.org/search/cs?searchtype=author&query=Tsudik,+G
https://doi.org/10.48550/arXiv.2205.02963
https://arxiv.org/search/cs?searchtype=author&query=Rosen,+M+B
https://arxiv.org/search/cs?searchtype=author&query=Parker,+J
https://arxiv.org/search/cs?searchtype=author&query=Malozemoff,+A+J
https://doi.org/10.48550/arXiv.2104.05871
https://arxiv.org/search/cs?searchtype=author&query=Wang,+L
https://arxiv.org/search/cs?searchtype=author&query=Kim,+H
https://arxiv.org/search/cs?searchtype=author&query=Mittal,+P
https://arxiv.org/search/cs?searchtype=author&query=Rexford,+J
https://doi.org/10.48550/arXiv.2006.00097
https://doi.org/10.1109/34.400568
https://doi.org/10.1109/34.400568
https://doi.org/10.51408/1963-0094
https://doi.org/10.51408/1963-0094

80
[21]

[22]
[23]
[24]
[25]
[26]
[27]
[28]

[29]

[30]

Obfuscated Malware Detection Model

T. V. Jamgharyan, “Modernization of Intrusion Detection System using Generative
Model”, Defense-Academic Journal, National Defense Research University, Haykakan
Banak (Armenian Army), vol. 2(108), pp .- 69-79, 2021,
https://razmavaraget.files.wordpress.com/2022/01/hb2-final.pdf

Malware Bazaar Database. [Online]. Available https://bazaar.abuse.ch/browse/
Malware database. [Online]. Available http://vxvault.net/ViriList.php

A free malware repository for researches. [Online]. Available https://malshare.com/
Malware repository. [Online]. Available https://avcaesar.malware.lu/

Malware repository. [Online]. Available https://www.virusign.com/

Viruses repository. [Online]. Available https://virusshare.com/

T. V. Jamgharyan and A. A. Khemchyan, “Malware obfuscation model using machine
learning”, Bulletin of High Technology, vol. 3, no. 31, pp. 77-83, 2024. doi:
10.56243/18294898-2024.3-77

T. V. Jamgharyan, T. N. Shahnazaryan, “A studu of a model of neural network
application in the decoy infrastructure in the defence sphere”, Defence-Academic
journal, National Defence Reseach University, Haykakan Banak (Armenian Army),
2(112), pp. 71-83, 2024. DOI: 10.61760/18290108-ehp24.2-71

All research results available on https://github.com/T-JN

Oppnruljugjus Jumuwpkp Spugpuyhtt wyyuwhngdu
huyntwpkpdwh dnnby

Fhunmip 9. Quunupjui, Yunupowl U. Pujuinupyub b Upnwl U. MEdsjut

Zuyuwunwith Uqquyht Mnjhnbjuthjulut Zudwjuwpul, Bphwl, Zujuunwb

e-mail: tjamharyan@politechnic.am, Vagharshak.iskandaryan@gmail.com, a.khemchyan@politechnic.am

Znpwénud ukpuyugus Eu

Udthnthnid

opbniujugqus Juwuwpkp Spwgpuyght

wyuhnuwl hwpinbwpkpdwt hbnwgnunnipyub wpyniupitpp oquugnpstyny mean
shift Ubkpnnp: ZEkwmwgnuinipnitt hpuubwgyl] b ubkpjuniddwt hwynbwpbkpdwt
huwdwlupgnid pungpldws uEpnuuwghtt guugkph ntunigdwt tyuwwnwyny: thunwpldt
E phnbkpdhthunujut opdniujuunnpubipng nit ubjpnbughtt guugkph Yhpundwdp

opbnmujugqus Juwuwpkp Spwgpuyhtt wwywhnydwb

huwyntwptpnudp: Npybu

phunughtt Juwuwpkp Spugpuyhlt wyuwhnymd oquuwqnpdyty & arhena, abc, cheeba,
dyre, december 3, engrat, surtr, stasi, otario, dm, v-sign, tequila, flip, grum, mimikatz-p:
Upnynitipitiph bphdhjughwtt - hpwlwbwgdty £ /DA Pro qnpspph b wwppbp
ubppuniddwt hwjntwpbpdwt hwdwlwupgbph dhongny: Mpnghutibph dnphjuynpnudp
hpwlwtwgyt £ Hyper-V yhpunniw) vhowyuwyypnid:

Puiiunh punkp’ oppniuljughw, Yuunbphqughw, tkpluniddwb hupnbwpbpdub
hwdwlwng, gmuguwjht Eupwljunnigyusdp, /DA Pro, mean shift.

https://razmavaraget.files.wordpress.com/2022/01/hb2-final.pdf
https://bazaar.abuse.ch/browse/
http://vxvault.net/ViriList.php
https://malshare.com/
https://avcaesar.malware.lu/
https://www.virusign.com/
https://virusshare.com/
https://doi.org/10.56243/18294898-2024.3-77
https://doi.org/10.56243/18294898-2024.3-77
https://github.com/T-JN

T. Jamgharyan, V. Iskandaryan and A. Khemchyan 81

Moaeabr Oonapy:xennst O6¢pycuupoBannoro Bpegonocnoro 11O

Tumyp B. Ixamrapsn, Barapmak C. Mckannapss u Aprak A. XemusiH

Hanuonanehsiit [Tonurexundeckuil YHusepcuter Apmenun,EpeBan, Apmenus
e-mail: t.jamharyan@politechnic.am, Vagharshak.iskandaryan@gmail.com, a.khemchyan@politechnic.am

AHHOTAIUA

B cratbe mpexacraBieHbl pe3yibTaThl HCCIEAOBAHUS OOHapyXeHUs 00(yCIUPOBAaHHOTO
BPEIOHOCHOTO MPOrPAaMMHOI0 OOecIcueHHs] ¢ MPHUMEHEHHEM METoJa Ha ocHoBe mean shift.
HccnenoBanue npoBOJUIIOCH C IIETbI0 00yueHHsI HEMPOHHBIX CETEH, BXOAIINX B COCTAB CUCTEMBI
OOHapy)XCHHUSI BTOP)KEHUU, OOHAPYKEHHIO O0(YCIIMPOBAHHOTO BPEIOHOCHOTO MPOTPAMMHOTO
oOecrieueHus. B kadecTBe 1eTepMUHUPOBAHHBIX 00()yCKaTOpPOB MCHOIB30BATUCH IPOTPAMMHBIE
pemenust Dotfuscator CE, Net Reactor, Pro Guard. B kauecTBe TeCTOBOro BPEIOHOCHOTO
nporpaMMHOTO oOecriedeHust ucnoib3oBaiock athena, abc, cheeba, dyre, december_3, engrat,
surtr, stasi, otario, dm, v-sign, tequila, flip, grum, mimikatz, paszauunsix Bepcuii. Bepudukarivst
pe3ysbTaToB NIpOBOAMIACH C moMombio uHCTpyMmeHTa |IDA Pro m pasnauusbix cucrem
0OHapy>XeHHS BTOpKEHUW. MoJIeTMpOBaHue MPOIIECCOB TPOBEACHO B BUPTYalbHOM cpene Hyper-
V.

KawueBble ciaoBa: o0dyckanus, peBepc-MHXEHEPUHT, TIOTOK JaHHBIX, CBEPTOYHAS HEHPOHHAS
CeTh, MallIMHHOE 00yueHue, knactepusaius, IDA Pro, mean shift.

