
Mathematical Problems of Computer Science 62, 43–51, 2024.

doi:10.51408/1963-0119

UDC 519.872

Advanced Queueing Model of a Multiprocessor

Computing System

Artur P. Vardanyan

Institute for Informatics and Automation Problems of NAS RA, Yerevan, Armenia

e-mail: artur.vardanyan@iiap.sci.am

Abstract

This paper presents an advanced queueing model for a multiprocessor computing
system, where tasks require a random number of processors and are subject to con-
straints on waiting times in the queue. Unlike classical multi-server queueing systems,
this model accounts for both resource requirements and queue waiting time restrictions,
making it more suitable for real-world computing environments. By incorporating the
probabilistic behavior of task arrival, service, and waiting constraints, the expressions
are derived for key performance metrics, including the probabilities of task rejection
and failure, system throughput, and resource utilization. An algorithm for determining
the optimal queue length is also developed to enhance system efficiency by minimizing
the probability of task losses. The proposed model provides a framework for analyzing
and optimizing resource allocation in multiprocessor systems, improving their capabil-
ity to handle dynamic and complex workloads.
Keywords: Multiprocessor System, Queueing System, Multi-server Queueing System,
Waiting Time Restriction, Resource Utilization, System Efficiency, Performance Mea-
sures.
Article info: Received 29 September 2024; sent for review 15 October 2024; accepted
21 November 2024.

1. Introduction

In the rapidly evolving field of information technology, distributed and parallel high-speed
computing systems have become essential due to advancements in several key areas, includ-
ing multi-agent intelligent methods for information retrieval, data science for processing and
storing vast amounts of data, and scientific research addressing complex challenges[1]. These
systems are crucial for scientific and technological modelling, where there is a growing de-
mand for increased accuracy, faster computations, and large-scale calculations.
Multiprocessor systems are often employed to tackle problems requiring large-scale compu-
tations that cannot be handled by a single processor. However, this leads to significant
challenges in managing the simultaneous execution of multiprocessor tasks while ensuring
the efficient utilization of system resources[2]. One of the critical issues in this context is the

43



44 Advanced Queueing Model of a Multiprocessor Computing System

development of effective scheduling algorithms for such systems.
Research on efficient scheduling algorithms for multiprocessor systems is a key area in com-
puter science and parallel computing. Modern multiprocessor systems typically consist of
heterogeneous processors with varying capabilities and performance characteristics. Addi-
tionally, applications are becoming increasingly diverse and dynamic, necessitating adaptive
scheduling strategies that can efficiently allocate system resources while optimizing key per-
formance metrics such as system throughput, service latency, and energy efficiency[3, 4].
As the development of scheduling algorithms continues to evolve, there is a growing need
to incorporate additional metrics to enhance efficiency[5]. While optimization theory and
machine learning tools are often employed to address these challenges, valuable insights can
also be gained by analyzing these systems through the framework of queueing theory.

In this study, a multiprocessor system is modeled as a queuing system, where tasks
require parallel servicing and constraints on task waiting times in the queue are explicitly
considered.

2. Queueing Model

A computing system consisting of m processors (cores, cluster nodes, etc.) is modeled as a
queueing system (m ≥ 1). The system can queue a limited number of tasks, constrained by
n waiting slots (n ≥ 1).
Each task in the system is characterized by three random parameters (ν, β, ω):

• ν represents the number of computing resources (processors, cores, cluster nodes, etc.)
required for servicing the task,

• β denotes the maximum time needed to service the task,

• ω is the maximum allowable waiting time for a task in the queue, after which the task
leaves the system without being serviced.

The task is either accepted and placed in the service queue or denied service. Service denial
may occur if there is no space in the queue or user-defined constraints (e.g., servicing time,
waiting time, number of processors) cannot be met. The time required to service a task is
partly conditional, meaning it is the maximum allowable value. The actual servicing time
is random and may be shorter than the given maximum, allowing the order of service to
change as tasks arrive or as services are completed.
The queuing model incorporates the cumulative distribution function of the exponential dis-
tribution constraints for task arrivals, servicing, and failures due to waiting time restrictions.
These are defined by the intensities: a for the incoming task stream, b for task servicing,
and w for task failure within the queue[6]. The model also considers normal distribution
constraints for the random variable ν, representing the number of computational resources
required to perform a task. The probability distribution is given by:

P (ν = k) =
1

m
, k = 1, 2, . . . ,m.

Tasks are serviced in the order they enter the system, following a FIFO discipline. Tasks
that arrive when the queue is full are denied service.
To describe system transitions, the state of the system is defined by the number of tasks i



A. Vardanyan 45

being serviced and j tasks waiting in the queue. The probability of the system being in this
state is denoted by Pi,j. Since the number of possible states is finite, the system eventually
reaches a stable operating mode, known as the steady state[7].
A system of equations was derived to describe the steady-state behavior of the queueing
model.
A detailed description of the derivation, analysis, and development of a numerical algorithm
for solving this system of equations is presented in [6]. This research provides an efficient
and accurate method for computing the Pi,j steady-state probabilities for the considered
multiprocessor queueing system.

3. Performance Measures

To analyze the performance measures of the considered queueing system, it is first necessary
to determine the effective arrival rate and the service rate of the tasks using the given system
parameters and distribution functions for the time between arrivals, the service time, and the
permissible waiting time. Unlike classical multi-server queueing systems, in this model, each
task requires a specific number of service nodes and is subject to a restriction on queue wait-
ing time. The permissible waiting time ω is modeled by an exponential distribution, while
the number of required computational resources ν follows a uniform distribution. These con-
siderations significantly impact the system’s performance measures, including the probability
of task rejection, the probability of queue task failure and the resource utilization factor.
However, these considerations do not directly affect the service rate µ, which is based on
only service time distribution. Specifically, the service rate µ is given by b in the considered
queueing system.
To understand the real impact of these factors on system performance measures, it is first
necessary to calculate the probabilities of task access rejection and task failure (i.e., when a
task leaves the queue due to exceeding its waiting time) during system operation.
Upon task arrival, the system will reject access if the number of tasks waiting in the queue
reaches its maximum capacity, n. In other words, the probability of task access rejection
during system operation can be calculated by considering the probabilities of being in all
system states where the queue is fully occupied. This probability of task access rejection,
denoted by Pr, can be expressed as follows:

Pr =
m∑
i=0

aPi,n

a+ ib+ nw
,

where a represents the arrival rate of tasks, b represents the service rate, w represents the
rate at which tasks fail due to waiting too long in the queue, and Pi,n for i = 0, 1, . . . ,m are
the steady-state probabilities of the system when i tasks are being serviced and the queue
is fully occupied.
It is assumed that each task has a maximum allowable waiting time before being serviced,
after which it leaves the system without being served. The probability of task failure during
system operation, denoted by Pf , can be calculated using the system state probabilities.
The formula to compute Pf is as follows:

Pf =
m∑
i=0

n∑
j=1

jwPi,j

a+ ib+ jw
,



46 Advanced Queueing Model of a Multiprocessor Computing System

where, as above, a represents the arrival rate of tasks, b represents the service rate, w
represents the rate at which tasks fail due to waiting too long in the queue, and Pi,j for
i = 0, 1, . . . ,m and j = 0, 1, . . . , n are the steady-state probabilities of the system when i
tasks are being serviced and j tasks are waiting in the queue.
By using the above-obtained probabilities, the effective arrival rate λ in the considered
queueing system can be calculated as follows:

λ = aPa,

where Pa is the probability of task abandonment, which represents the likelihood that a task
leaves the queue without being serviced, either due to exceeding its permissible waiting time
or being rejected by the system because the queue is fully occupied.
Furthermore, Pa is expressed as follows:

Pa = (1− Pr)(1− Pf ).

Queuing systems define the system throughput, which is closely related to the effective
arrival rate, but they describe different aspects of the system’s performance[8]. The system
throughput is denoted by X and is defined as:

Definition 1.. System Throughput is the rate at which tasks are completed and leave the
system.

In a stable system (where the queue doesn’t grow indefinitely over time), the system
throughput is typically equal to the effective arrival rate. This is because the system can
handle the incoming tasks without accumulating an infinite queue, meaning that every task
that arrives is eventually processed. For the considered queueing system, the system through-
put is the same as the effective arrival rate:

X = λ.

Next, to derive a formula for the utilization factor ρ in the queueing system under consider-
ation, it is first necessary to define the utilization factor in the context of this multiprocessor
queueing system. Since, each task requires a random number of computational resources,
which affects how much of the system’s total resources are utilized on average, the utilization
factor will be defined as follows:

Definition 2.. Utilization is defined as the ratio of the service capacity demand to the total
service capacity of the system:

ρ =
Service Capacity Demand

Total Service Capacity

As each task requires a random number of processors, the system’s effective utilization
factor must consider the expected number of processors required by a task, denoted as E[ν].
Thus, the service capacity demand is determined by λ × E[ν]. This accounts for the fact
that each task might occupy multiple number computational resources simultaneously.
For a system with m processors, where each processor has a service rate µ, the total service
capacity is m× µ.
Thus, the refined utilization factor formula becomes:

ρ =
λE[ν]

mµ
.



A. Vardanyan 47

Given that the distribution of ν is uniform from 1 tom, the expected value E[ν] is determined
as follows:

E[ν] =
m∑
k=1

kP (ν = k) =
1

m

m∑
k=1

k =
m+ 1

2
.

By substituting the derived values for λ, µ and E[ν], a formula is obtained for the utilization
ρ:

ρ =
a(m+ 1)Pa

2mb
.

The formula for calculating the utilization factor ρ is refined to be consistent as a measure
of system resource usage.

4. Optimal Service Parameters

This section presents the process of determining the optimal configuration for the modeled
queueing system based on given parameters and distributions. As discussed in the previous
section, for the specified distributions of system parameters, it is possible to evaluate the
probabilities of task rejection and task failure while waiting in the queue. This allows for
estimating the probability that an incoming task will not be serviced by the system. This
probability is a key indicator of the number of tasks unserviced by the system and can be
calculated as follows:

Pl = Pr + (1− Pr)Pf ,

Thus, the question arises as to how this probability can be minimized, which would reduce
the number of unserviced tasks by the system. It is evident that the value of Pl depends on
the number of processors (m) in the multiprocessor system, the queue length (n), the task
arrival rate (a), the service rate (b), and the task failure rate in the queue (w). Considering
this, the objective is to minimize Pl by varying the queue length, identifying the queue length
at which Pl takes its minimum value for the given system parameters while ensuring that
the utilization factor is less than one: {

Pl → min

ρ < 1

It is evident that when there is no queue, the rejection probability Pr has a certain value,
while there is no concept of Pf probability(in this case, Pf is assumed to be zero for sim-
plicity). As the queue length increases, the rejection probability Pr tends toward 0, and the
failure probability Pf approaches 1, as follows:

n = 0 n→∞
0 < Pr ≤ 1 Pr → 0
Pf = 0 Pf → 1

An algorithm has been developed and implemented in Python, to determine the optimal
queue length for a multiprocessor system with a given number of processors, task arrival,
service, and failure rates. The algorithm initially sets the queue length to n = 1 and
calculates the probability Pl. At each subsequent step, the calculation is repeated with the
queue length increased by one, and the new Pl value is compared to the previous value. If
the new value is smaller, the algorithm continues this cycle. When the Pl value from the
previous step is smaller than the current step, the queue length is set to the previous value,



48 Advanced Queueing Model of a Multiprocessor Computing System

and the system utilization factor is calculated for that queue length. If the utilization factor
is less than one, the algorithm terminates, setting the current n as the optimal queue length
for the given system parameters. If the utilization factor is greater than or equal to one, the
algorithm ends with a message indicating that the given parameters don’t support effective
system performance. Thus, with this queue length, the system can achieve an optimal service
configuration, minimizing the probability Pl of unserviced tasks for the given parameters.
The pseudocode of the algorithm consists of two blocks and is presented below:

Algorithm 1 System Performance Measures Computation
Input: n, m, a, b, w
Output: Pr, Pf , ρ

1: p← SteadyStateProbabilities(n,m, a, b, w)
2: Pr, Pf ← 0, 0
3: i, j ← 0, 0
4: for each x ∈ p do
5: if j == n then

6: Pr ← Pr +
a · x

a+ i · b+ j · w
7: end if

8: Pf ← Pf +
j · w · x

a+ i · b+ j · w
9: j ← j + 1
10: if j == n+ 1 then
11: j ← 0
12: i← i+ 1
13: end if
14: end for
15: Pa ← (1− Pr) · (1− Pf )

16: ρ← aPa · (m+ 1)

2 ·m · b
17: return Pr, Pf , ρ

Algorithm 2 Optimal Queue Length Computation
Input: m, a, b, w
Output: nopt (the optimal queue length)

1: nopt ← 1, n← 1
2: Pr, Pf , ρopt ← SystemPerformanceMeasures(m,n, a, b, w)
3: M1 ← Pr + (1− Pr) · Pf

4: n← n+ 1
5: Pr, Pf , ρ← SystemPerformanceMeasures(m,n, a, b, w)
6: M2 ← Pr + (1− Pr) · Pf

7: while M1 > M2 do
8: nopt ← n
9: n← n+ 1
10: M1 ←M2

11: ρopt ← ρ
12: Pr, Pf , ρ← SystemPerformanceMeasures(m,n, a, b, w)
13: M2 ← Pr + (1− Pr) · Pf

14: end while
15: if ρopt ≥ 1 then
16: Raise ”InvalidParameterException: These parameters don’t support effective system performance!”
17: else
18: Print ”The optimal queue length is nopt”
19: return nopt

20: end if



A. Vardanyan 49

5. Conclusion

The study presented in this paper offers a refined approach to modeling multiprocessor
systems using advanced queueing theory and accounting for variability in task requirements
and queue constraints. By analyzing the steady-state probabilities and deriving metrics such
as task rejection and failure rates, effective arrival rates, and system utilization, insights
into optimizing system performance are gained. The proposed algorithm for finding the
optimal queue length minimizes task losses while maintaining efficient resource usage. This
work contributes to the field of multiprocessor queueing theory, providing tools for better
scheduling and resource allocation strategies in high-performance computing environments.
Future work may explore extensions of this model to systems with heterogeneous resources or
additional performance constraints, further enhancing the model’s applicability in real-world
scenarios.

References

[1] L. N. Bhuyan and S.Sinha, “Design of Parallel and Distributed Systems”, Springer,
Cham, pp. 12-250, 2023.

[2] V. Sahakyan and A. Vardanyan, ”About the possibility of executing tasks with a waiting
time restriction in a multiprocessor system”, AIP Conference Proceedings, 2757.1, pp.
030003, 2023. DOI: https://doi.org/10.1063/5.0135784.

[3] D.Bertsimas and D.Gamarnik, ”Queueing Theory: Classical and Modern Methods”,
Dynamic Ideas, Belmont, pp. 126-586, 2022.

[4] F. P. Kelly, S. Zachary and I.Ziedins, “Stochastic Networks: Theory and Applications”,
Clarendon Press, Oxford, pp. 16-298, 2020.

[5] J. Anamika, J. Madhu, D. Bhardwaj, “Controllable multiprocessor queueing system”,
Applications of Mathematical Modeling, Machine Learning, and Intelligent Computing
for Industrial Development, pp. 61-76, 2023.

[6] V. Sahakyan and A. Vardanyan, ”A Computational Approach for Evaluating Steady-
State Probabilities and Virtual Waiting Time of a Multiprocessor Queuing Sys-
tem”, Programming and Computer Software, Volume 49, pp. S16S23, 2023. DOI:
https://doi.org/10.1134/S0361768823090098.

[7] J. F.Shortle, J. M.Thompson, D. Gross and Harris C. M., Fundamentals of Queueing
Theory, John Wiley and Sons, New York, pp. 35-475, 2018.

[8] H. Takagi, ”Appendix A: Derivation of Formulas by Queueing Theory” Spectrum Re-
quirement Planning in Wireless Communications, John Wiley & Sons Ltd, pp. 199-218,
2008. DOI: https://doi.org/10.1002/9780470758946.app1.



5 0 Advanced Qeueuing Model of a Multiprocessor Computing System

´³½Ù³åñáó»ëáñ³ÛÇÝ Ñ³ßíáÕ³Ï³Ý Ñ³Ù³Ï³ñ·Ç ÁÝ¹É³ÛÝí³Í

Ñ»ñÃ»ñÇ Ùá¹»É

²ñÃáõñ ä. ì³ñ¹³ÝÛ³Ý

ÐÐ ¶²² ÆÝýáñÙ³ïÇÏ³ÛÇ ¨ ³íïáÙ³ï³óÙ³Ý åñáµÉ»ÙÝ»ñÇ ÇÝëïÇïáõï, ºñ¨³Ý, Ð³Û³ëï³Ý

e-mail: artur.vardanyan@iiap.sci.am

²Ù÷á÷áõÙ

²Ûë Ñá¹í³ÍáõÙ Ý»ñÏ³Û³óíáõÙ ¿ µ³½Ù³åñáó»ëáñ³ÛÇÝ Ñ³ßíáÕ³Ï³Ý Ñ³Ù³Ï³ñ·Ç 
ÁÝ¹É³ÛÝí³Í Ñ»ñÃ»ñÇ Ùá¹»É, áñï»Õ ³é³ç³¹ñ³ÝùÝ»ñÁ å³Ñ³ÝçáõÙ »Ý å³ï³Ñ³Ï³Ý 
ù³Ý³Ïáí åñáó»ëáñÝ»ñ ¨ »ÝÃ³Ï³ »Ý Ñ»ñÃáõÙ ëå³ëÙ³Ý Å³Ù³Ý³ÏÇ ë³ÑÙ³Ý³÷³-
ÏáõÙÝ»ñÇ: Æ ï³ñµ»ñáõÃÛáõÝ ¹³ë³Ï³Ý µ³½Ù³ë»ñí»ñ³ÛÇÝ Ñ»ñÃ»ñÇ Ñ³Ù³Ï³ñ·»ñÇ, ³Ûë 
Ùá¹»ÉÁ Ñ³ßíÇ¿³éÝáõÙ ÇÝãå»ë é»ëáõñëÝ»ñÇ å³Ñ³ÝçÝ»ñÁ, ³ÛÝå»ë ¿É Ñ»ñÃáõÙ ëå³ëÙ³Ý 
Å³Ù³Ý³ÏÇ ë³ÑÙ³Ý³÷³ÏáõÙÝ»ñÁ, ÇÝãÝ ³é³í»É Ñ³ñÙ³ñ ¿ Çñ³Ï³Ý Ñ³ßíáÕ³Ï³Ý 
ÙÇç³í³Ûñ»ñÇ Ñ³Ù³ñ: Ü»ñ³é»Éáí ³é³ç³¹ñ³ÝùÝ»ñÇ ÙáõïùÇ, ëå³ë³ñÏÙ³Ý ¨ 
ëå³ëÙ³Ý ë³ÑÙ³Ý³÷³ÏáõÙÝ»ñÇ Ñ³í³Ý³Ï³Ý³ÛÇÝ µÝáõÛÃÁ, ³ñï³Íí»É »Ý Ñ³Ù³Ï³ñ·Ç 
Ï³ñ¨áñ Ï³ï³ñáÕ³Ï³Ý óáõó³ÝÇßÝ»ñÇ` ³é³ç³¹ñ³ÝùÝ»ñÇ Ù»ñÅÙ³Ý ¨ Ó³ËáÕÙ³Ý 
Ñ³í³Ý³Ï³ÝáõÃÛáõÝÝ»ñÇ, Ñ³Ù³Ï³ñ·Ç ÃáÕáõÝ³ÏáõÃÛ³Ý ¨ é»ëáõñëÝ»ñÇ û·ï³·áñÍÙ³Ý
·áñÍ³ÏóÇ, ·Ý³Ñ³ïÙ³Ý ³ñï³Ñ³ÛïáõÃÛáõÝÝ»ñ: Øß³Ïí»É ¿ Ý³¨ Ñ»ñÃÇ ûåïÇÙ³É
»ñÏ³ñáõÃÛáõÝÁ áñáßáÕ ³É·áñÇÃÙ, áñÁ µ³ñ»É³íáõÙ¿Ñ³Ù³Ï³ñ·Ç ³ñ¹ÛáõÝ³í»ïáõÃÛáõÝÁ` 
Ýí³½»óÝ»Éáí ³é³ç³¹ñ³ÝùÝ»ñÇ ÏáñëïÇ Ñ³í³Ý³Ï³ÝáõÃÛáõÝÁ:

Ðàñøèðåííàÿ ìîäåëü î÷åðåäåé ìíîãîïðîöåññîðíîé
âû÷èñëèòåëüíîé ñèñòåìû

Àðòóð Ï. Âàðäàíÿí

Èíñòèòóò ïðîáëåì èíôîðìàòèêè è àâòîìàòèçàöèè ÍÀÍ ÐÀ, Åðåâàí, Àðìåíèÿ
e-mail: artur.vardanyan@iiap.sci.am

Àííîòàöèÿ

Â äàííîé ñòàòüå ïðåäñòàâëåíà ðàñøèðåííàÿ ìîäåëü î÷åðåäåé äëÿ ìíîãîïðî-
öåññîðíîé âû÷èñëèòåëüíîé ñèñòåìû, ãäå çàäà÷è òðåáóþò ñëó÷àéíîãî êîëè÷åñòâà
ïðîöåññîðîâ è ïîä÷èíÿþòñÿ îãðàíè÷åíèÿì íà âðåìÿ îæèäàíèÿ â î÷åðåäè.
Â îòëè÷èå îò êëàññè÷åñêèõ ìíîãîñåðâåðíûõ ñèñòåì î÷åðåäåé, ýòà ìîäåëü
ó÷èòûâàåò êàê òðåáîâàíèÿ ê ðåñóðñàì, òàê è îãðàíè÷åíèÿ íà îæèäàíèå â
î÷åðåäè, ÷òî äåëàåò å¸ áîëåå ïîäõîäÿùåé äëÿ ðåàëüíûõ âû÷èñëèòåëüíûõ ñðåä.
Ñ èñïîëüçîâàíèåì âåðîÿòíîñòíîãî ïîäõîäà ê ìîäåëèðîâàíèþ ïîñòóïëåíèÿ,
îáñëóæèâàíèÿ çàäà÷ è îãðàíè÷åíèÿì íà îæèäàíèå áûëè ïîëó÷åíû âûðàæåíèÿ
äëÿ êëþ÷åâûõ ïîêàçàòåëåé ïðîèçâîäèòåëüíîñòè, âêëþ÷àÿ âåðîÿòíîñòè îòêàçà
è ñáîÿ çàäà÷, ïðîïóñêíóþ ñïîñîáíîñòü ñèñòåìû è çàãðóçêó ðåñóðñîâ.

´³Ý³ÉÇ µ³é»ñ` ´³½Ù³åñáó»ëáñ³ÛÇÝ Ñ³Ù³Ï³ñ·, Ñ»ñÃ»ñÇ Ñ³Ù³Ï³ñ·, µ³½Ù³-
ë»ñí»ñ³ÛÇÝ Ñ»ñÃ»ñÇ Ñ³Ù³Ï³ñ·, ëå³ëÙ³Ý Å³Ù³Ý³ÏÇ ë³ÑÙ³Ý³÷³ÏáõÙ, é»ëáõñëÝ»ñÇ
û·ï³·áñÍáõÙ, Ñ³Ù³Ï³ñ·Ç ³ñ¹ÛáõÝ³í»ïáõÃÛáõÝ, Ï³ï³ñáÕ³Ï³ÝáõÃÛ³Ý ã³÷»ñ:



A. Vardanyan 5 1

Òàêæå áûë ðàçðàáîòàí àëãîðèòì äëÿ îïðåäåëåíèÿ îïòèìàëüíîé äëèíû
î÷åðåäè, ïîçâîëÿþùèé ïîâûñèòü ýôôåêòèâíîñòü ñèñòåìû çà ñ÷¸ò ìèíèìèçàöèè
âåðîÿòíîñòè ïîòåðü çàäà÷.

Êëþ÷åâûå ñëîâà: Ìíîãîïðîöåññîðíàÿ ñèñòåìà, ñèñòåìà î÷åðåäåé, ìíîãî-
ñåðâåðíàÿ ñèñòåìà î÷åðåäåé, îãðàíè÷åíèå âðåìåíè îæèäàíèÿ, èñïîëüçîâàíèå
ðåñóðñîâ, ýôôåêòèâíîñòü ñèñòåìû, ïîêàçàòåëè ïðîèçâîäèòåëüíîñòè.


	Artur_62

