Mathematical Problems of Computer Science 61, 62—-69, 2024.

doi: 10.51408/1963-0115

UDC 004.4

Performance of Linear Algebra Factorization in Multi-
Accelerator Architectures

Edita E. Gichunts

Institute for Informatics and Automation Problems of NAS RA, Yerevan, Armenia
e-mail: editagich@iiap.sci.am

Abstract

Hardware and software are required to effectively solve problems in many domains.
The idea of creating a hybrid architecture based on graphics processors arose to meet the
increasing demands of modern scientific problems. Most of these problems are reduced
to solving linear algebra problems. A set of efficient linear solutions has been
successfully used to solve important scientific problems for many years. Factorizations
play a crucial role in solving linear algebra problems.

This work presents implementations of LU, QR and Cholesky factorizations on two
graphics processors using the MAGMA 2.6.0 library. Their performances are given for
matrices with real and complex numbers in single and double precision.

Keywords: MAGMA, multiple GPU, Linear Algebra, Factorizations.
Avrticle info: Received 29 February 2024; sent for review 19 March 2024; accepted 16
May 2024.

1. Introduction

Many of the most important scientific programs rely on high-performance algorithms and linear
algebra technologies, highlighting their importance and widespread impact from national security
to medical breakthroughs. In the current high-performance computing (HPC) environment,
parallelization is crucial. With the increasing utilization of video cards worldwide, the
development of GPU parallel computing is expected to greatly affect the field of high-performance
computing. These possibilities have already generated a great deal of interest in scientific as well
as non-scientific circles. After all, the acceleration potential of good parallelization of algorithms
is not always tens of times faster. The trend in multi-computing is clearly moving towards parallel
algorithms, with most new solutions and initiatives focused in this direction. The current
generation of GPUs has a fairly flexible architecture, which, along with high-level programming

62



E. Gichunts 63

languages and hardware-software architectures, reveals these capabilities and makes them more
accessible. In the field of high-performance computing, the hottest topic is GPU-based hybrid
systems. Hybrid architecture combines the advantages of shared and distributed memory systems.
In such architectures, the GPU device is used as a coprocessor or accelerator to handle multi-
computation applications. Calculations on GPU are known for being developed and processed very
quickly. One of the leading video chip manufacturers, Nvidia, has introduced the CUDA [1]
(Compute Unified Device Architecture) platform. CUDA is both a software and hardware
technology available to every developer. It is an extension of the C programming language. The
only requirement is the use of different programming paradigms typical for parallel computing.

Linear algebra faces a significant challenge in terms of computational efficiency, which

has led to the development of software libraries following advancements in computer architecture.
In the mid-1960s, IBM released the Scientific Subroutine Package [2], a collection of FORTRAN
subroutines optimized for the IBM System/360 machine. In 1974, Harwood released EISPACK
[3], a package of FORTRAN routines that compute the eigenvalues and eigenvectors of a matrix.
BLAS's basic linear algebra routines were the first product of a joint project with ACMSIGNUM
during 1973-1977 [4], which was based on a proposal made in 1973 [5].The LINPACK library
was introduced in 1979 as a collection of routines for solving linear equations and linear least
squares problems on supercomputers of the 1970s and 1980s, mostly based on vector processors
[6].
LINPACK used the partial rotation engine of LU analysis to solve 100-dimensional problems,
allowing the user to evaluate the performance of their memory and processors. The first version
of BLAS (BLAS Level 1) implemented scalar-vector and vector-vector operations. BLAS2 (BLAS
Level 2) was developed in 1988 as an extension of BLAS1 to exploit the capabilities of vector
processors [7, 8]. BLAS2 offers the ability to perform matrix-vector operations. LAPACK [9],
released in 1992, replaces LINPACK and EISPACK and provides better performance. LAPACK
specializes in solving systems of linear equations, linear least squares problems, eigenvalue
problems, and singularity problems. To perform these operations, related calculations are also
performed, such as matrix analysis: LU, QR (Q-matrix is unitary or Hermitian, and R is upper
trapezoidal), Cholesky, etc.

For GPUs, NVIDIA offers CuBLAS [10], an implementation of BLAS in the NVIDIA
CUDA and EM Photonics environments, as well as their CULA solutions [11] as implementations
of LAPACK CUDA.

MAGMA [12] is an extension of LAPACK in a hybrid framework. It includes an amazing
variety of subroutines for solving linear algebra problems.

MAGMA's research is based on the idea that optimal software solutions for solving
complex problems in a hybrid environment should be self-hybridizing, combining the strengths of
various algorithms within a single framework. Based on this idea, efforts are being made to
develop algorithms for hybrid multi-core and graphics systems. Designed with LAPACK
functionality, data storage and interface capabilities, the MAGMA library makes it easy for
scientists to port their software components from LAPACK to MAGMA and take advantage of
the new hybrid architecture.

LU, QR and Cholesky factorizations play an important role in linear algebra. LU
factorization is applied to the problem of finding solutions to a system of linear equations. The
first step is to perform the LU factorization of the matrix, and then solutions can be obtained. It is
worth mentioning that the paper referenced as [13] presents solutions to a system of linear
equations using the types of LU factorization and random butterfly transformation implemented
with the MAGMA library on a single graphics processor.

QR factorization is often used to solve the linear least squares (LLS) problem. It is also the
basis of the QR algorithm [14,15] for finding the eigenvalue problem.



64 Performance of Linear Algebra Factorization in Multi-Accelerator Architectures

Cholesky factorization is useful for efficient numerical solutions such as Monte Carlo
simulations.
This paper presents implementations of LU, QR, and Cholesky factorizations of widely used linear
algebra problems on multiple graphics processor architectures, using the MAGMA 2.6.0 library.
Performances of the specified factorizations for matrices with real and complex numbers in both
single and double precision are presented.

2. Stages of Implementing Factorizations with Multiple Accelerators

It was observed that when dealing with multiple accelerators, LU, QR, and Cholesky factorizations
were implemented by using the MAGMA 2.6.0 library. We have provided descriptions of these
factorization subroutines. It should be noted that instead of using types, the letter x was used, which
in the case of real numbers is s, and it is d for single and double precision, respectively, while in
the case of complex numbers, ¢ and z are used.
magma_xgetrf_mgpu(ngpu, M, N, d_A, Idda, ipiv, &info )computes an LU factorization of a
general M-by-N matrix A using partial pivoting with row interchanges.
The factorization has the form

A=P*L*U,
where P is a permutation matrix, L is a lower triangular with unit diagonal elements (lower
trapezoidal if M>N), and U is an upper triangular (upper trapezoidal if M<N).

magma_xgeqrf2_mgpu(ngpu, M, N, d_A, ldda, tau, &info )computes a QR factorization of an M-
by-N matrix A.
The factorization has the form

A=Q*R.

magma_xpotrf_mgpu(ngpu, uplo, N, d_A, Idda, &info )computes the Cholesky factorization of a
real symmetric and complex Hermitian positive definite matrix A.
The factorization has the form

A=U**H*U, if UPLO = MagmaUpper, or

A=L *L**H, if UPLO = MagmaLower,

where U is an upper triangular matrix and L is a lower triangular.
uplo= MagmaUpper: Upper triangle of A is stored,
uplo= MagmaLower: Lower triangle of A is stored.

Here are the stages of implementing Cholesky factorization when using multiple accelerators:

1. First, the MAGMA library is initialized using the magma_init() function.

2. Memory is allocated for the matrix on the CPU using the function
magma_xmalloc_cpu(&h_A, lIda*N). Memory is also allocated for the matrix copy on
the CPU using magma_xmalloc_pinned(&h_R, lda*N).

3. To allocate memory for the matrix on GPUs, we cycle from GPU to GPU, and in each
of them, the function magma_setdevice(dev) is first called, then the memory is
allocated using the function magma_xmalloc(&d_A[dev], max_size), where max_size
= (1 +N/(nb*ngpu))*nb * magma_roundup( N, nb) and nb=magma_get_dpotrf_nb(N).

4. The matrix is generated using the function magma_generate_matrix(opts, N, N, h_A,
lda).



10.

11.

12.

3. Experi

Tests were

E. Gichunts 65

We copy the matrix using the lapackf77_xlacpy(MagmaFullStr, &N, &N, h_A, &lda,
h_R, &Ida) function, which will be sent to the GPU memory.

The function magma_xsetmatrix_1D_col_bcycle(N, N, h_R, Ida, d_A, Idda, ngpu, nb)
transfers the matrix to the GPU memory.

We fix the time using the function gpu_time = magma_wtime().

The function magma_xpotrf_mgpu(ngpu, uplo, N, d_A, ldda, &info) is called, which
performs Cholesky factorization in parallel on GPUs.

Using the difference gpu_time=magma_wtime()-gpu_time, we obtain the calculation
execution time.

After the calculations are completed, the function magma_xgetmatrix_1D_col_bcycl
(N, N, d_A, Idda, h_R, Ida, ngpu, nb) transfers the results from the GPUs to the CPU
memory.

We clear the allocated memories on the CPU wusing the functions
magma_free_cpu(h_A) and magma_free_pinned(h_R), and clear the allocated
memories on the GPUs by performing a cycle transfer from GPU to GPU, first calling
magma_setdevice(dev) and then magma_free(d_A[dev]) functions.

At the end of the program, we use magma_finalize() to terminate MAGMA.

mental Results

conducted on two NVIDIA Tesla V100-PCIE graphics processors. The cuda-10.2

platform was utilized for parallel computing. To install the MAGMA 2.6.0 library, the BLAS,
LaPack, cLaPack and ATLAS libraries were installed. To install the MAGMA library, the gcc,

g++, nvc,

and gfortran compilers were used. To compile MAGMA, the following static (.a) and

dynamic (.so) libraries are also required: libgfortran.a, libf77blas.a, libcblas.a, libf2c.a, libm.a,
libstdc++.a, libpthread.a, libdl. .a, libcublas.so, libcudart.so, libcusparse.so, libcudadevrt.a.

Let us present the results of experiments in the form of graphs.

Figures 1 and 2 display graphs of LU factorization for matrices with real and complex numbers
in single and double precision, respectively.

16
14
12
10

GFlop/s

o N B OO

—e—single 30 —o—single

25

double double

20
15

GFlop/s

10

0 10000 20000 30000 0 10000 20000 30000
Matrix size Matrix size

Fig.1. LU real Fig. 2. LU complex



66 Performance of Linear Algebra Factorization in Multi-Accelerator Architectures

Figures 3 and 4 display graphs of QR factorization for matrices with real and complex numbers
in single and double precision, respectively.

60 —|—e—single 1.2 ]—e—single
20 1w double V4 1= double
40 0.8 o

30 / 0.6
20 / y /

1 / 02 e

GFlop/s

GFlop/s

0 T T 1 0 T T 1
0 20000 40000 60000 0 10000 20000 30000
Matrix size Matrix size
Fig. 3. QR real Fig. 4. QR complex

Figures 5 and 6 display Cholesky factorization graphs for matrices with real and complex
numbers in single and double precision, respectively.

0.1 |—e—single 0.06 |—e—single

0.08 double 0.05 7 double
" " 0.04
EO.OG 3
o o 0.03 T 7 f
w004 — [
o v ©0.02 /

0.02 T 0.01 v

0 T T T 1 0 T T 1
0 10000 20000 30000 40000 0 10000 20000 30000
Matrix size Matrix size
Fig. 5. Cholesky real Fig. 6. Cholesky complex

4. Conclusion

We have reached the following conclusions based on the results of our experiments:

For matrices with real numbers, single precision performance in the case of LU factorization
is 2 times lower than double precision. For matrices with complex numbers, single precision
performance is 1.5 times lower than double precision.

In the case of QR factorization, single-precision performance for matrices with real numbers
is 1.5 times higher than binary precision, and for complex numbers, single precision performance
is 2 times lower than double precision.

In the case of Cholesky factorization and for matrices with real and complex numbers, single
precision performance is 2 times lower than double precision performance.



E. Gichunts 67

References

[1]
[2]

3]
[4]

[5]
[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

NVIDIA, “NVIDIA CUDA Parallel Computing Platform”.
http://www.nvidia.com/object/cuda_home_new.html, NVIDIA, 2013.

International Business Machines Corporation. System/360 Scientific Subroutine
Package (360A-CM-03X) Version Il, Programmer’s Manual. IBM Technical
Publications Department, White Plains, NY, 1967.

B. S. Garbow. EISPACK-a package of matrix eigensystem routines. Computer Physics
Communications, 7(4):179-184, 1974.

C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic Linear Algebra
Subprograms for Fortran Usage. ACM Trans. Math. Softw., 5(3):308-323, September
1979.

R. J. Hanson, F. T. Krogh, and C. L. Lawson. A proposal for standard linear algebra
subprograms. ACM Signum Newsletter, 1973.

J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart. LINPACK Users’ Guide,
volume 8. SIAM, 1979.

J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. Algorithm 656: an extended
set of basic linear algebra subprograms: model implementation and test programs. ACM
Transactions on Mathematical Software (TOMS), 14(1):18-32, 1988.

Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. An Extended Set of
FORTRAN Basic Linear Algebra Subprograms. ACM Trans. Math. Softw., 14(1):1-
17, March 1988.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A.
Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide.
Society for Industrial and Applied Mathematics, Philadelphia, PA, third edition, 1999.
CUDA Nvidia. Cublas library. NVIDIA Corporation, Santa Clara, California, 15,
2008.

J. R. Humphrey, D. K. Price, K. E. Spagnoli, A. L. Paolini, and E. J. Kelmelis. CULA:
hybrid GPU accelerated linear algebra routines. In SPIE Defense, Security, and
Sensing, pages 770502-770502. International Society for Optics and Photonics, 2010.
“MAGMA Matrix Algebra on GPU and Multicore Architectures”,
http://icl.cs.utk.edu/magma/, 2014,

H. V. Astsatryan, E. E. Gichunts, “Performances of Methods for Solving a Linear
System of Equations in the Architecture of GPU Accelerator”, Transactions of IIAP
NAS RA, Mathematical Problems of Computer Science, vol. 45, pp. 44—52, 2016.

B. N. Parlett, The Symmetric Eigenvalue Problem. Englewood Cliffs, NJ: Prentice-
Hall, 1980.

G. H.Golub, C. F. V.Loan, Matrix Computations, 3rd ed. Baltimore: The Johns
Hopkins University Press, 1996.



68

Performance of Linear Algebra Factorization in Multi-Accelerator Architectures

Qdwghtt hwbpwhwoyh pwljuuinphqughwtkph
wpununpnyuljuimpnibutpp puqupwiul] wpuqugnighsutph
Swprnupuyynn piniunid

Enhunw B. Ghsnitg
22 QUU bupnpduwnhljuyh b wunndwnwgdwi ypnp idukph htunhunnin, Gphwb, Zujuwunwh
e-mail: editagich@iiap.sci.am

Udthnthnid

Puquuphy ptwqujunubph punghputph wpynibwdbn pusnidubtph hwdwp

wwhwioynd L wwwpwwughtt b Spwgpuyhtt wwwhnynid:  Zhpphnujht
Swpunupuybnnipjut unbnédwt qunuthwpp, npp hhdtdws £ qgpudbhljulju
wnpngbunpubph Ypu, dwqk) k dwdwbwljulhg ghinuljut hhdtwpiunhpttph wdng
wwhwbetbph pudupupdut yuwndweny: Uy fmughputph dké dwup phpynud k
gbujhtt  hwbpwhwoyh pughptbph (nusnudubpht: Uppnitwdbn  qéuyht
mwdnidubph  hwjwpwénit s Epjup  wwphtubp jupnquinud £ ooty
Juplnpugnytt  ghnnwjut  ppunghptbp: @Swyhtt  hwtpwhwodh Juughptbph
nuénidutpnid Juplnpugnyt gipwlunwpnid niikt puljinnphqughwitpp:
Uju  wppownwbpnid  ubpiuyugyus Eu LU, QR b Iunjkgint (Cholesky)
puljnnphqughwikph hpwjwiwgnidbpp Epne gpuphjujutc wpngkunplitph
ypu' MAGMA  2.6.0 gpunupwih  fhpundwdp:  Spdws kb tpuibg
wpununpnuljubmpmnitiipp ppujut b Yndyipu pybpny  dwwnphgubph
hwdwp dEjuljw b Epniufuit dogpunnipiniutbpnud:

Pwmuwh punkp® MAGMA, puquuljh GPU, gqéwjhtt hwbupwhwohy,

pulunphqughu:

IIpou3BoAUTENBLHOCTH (PAKTOPU3ALNH JIMHEHHON aJaredpsl B
MYJbTHYCKOPHUTEJIbHBIX APXUTEKTYPax

Onuta E. I'muyHIg

Huctutyt npobiiem undopmaruku u apromaruzauun HAH PA, EpeBan, Apmenust
2 Cumenc Unpactpu Codreep, Epean, Apmenus
e-mail: editagich@iiap.sci.am

AnHoTanusa

Jnst >ppexTUBHOTO pemieHuss mpolieM BO MHOTMX 00JacTsax TpeOyercsi ammapaTtHoe U

nporpammHoe oOecrieuenue. Mmes co3manusi THOPUAHONW apXUTEKTYpbl Ha 0asze rpaduuecKux
IPOIIECCOPOB BO3ZHUKJIA JUIS YAOBJIETBOPEHUS PACTYLIMX TPEeOOBAHMM COBPEMEHHBIX Hay4HBIX
3ama4d. BOJIBIIMHCTBO ATHX 3a/lady CBOJATCA K PEHICHUIO 3a7a4 JIMHEWHOW anreOpsl. Habop
3 PEKTUBHBIX JTUHEWHBIX PEUICHUH YK€ MHOIO JIeT YCIEUIHO HCIOJb3YeTCs AJs pPEelIeHHUs


mailto:editagich@iiap.sci.am
mailto:editagich@iiap.sci.am

E. Gichunts 69

BA)KHBIX Hay4YHBIX 3a7a4. PakTOopU3alMy UTPAIOT PEIIAOIIYIO POJIb B PELICHUH 3a]a4 JIMHEHHON
anreOpsl.

B stoii pabGote npencraBnensl peanusaruu hakropuzanuu LU, QR u Xomenkoro Ha aByx
rpaduUecKkux mpoleccopax ¢ UcHojib3oBaHueM O6ubmmoreku MAGMA 2.6.0. IlpuBenens ux
MPOU3BOAUTENBHOCTH JJI1 MATPUL] C ACUCTBUTEIBHBIMU U KOMIIJIEKCHBIMU YHCIIAMUA OJIMHAPHOM U
JIBOUYHOM TOYHOCTH.

KarwueBsblie ciioBa” MAI'MA, GPU, nuneitnas anrebpa, paxTopH3arius.



