Mathematical Problems of Computer Science 61, 27-49, 2024.

doi: 10.51408/1963-0113

UDC 519.237, 519.25

Comparative Analysis of Univariate SARIMA and
Multivariate VAR Models for Time Series Forecasting:
A Case Study of Climate Variables in Ninahvah City, Iraqg

Sameera A. Othman, Hasan H. Jameel and Sadeq T. Abdulazeez

University of Duhok, College of Basic Education, Duhok, Iraq

e-mail: Sameera.Othman@uod.ac, hasan.hazim@uod.ac, sadig.taha@uod.ac

Abstract

This study involves a comparison between the application of the univariate SARIMA
model and the utilization of VAR methods (vector autoregressive models) for
multivariate time series analysis. The analysis is conducted using three-time series
variables derived from data representing the monthly average of Humidity (H), Rainfall
(R), and Temperature (T) in Ninahvah City, Irag. Both univariate and multivariate time
series approaches are employed to model these series. The paper also outlines the
implementation of vector autoregressive, structural vector autoregressive, and structural
vector error correction models using the 'vars' package. Additionally, it provides functions
for diagnostic testing, estimation of constrained models, prediction, causality analysis,
impulse response analysis, and forecast error variance decomposition. Furthermore, it
introduces three fundamental functions, VAR, SVAR, and SVEC, for estimating these
models. The comparison between the methods is based on evaluating the mean error
produced by each approach. The findings of the study indicate that univariate linear
stationary methods outperform multivariate models. The analysis of the data was carried
out using the R software platform. The primary objective is to assess the performance of
univariate and multivariate time series models in handling the given data. The research
gap lies in the need for a comparative evaluation of SARIMA and VAR methods for time
series analysis in the context of monthly environmental variables. These models were
chosen due to their effectiveness in capturing temporal dependencies and interactions
among multiple variables in time series data, providing a comprehensive analysis of
climatic patterns in Ninahvah City, Iragq. The study aims to address the research gap by
comparing these models and justifying their selection based on their capabilities to
analyze the specified time series data.
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1. Introduction

A multivariate time series (MTS) comprises numerous time-related variables, and it is crucial to
understand that each variable's dependence is not solely influenced by its previous values but also
by interactions with other variables. Future values are forecasted using this dependency. This
dependency is used for forecasting future values. The goals of multivariate time series analysis are
to investigate the complex establishing links among variables and enhancing forecast precision. In
the early 1980s, the authors in [1] critiqued vector autoregressive models (VARS) led to vector
autoregressive models becoming a standard instrument in econometrics. This strategy was
immediately improved by the incorporation of non-statistical prior information since statistical
tests are commonly utilized to identify connections and intricate associations among variables. In
contrast to deterministic repressors, VAR models describe endogenous variables entirely through
their own histories. Structured vector autoregressive models (SVARs) facilitate the explicit
modeling of contemporaneous interdependencies between the variables on the left. Consequently,
these models attempt to address the deficiencies associated with VAR models. Sims posed a
challenge to the established multiple structural equation model paradigm initially developed by
the Cowles Foundation during the 1940s and 1950s. However, Granger in [2] and later Engle and
Granger in [3] introduced a powerful tool to the field of econometrics for simulating and evaluating
economic relationships: the concept of co-integration.

In recent times, the study of these fields has witnessed a convergence through the application
of vector error correction models (VECM) and structural vector error correction models (SVEC).
A comprehensive theoretical exposition of each of these models can be found in the monographs
authored by Lutkepohl [4], Hendry [5], Johansen [6], Hamilton [7], and Banerjee et al. [8]. The
main aim of this study is to compare the effectiveness of the univariate SARIMA model with the
utilization of VAR methods for analyzing multivariate time series data. The motivation behind this
research is to understand which approach is more suitable for modeling three specific time series
variables related to Humidity, Rainfall, and Temperature in Ninahvah City, Iraq. The study
explores various modeling techniques, including vector autoregressive, structural vector
autoregressive, and structural vector error correction models, using the 'vars' package in R. It also
offers a range of functions for diagnostic testing, model estimation, prediction, causality analysis,
impulse response analysis, and forecast error variance decomposition.

2. Methodology
2.1. Stationary

A time series is classified as stationary when its statistical characteristics remain consistent
throughout its duration. These characteristics, such as the mean and variance, remain unchanged
over time [9]. Conversely, these properties fluctuate significantly, the time series is considered
non-stationary. In practical terms, one can assess the stationary of a time series by visualizing it
through a plot. A time series is termed "purely stationary"” when the joint distribution of Z(t;), -,
Z(ty), and Z(ty + 1), -, Z(t, + 1), Where z(t) represents the random variable at time ¢, remains
constant is the same for all t4, -+, t,, T. To put it another way, the joint distributions are mostly
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unaffected by changing the time origin by a specific sum; instead, they must be determined by the
intervals between t,, -+, t, [10]. The time series Z, is deemed to exhibit weak stationarity when
two conditions are met: (a) The expected value of Z; = pu, which is a constant vector with
k —dimensions, and (b) The covariance of Z; = E[(Z; — W) (Z; — n)'] = Z,, a constant k X k
positive-definite matrix. The random vector Z's expectation and covariance matrices are indicated
by the letters E(Z) and Cov(Z), respectively. To establish if the time series is stationary, the
collection of autocorrelations for the time series can also be used. The univariate time series
stationary is examined using the Unit Root Test, and a multivariate time series is examined using
the Co-integration test [11]. Consider the following two situations:

* When each univariate time series within an MTS item exhibits stationarity, the MTS item itself

is considered to be stationary.

* If any of the individual time series within a multivariate time series (MTS) exhibit non-
stationarity, a cointegration test should be conducted to verify that the MTS as a whole is also
non-stationary. We may make the Z; series stationary by differencing if it has not already been
done. Z; = Z; — Z,_, = VZ, denotes the differenced series. Below are the definitions of the
Backward Shift Operator B:

B™Z; = Z_. The backward difference operator V is defined by V=1—B. Another method for
determining whether the data is stationary or not, at lag k, the autocorrelation function is defined
as:

oy = E[(Zt — W (Zesk — H)]
T E[Z— 02(Zok — WA

where z, : stands for observation. u: Mean of observation, p: autocorrelation function.

The cross-correlation for lag k given two time series variables X; and Y; is given as ry, =
Cxy/Sx Sy Where, ¢y, = % YR — D) (Ve — V), k= 0,1,2 ...;Xand y are the sample means
of x; and y;, sy and s, are the sample standard deviations, respectively [12], Process of White

Noise. A white noise process with the formula a, = (a;, **+,ak)’ IS @ continuous random vector
that satisfies the conditions E(a;) = 0,E(a;d;) = Z,,and E(a;ag) = 0 for s # t. Unless
otherwise specified, the £, = covariance matrix is assumed to be non-singular as pointed in [11].

2.2. Vector Autoregressive (VAR) Model

One approach to representing the interplay among multiple time-varying variables is through the
utilization of the vector autoregressive (VAR) model. This model provides a streamlined
representation of dynamic interactions, wherein each internal variable is influenced by its own past
values as well as the past values of all other internal variables. The simple p-lag Vector
autoregressive VAR (p) method looks like this:

Zt =cCc+ ®1Zt—1 + ®2Zt—2 + -+ @pZt—p + at ;t = 01 ilr izl Ty (1)



30 Comparative Analysis of Univariate SARIMA and Multivariate VAR Models for Time Series Forecasting

where Z; = (Z1, -+ Zyxy)' is @ (kx 1) vector of time series variable, @; are fixed (k X k)
coefficient matrices, ¢ = (cq,*--,cx)’ is a fixed (kx 1)  vector of intercept terms, a; =
(a1p -+ agy)’ is a white noise procedure with (k x 1). The procedure can be written clearly in
matrix form:

Zit %1 %2 .o Q%k\ Zit—1 %1 %2 .o Q%k\ Zit—2
Z?t = 031 93 Do D2r ZZ§—1 + 03, 03, D D31 sz—z 4ot
Zkt Q)il Q)iz C jSk Zkt—l Q)il @iz S jSk Zkt—Z
14 14 14
P11 P12 . . Q)lk th—P Ayt
P 14 14
0o 0% o o Op || Zaeop | 4 [ %2 (2)
®z1 Q)iz o Q)ik Zit-p Akt

2.3. Stable VAR (p) Processes [13]

If every root of the matrix lies within the unit circle, and the absolute values of the roots of
matrix @; are less than 1, then process 1 exhibits stability. That is, if det(I, — @,Z — --- — ZP) #
0 for |Z| < 1, then a stationary VAR (p) process Z;;t = 0,+1, %2, -+ is stable.

2.4. A Stable VAR(p) Process' Autocovariances
The result of deducting the mean from VAR (p) is
Zi—pn=01Zeer — W+ -+ 0p(Zep — W) + 2. 3)

After dividing both sides by (Z._, — n) " and calculating the expectation, having at [ = 0 by
utilizing:

(1) = L(=1),
[(0) = 01(Zesy — W)+ + Op(Ze—p — 1) + Za,
= 0,1 + -+ 0, (p) + Z,. 4)
If u>0,then

L, =¢,I,d-1) +"'+®pl—‘z(l_p)’+za' (5)
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If @4,-+,0, and I;,(p — 1) are provided, the auto covariance functions I',(1) for [ > p can be
derived from these equations.

2.5. A Stable VAR (p) Process's Autocorrelation

Obtaining the autocorrelations of a stable VAR (p) process is achieved by extracting
information from the matrix:

R,(D) = D7'L,(HD7Y, (6)

hence, D is a diagonal matrix with the Z; component's standard deviation on the main diagonal.
Consequently

1 . o ] (7)
\/Y11(0)
D™t=| o)
0 1
VYrk(0) ]

and Z; and Z;_, have the following correlation:

0::(1) = vij(D (8)
1 )
] Vvii(0) Iij (0)

which is just the ij— th element of R,(l). The model's characteristic roots are, once again, the
inverses of the solutions. As a result, stationarity necessitates that all characteristic roots have a
modulus of less than one. The ACF satisfies the difference equation(l - @¢,B—@,B*— - —

Q)po)p = 0, for p = 0 a stationary AR (p) sequence. The ACF plot of a stationary AR (p) model

will display a blend of damped sinusoidal and exponential decay patterns, influenced by the unique
source it originates from, leading to varying levels of similarity in the shapes observed.

2.6. Order Selection by VAR

The three selection criteria that will be utilized to evaluate the VAR process order p are as
follows:

(i) Employing the Akaike Information Criterion (AIC) method [14], as introduced in [15],

AIC(p) = ln|fs(p)| + % (number of estimated parameter)
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- 2
= In|T,(p)| + 2=

(ii) Given Hannan and Quinn [16], the Hannan-Quinn Criterion (HQC), follows

. 2Ink
HQC(p) = In|E ,(p)| + N (Parameters that are freely estimated)

= In|E,(p)| + ZIHE\IIHN) pkZ.

(iii) Using the Bayesian Information Criterion (BIC) [17],

-~ Ink - InN
BIC(p) = ln|Z a(p)| + N (Parameters that are freely estimated = ln|Z a(p)| + N pk?,

where the VAR order is p,

The estimated white noise covariance matrix X, is represented by X, . In a vector time series,
there are k different time series components. N is the sample size. Each estimate is selected to
minimize the criterion’s value in each of the aforementioned parameters.

2.7. Forecasting

If it is determined that the fitted model in 1 is sufficient, forecasts can be made being used. The
following estimates are used to create forecasts:

Ze=C401Zey + BpZig + -+ BpZep +ag;t = 0,41, 42, . ©)

Given the forecast origin t., the forecasts so produced are those with the smallest mean square
error [4].

Using vector moving average models for forecasting (VMA). Considering that the model is

recognized and serves as a source for prediction. The VMA forecast (q). Generally, for h-step
forward forecast with h < g, as occurs

q
Zi(h) = pu - Z 0t +n—i- (10)
i=1

Utilizing VARMA models for prediction, we are employing the criterion of minimizing mean-
squared error to delve into the future projections of a time series Z; with a VARMA(p, q) structure,
similar to the VAR models of (9). As stated below, for the VARMA (p, q) model

p
Zi(h) = Qo + z DiZesn—i- (11)
i=1
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3. Applications

Data pertaining to the monthly averages of temperature (T), rainfall (R), and humidity (H) for
Ninavah, Irag, ranging from 1976 to 2001, were examined using the R program. In this example,
we'll refer to humidity as (H, Z.), precipitation as R (R, Z,;), and temperature as (T, Z3;). The
multivariate time series can therefore be described using the random vector Z; = (Z1t, Zy¢ , Zs3t-
The time series data for these three variables are presented in Figure 1 in a variety of graphical
formats. The core scientific challenge outlined in the text revolves around the thorough analysis
and modeling of these multivariate time series data, specifically focusing on climate variables—
humidity, precipitation, and temperature. The overarching goal is to uncover intricate relationships
and discern patterns within the dataset. Additionally, the aim is to construct a robust multivariate
model capable of accurate forecasting and in-depth analysis.

Zoo o

serlas
B=H
120 4 —  mlnral

Tl

A :‘WUHMIJJUA AR Mﬁ\

1SS0 19ss 1990
Time

Fig. 1. The three raw series' time series plot (H, R,T).

The Unit Root test is used to determine whether univariate time series datasets are stationary. In
contrast, the Co-integration test (original) is used to examine stationarity in multivariate time series
datasets. The Augmented Dickey-Fuller (ADF) test can be used to determine whether a series has
a unit root. This is predicated on the assumption that a trend-lined series will display a unit root
and a significant p-value.

H,: The data is non-stationary and has a unit root.

H;: The data are static and have not yet produced the results in Table (1).
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Table 1. Original and transformed data stationary testing of Nineveh time series data sets for the
period 1976 — 2001

Stationary testing

i Phillips-
Datasets | Responses Dickey- | p- Perron Unit P- KPSS P-
Fuller | value value Level | value

Root Test
R Zi -7.339 | 0.01 -70.58 0.01 | 0.25798 | 0.1
H Z¢ -5.9331 | 0.01 -154.35 0.01 | 0.15987 | 0.1
T Zs -8.5794 | 0.01 -67.175 0.01 | 0.03855 | 0.1

The alternate proposition becomes relevant when the p-value rejects the null hypothesis and
exceeds the 0.05 threshold. In the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test, the p-value
surpasses the 0.05 threshold, signifying the absence of a unit root and, consequently, stationarity
within the series. To ascertain trend stationarity, researchers will assess the null hypothesis; a low
p-value suggests the presence of a non-trend stationary signal with a unit root. To test the Stability,
all characteristic roots should have a modulus of less than one. The results in Table (2) represent
the original data.

Table 2. Roots of the stability characteristic polynomial

The characteristic polynomial's roots
0.9018 0.9081 0.9081 0.9049 0.9049 0.8934 0.8825 0.8825
0.8803 0.8803 0.871 0.871 0.8214 0.8214 0.8148 0.8148
0.8036 0.8036 0.7866 0.7866 0.7509 0.7509 0.691  0.691
0.4724 0.2125 0.2125

Log Likelihood -1795.702

All of the roots k are inside the unit circle. We have no strenuous roots. Our system is generally
stable.

3.1. Co-Integration Test

Co-integration testing is a method used to assess the accuracy of long-term linkages between
variables because none of them now exhibit stationarity. If the variables exhibit co-integration, it
implies that they have an ongoing link, even if they are not stationary at the moment [18]. They
also offered the Maximum Eigen Value test and the Trace test as two more methods for counting
co-integrated vectors. While the Trace test looks into the potential of r+1 co-integrating vectors,
the Maximum Eigen Value test looks into the possibility of a maximum of r co-integrating vectors
[19]. They claim that the Maximum Eigen Value test is the best technique for determining the
number of co-integrating vectors. After d distinct differentiations, an integrated sequence of order
d, designated as 1(d), becomes stationary.

H,: no co-integration of variables H;: co- integration of variables



S. Othman, H. Jameel and S. Abdulazeez 35

The results in Table 3 represent the data.

Table 3. Findings from Johansen's Co-integration Examination for H, R, T

Unrestricted Co-integration Rank Test (Trace)

Co-integration rank(r) Eigenvalue Trace stat. Critical Value 5%
r=0" 8.766264e-02 35.55 34.91
r<=1" 5.444259¢-02 18.76 19.96
r<=2" 4.546822e-02 8.52 9.24
Unrestricted Co-integration Rank test (Maximum Eigenvalue)

Co-integration rank(r) Eigenvalue Trace stat  Critical Value 5%
r=0" 8.766264e-02 16.79 22.00
r<=1" 5.444259e-02 10.24 15.67
r<=2" 4.546822e-02 8.52 9.24

The Trace test reveals the presence of three co-integrating equations with a significance level
of 0.05. The asterisk (*) signifies the rejection of the hypothesis at the same 0.05 significance level.

The column of r in Table (3) represents the rank and we know that this is some indication of the
number of co-integrating relationships. When r = 0, the test statistic is 35.55 > 34.91. This implies
that we do not accept the null hypothesis, which proposes that r > 0. As such, there is some co-
integration present. When r < 1, we do not find enough evidence to reject the null hypothesis
because 18.76 < 19.9. When r < 2, this again means that we do not find enough evidence to reject
the null hypothesis because 8.52 < 9.24. Therefore, we conclude that there is at most 1 co-
integrating relationship that presents the Johansson test when we choose the maximal eigenvalue
statistic. We are unable to dismiss the null hypothesis. None of the statistical values falls below
the 5 percent threshold. It means no co-integrating relationships present the Johansson test.

3.2. The Raw Data Correlation Matrix

The three variables are highly connected, as shown by the correlation matrix (Zcorr)) below. As
a result, the multivariate technique will take into account the interrelation between the variables

H 1 0.636 —0.868
Corr (HR,T)=R| 0.636 1 —0.461 |,
T \-0.868 —-0.461 1

Cov (H,R,T) =R 403.2 1764 —117.4

H<229.1 403.2 —79.9)
T\-799 -1174 36.9
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3.3. The Cross Correlations
Table 4 shows the cross-correlation matrices at various lags (lags 1-12).

High values demonstrate that the variables are interdependent and a multivariate model can be
successfully fitted to the data. A simple matrix s, = [sg,ij] is constructed for each sample CCM
P as follows:

+if peyy 2 2/4T,
Seij =3~ if Prij < —2/T,
if |Beij| < 2/T,

where: p, is a consistent estimate of p,, T is a total number.
The results in Table (4) represent the original data.

Table 4. displays example Cross-Correlation Matrices depicting the Monthly Simple Returns of
three different Indexes in their raw form (H, R, T).

Lag 1l lag 2 lag3 lag 4 lag 5 lag 6
+ + —1r - - - A1 - 1 [ Hr
+ . - - l e s T R - [
s R & s + + - + + :

Lag7 lag 8 lag 9 lag 10 lagll lag 12
+ + QM+ + -1 [+ + r 1M - F1[— - +
+ + |+ + - [+ - - [ l - - +|l- - +
- — +ll= - 41 - - +]b J4+ + -+ + -

Table (4) illustrates the simplified CCM for monthly data of (H, R, T). Notable cross-
correlations, which are statistically significant at the estimated 5% level, are mainly observable at
the lags of 8 and 9.

3.4. Selecting a Model

AIC, BIC, and HQC at various lags are shown in both Table (5), which represents the original
data, and Figure (2), which depicts the data. At lag 9, a three- selection process reaches the minimal
values (the bolded values). VAR (9) is, therefore, the model of choice in Table (5): Empirical Lag
Selection.
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Fig. 2. lllustrates the information criteria applied to (H, R, T) data. The lines, depicted as solid, dashed,
and dotted, correspond to AIC, BIC, and HQ, respectively.

Table 5. Empirical Lag Selection

AIC(n) HQ(n) SC(n) FPE(n)

selection 9 8 8 9

1 14.28293 14.34716 14.44137 15.95881

2 13.20192 13.33038 13.51880 541441.48394

3 13.04705 13.23973 13.52237 463836.94951

4 12.84215 13.09906 13.47591 378027.24396

5 12.73620 13.05735 13.52840 340211.74568

6 12.63510 13.02047 13.58574 307749.95214

7 12.24344 12.69305 13.35252 208259.68283

8 12.04285 12.55669 13.31037 170670.10872

9 11.97888 12.55694 13.40484 160410.83869
10 12.00919 12.65148 13.59359 165760.36272

3.5. Model Presentation

The VAR (9) model with significant parameters is represented in matrix form as seen in Table (6),
which represents the original data, utilizing equation (2) in the approach. The optimal lag value is
p =9 according to AIC and FPE, p = 8 based on the HQ criterion, and p = 7 according to the SC
criterion. They performed diagnostic analyses on the residuals after calculating a VAR with both
a constant and a trend as deterministic predictors for each of the nine different lag orders.
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21t 0.341 0.019 —0.187\ /Z1t-1 —0.126 0.023 0.672 Zit—>
Z,x | =1 0567 —0.056 0.393 Zoi—1 |+1—-0.887 0.106 —0.964 || Zy— |+

Z3t —0.011 -0.009 0.466 Z3i_q 0.027 —0.004 —0.149/ \Z3_,
0.084 0.036 0.236 Z1t-3 0.007 0.0139 0.315 Zit-a
<—0.267 0.123 —0.724) <22t-3> + <—0.059 0.089 1.083 ) (Zzt—4) +
—0.039 0.002 —0.008/ \Z3_3 0.016 0.005 —0.082/ \Z3_4
0.101 0.035 0.121 Zit—s —0.084 0.0001 0.632\ [Z1t-s
<—0.483 0.147 —-1.02 ) Zyi—s |+ —0.523 0.153 2.891) (ZZt—6) +
—0.008 —0.004 —0.131/ \Z3;_s 0.068 —0.003 0.148/ \Z3;_¢
0.202 —0.001 —0.232\ [/Z1t-7 0.277 —0.039 —0.497\ [Zit-s
< 0.381 0.208 —2.207) Zot—7 |+| 1.002 -0.118 2.337 )(ZZt_g) +
—0.034 -0.000 0.177 L3i_7 —0.069 0.011 0.291 Z3t—g
—0.083 0.006 —0.109\ /Z1it-9 dit
< 0.196 —0.075 —0.087) Zat—o |+ aZt)- (12)
0.112 -0.010 0.053 Z3i—o Azt

The information is presented in Table (6) along with the summarized results and the graphical
representation of equation (12).

Table 6. Results for the Endogenous variables: H, R, T

Statistic H R T
Multiple R-Squared 0.991 0.6873 0.9906
F-statistic 635 12.7 608.7
Adjusted R-squared 0.9894 0.6332 0.989
Residual standard error 6.893 38.87 1.643
p-value <2.2e-16 <2.2e-16 <2.2e-16

H/ 47.514 169.310 —-2.705
Covofresiduals=R| 169.310 1510.815 —3.646 |,

T \ —=2.705 —3.646 2.699

H 1 0.6319 —0.2388
Corr of residuals = R{ 0.6319 1 —0.0571 |.

T \—-0.2388 —-0.0571 1

4. Diagnostic Testing

Once the multivariate model 12 has been acquired, the next step is to verify the correctness of
the model fit. The following diagnostic techniques are used to this end.

4.1. Residual Autocorrelation Function

The following hypothesis is used, as described in Section (1.1.3) of the methodology:
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Hy: puv i =0 versus Hy: puwv i #0
We had a total of n= 192 series.

As a result, the residual autocorrelation function's boundary state has the form \/% = 0.144, and

. . . . 2
H, is rejected if |ry,,i| > NS =0.144.

When examining the values of autocorrelations in the residual correlation matrices at various
lags (lags 12), it was found that none of the residual autocorrelations exceeds 0.144. Figure (1)
represents the original data with|r,,,i|. This suggests that the residuals conform to a pattern
consistent with white noise. To put it another way, the fitted model is sufficient.

1) Test auto correlation for serial correlation (PT) [20]

The graphs, one for each equation, demonstrate the ACF and PACF of the discrepancies, along
with a discrepancy plot and a practical distribution chart. Additional justifications are provided by
the plot approach for changing its design. Figures (3-5) represent the original data.

Residuals of H Histogram and EDF
- o
2 7 z =
] 2
= Z o
wy ] = ——
A3 I T T T = [ I T 1
0 50 100 150 =10 0 10 20
ACF of Residuals PACF of Residuals
[Em]
] e S
[ =] —
o 7] g 1L 1 . .
] = | '
. g ————— o
T T T T I I I n:lh - T I I T T T
0 2 4 =3 2 10 12 2 4 =3 3 10 12

Fig. 3. Explains the Time Series Plots of Residuals (a;) for H.
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Residuals of R Histogram and EDF
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Fig. 4. Explains the Time Series Plots of Residuals (a,;) for R.

Residuals of T Histogram and EDF
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Fig. 5. Explains the Time Series Plots of Residuals (a3;) for T.

Explain the Time Series Plots of Residuals (a3;) for T. Heteroscedasticity: ARCH test ([21], [22]

A statistical model called autoregressive conditional heteroscedasticity (ARCH) is used to
assess and forecast volatility in time series. The following regression is the foundation for the
multivariate ARCH-LM test. (The univariate test is considered a specific case of the exhibit below
and will be omitted):

vech(fly Uf) = Bo+ Byvech(fly_1G{_; )+ ...+ Byvech(f_q0ii_4 ) + vt
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E(u.) = 0 and positive time invariant unambiguous covariance matrix E (u, ul) = ¥, (white
noise) define u; as a K-dimensional process [23]. In this context, v, represents a spherical error
process, and the operator 'vech' is used to stack the columns of symmetric matrices, starting from

the main diagonal and moving downward. The dimension of S, is%K(K+ 1), and for the

coefficient matrices B; where i = 1,...,q, %K(K +1) % %K(K + 1). The null hypothesis is:
Hy:= By = B, =...= B, = 0 and the alternative is: H;: By # 0 N B, # 0 N...N B, # 0. The test

statistic is explained as: VARCHy(q) = %TK(K + 1)R2, with R% =1-— K(K2+1) tr(202yY),

and {2 assigns the above-mentioned regression model's covariance matrix. y%(qK?(K + 1)?/4)
is the distribution of this test statistic.

3) Normality: Jarque & Bera (JB), Skewness, Kurtosis

The Jarque-Bera tests for univariate and multivariate series, as well as separate tests for
multivariate skewness and kurtosis (p), are performed on the VAR residuals. By performing the
Jarque-Bera test on the residuals following standardization via the Choleski decomposition of the
variance-covariance matrix for the centered residuals, one can create a multivariate version of this
test. For the multivariate scenario, the test statistics are as follows:

82 (K@) -3)°
- 6/T 24/T '

JB

where T is the sample size, $?(r), K (r) are skewness and kurtosis determined the from sample
data, and K (r) — 3 is the excess kurtosis. More specifically, if {r, , ... ,r;} is a variable with T
observations. Beloware the definitions for sample skewness and kurtosis.

T T
\ 1 ] 1 _
S(T) zm;(rt—r)3,and K(T) —m;(rt—r)4'

when 62 considering the statistics related to sample variance, 7 is the sample mean of S(r), itis
important to note that both S(r) and K(r) follow a normal distribution with zero mean and
variances of 6 /T and 24 /T, respectively. This is based on the assumption of normality in the data.
As a result of this assumption, the JB statistic conforms to a Chi-square distribution with two
degrees of freedom in the asymptotic sense.

To evaluate whether the data conforms to a normal distribution, we can use the JB statistic. If
JB exceeds the critical value JB > x3,_,, where a represents the significance level, then we have
grounds to reject the null hypothesis (H,), which posits that the data follows a normal distribution.
These findings are in line with the research conducted in [24], as presented in Table 7, which
showcases the original data results.



42  Comparative Analysis of Univariate SARIMA and Multivariate VAR Models for Time Series Forecasting

Table 7. Diagnostic tests of VAR (9) forH, R, T

Null Hypothesis Test Statistic p-value
no autocorrelation PT 92.059 0.00991
no suffer from heteroscedasticity ARCH 143.25 0.9799
not normality JB 69.979 4.13e-13
Kurtosis 37.419 3.751e-08
Skewness 32.56 3.988e-07

The p-value of 0.00991 is less than the significance level of 0.05, disproving the null hypothesis
that there is no autocorrelation. On the other hand, the p-value of the heteroscedasticity (ARCH)
test is greater than the 0.05 level of significance, which encourages us to keep the null hypothesis
in place. Practically speaking, this means that as the fitted values of the response variable increase,
the variance of the residuals should not increase as well. Regarding the Portmanteau Test (PT),
the p-value of the normalcy test is below the 0.05 significance level, which allows us to reject the
null hypothesis.

4) Structural Stability (SVC) [25]

The stability test is used to determine if there are any structural breaks. If we are unable to test
for structural breaks and one occurs, the entire estimate may be thrown off. To avoid this, we use
a simple inspection technique that involves plotting the cumulative total of subsequent residuals.
A structural change has occurred at that particular junction if the total sum of the data points on
the chart exceeds certain essential criteria. Fig. 6, which shows the unedited dataset, serves as an
illustration of this occurrence.

OLS-CUSUM of equation H

Empirical fluctuati

10 05
|

Time

Empirical fluctuati

10 05

Empirical fluctuati

-0 05
|

Fig. 6. CUSUM Test for H, R, T
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There are no points on this graph beyond the two red lines, so the system is stable.

4.2. Granger Causality

43

The interdependence structure of the underlying systems of multi-variate time series was
investigated. Utilizing Granger causality analysis, we can rephrase the content related to the
outcomes presented in Table (8), which encapsulates the unaltered dataset.

Table 8. Causality tests for H, R, T

Null Hypothesis Statistic(F-test) p-value
H does not Granger-cause R , T 3.3014 6.448e-06
R does not Granger-cause H ,T 1.9389 0.01179

No instantaneous causality between: Hand R, T 55.968 7.028e-13
T does not Granger-cause H ,R 3.6086 1.0 24e-06
No instantaneous causality between: R and H , T 53.091 2.962e-12
No instantaneous causality between: T and H,R 12.242 0.002196

We reject the null hypothesis (Ho) due to the p-value being below the significance level of 0.05.

4.3. Forecasting

The built model can be used to generate forecasts since it meets the basic assumption of the model
adequacy. The MSE values produced using the program R, are shown in Table (9), which
represents the data along with the multivariate model's forecasts for the period (Oct.2000 -
May.2001). Table (9) represents the optimal parameters of the multivariate, univariate and MSE

for the fitted ARIMA model.

Table 9. Multivariate VAR (9) model's and univariate and MSE for the fitted ARIMA (H, R,T)

time series
Time VAR(9) SARIMA (1,0,0)(1,1,1)s
Series MSE MSE
H 49.2073 15.6396
R 497.190 366.388
T 3.2624 2.2405
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Fig. 7. Forecasts of the Multivariate Model VAR (9)
4.4. Forecast Error Variance Decomposition (FEVD)

A Forecast Error Variance Decomposition assesses the mutual influence of variables through the
utilization of the VAR model. To determine the FEVD, we analyze the forecast errors from each
equation within the fitted VAR model. Subsequently, the prepared VAR model quantifies the
proportion of each error manifestation attributed to unanticipated fluctuations in the counterpart
variable (forecast errors). The variance decomposition method aids in the interpretation of the
VAR model. The amount of variance in the dependent variable described by each independent
variable can be determined. FEVD describes how a potential shock in a one-time series affects the
future uncertainty in the other time series of the system. Since this process progresses over time, a
shock to a time series can be insignificant in the short run but critical in the long run. When a
vector autoregression (VAR) model is used, FEVD, a crucial technique in econometrics and many
multivariate time series analytic contexts, helps to comprehend its consequences. The degree to
which one variable in the autoregression influences the others is revealed by this decomposition
of variance. It evaluates the percentage of forecast error variation for each variable that may be
attributable to external shocks affecting the other variables in the context of the data shown in
Fig.7.
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Fig. 8. Forecast Error Variance Decomposition from VAR (9) model fit.

These Fig. 8 graphs show percentages of the shook. The first plot depicts the FEVD for RH
starts. It appears that although we were borderline on whether to conclude that Granger causes RH
starts, the FEVD reveals that the magnitude of the causality is tiny anyway, while that of RH is
greater on rainfall and Tm starts. The second plot shows the FEVD for rainfall. It appears that
although we were borderline on whether to conclude that RH starts rate Granger cause rainfall and
Tm.

5. Conclusion

The evolution of numerous vars package functions and strategies is described in this article. These
improvements give researchers an easy-to-use setting for conducting VAR, SVAR, and SVEC
analyses. This is primarily accomplished by putting impulse response function implementation
approaches into practice, breaking down forecast error variance, making forecasts, and offering
diagnostic testing tools. It also provides tools for determining the model's ideal lag duration,
evaluating stability and causation, and performing further diagnostic tests. The article also covers
how to determine the co-integrating rank using VECM, which can easily be changed into its level-
VAR equivalent. The data was not stationary, as we observed. However, an effective method of
transforming a non-stationary series is stationary. To ascertain the model's order, compute the
differences and build a correlogram. SARIMA (1,0,0)(1,1,1)8 was chosen for univariate, and the
VAR model was then used. Then, using MSE, we assess the forecasting precision. After examining
each forecasting accuracy, we concluded that SARIMA would produce better results than VAR in
the presence of low-correlated variables and the absence of numerous co-integrations among
variables because of its higher forecasting accuracy. They should be aware that there is a
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correlation. When variables exhibit a strong correlation, the VAR model can be utilized to yield
highly favorable outcomes. Limitations of this study include the focus on monthly environmental
variables in Ninahvah City, Iraq. Future research could explore other regions, incorporate
additional variables, and assess model performance under diverse climatic conditions.
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Uhwswth SARIMA 1 puquuisuth VAR Unpbjutph hwdbdwwnwuljub
JEpnidnipinih dudwbwluyhtt pwppbph Juthrmunbudwi hwdwp.

J1ihduwyh hnthnjowlwuutph nhuyph niundbwuhpnipynit bpuph
‘Uhtwhyw punupnid

Uwdhpu U. Opdw, Zuuwt 2. Quuphy b Uugpkp @. Upnnijuqhq

TInithnjh hwdwjuwpwl, Zhdtwjut Yppnipjut pniky, Inithnly, bpup
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Udthnthnid

Uju nuumdttwuhpnipyniup tkpwenid £ hwdbdwwnnipynit SARIMA dhwswth dnnbih
Jhpwndwi b VAR dbpnnutph (JEyunnpuhtt wwnnnkqpbiuhy dngbjubp) ogunugnpsdwt
dholi puquuswth dwdwbwluyhtt owpptph Jbpnidnipjutt hwdwp: dhpnidnipiniuh
hpujubwgynid £ knwdwdwtwljjw owpph thnthnjuwlwutph dhongny, npnup unnwgyky ku
Ppwph Uhtwhyw punupnmid junttwynipjutt (H), mbnnidubph (R) b okpdwunhgwh (T)
wduwlut vhohtp ubpyuywugunn wjujutphg: Uju swppbpp dnpbjwynpbint hwdwp
oquuugnpdynid ki b dhwswth, b puquuswth dwdwbwlught puppbph dnnbkgnidubpp:
Znipjudp nipjugénid E bwb JEuninpughtt wunnntkgptuhwgh, junnigjuspuwjhtt Jejunnnph
wywnnnkgpbuhugh b Juemgdwépuwjhtt Jijuinph uppuh niqndwbt dnpbjubph
hpwwbtwgnudp vars thwpkph udheongny: Fugh wyn, wjut wwwhnynid E wpownnpnohy


mailto:Sameera.Othman@uod.ac1
mailto:sadiq.taha@uod.ac3

48  Comparative Analysis of Univariate SARIMA and Multivariate VAR Models for Time Series Forecasting

phunwynpdul, uwhdwbwthuly Unnpkjubph guwhwwndw, juthunbudwl,
wuwndwnwhtnbwipughtt Ybpnisnipjut, hdwyniuwihtt wpdwquuph YEpnisnipjut b
jutjpugnipwljdwt uppwih otnnidubph mwppunisdwt gnpdwnnyputp: Fugh wyg, wju
Unpbjitpp qiwhwinkim hwdwp tkpypdnud o bpp hhuwpup gnpsunnypikp VAR,
SVAR L SVEC: Utpnnubph hwdbdwwnnipmniup hhdudwsé b jnipwpwignip dnnbkgdwb
wnpntupnid wpwowgws Uhohtt uppwih gquwhwndwt ypu: Zknmwgnuinnipjuts wpyniuputpp
gng Lt tnwhu, np dhwswth gdwyhtt unwughntiwp dkpnnutpp gipuquignid bu puquuswth
Unpbjukpht: SYjwjukph Jbpnisnipiniup juunwpytl) £ R spugpuyhtt hwppwljh dhengny:
Zhdtwljut btywwnwlp myjujutph dywldwt dke dhwswth b puquusmth dudwbwljuyht
owippliph Unpkutiph juunwpnnuljuh quwhwwnnud b ZEnwgnunntpjut pugp uywinud £
wduwlut puywhywiwluwt thothnjpwlwiuiubph  hwdwnbpunnd  dudwbtwljught
owpptph Ybpnusmipjut SARIMA L VAR dbpnpubph hwdbdwwnwlut quuhuwndwub
wihpwdbonmput dke: Uju dUnphjukpt punpdl] Bu dwdwbwlughtt  ukphwubph
nyjuubph dke puquuphy thnthnpuwjuutbph dhol dudwbwluwyhtt juppjuénipiniuubph
I hnjuwqnbgnipyniukph gpuiigdwi wpyniba]knnpyut pinphp] wuyywhndkym] Ppuph
Uhtuwhyuw punuwph jjpdwjuljut ophttwswihnipniutbph hwdwwywpthwly JEpnidnipinii:
NMuunidtwuhpnipjut tyuwnulju | jpugul] hbnwgnunipjut pugp” hwdbdwnting wju
Uunpbjutpp b hhdtwynplnd pputg punpmipnitp’ hhdudbing todws dudwbwljught
owipph nyjuubpp yEpniskint bpwig jupnnnipyniuttph Jpus:

Puiiunh punkp’ Uhwsuh dwdwiwljughtt puppbp, Auquusuth gnpsplipug, Muswdl
hwpwpbpulgnmipmit & VAR, Qwbjuwmwnbunid, ARCH-LM phuwn, Ywnnigjwuspuwjhl
Juyniunipiniu (SVC)

CpaBnutensnslil ananu3 ogaoMepHsx SARIMA u mEOoromepusix VAR
Moziesieii [jia MPOTHO3MPOBAaHNA BPEMEHHBIX PAZIOB: TEMaTHYECKOE

HCCIeflOBaHMe KIMMaTUIYEeCKHX mepeMeHHbIX B ropoge Huraxsa, Upak
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Yuusepcuret Jlyxoka, Komremk 6azoBoro oopazosanus, Jlyxok, Upak
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AHHOTaANuA

[lanHOe uccienoBaHMe BKIIIOYAeT CPaBHeHUe IIpUMeHeHuA ogHoMepHo# Mozenu SARIMA u
KCII0/Ib30BaHMA MeTOZ0B VAR (BEKTOPHBIX aBTOpPerpeCcCHOHHBIX MOieIei ) 1711 MHOTOMEPHOTO
aHajIM3a BpPeMEHHBIX PANOB. AHAJIu3 IPOBOZUTCA C KCIIOJNb30BAaHUEM IIEpEMEHHBIX TpeX

BPEMEHHBIX PAAOB, IIOJIYYE€HHBIX Ha OCHOBE€ JAaHHBIX, IIPEACTABIAIOMIHNX CpeAHEMECIIHBIE
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sHaveHus BiaaxHocTu (H), xomnuectBa ocazkoB (R) u temmneparyps: (T) B ropome Hunaxsa,
Wpax. /lng MofeTMpoBaHUA STUX PAJOB UCIIOIB3YIOTCA KaK OJJHOMEepPHEIe, TAK 1 MHOTOMEepHEIe
IIOIXOZBI K BpeMEeHHBIM psAzaM. B cTaThe Takke OIIMCHIBAETCS PeaTu3aluisi Mofelel BEKTOPHOU
aBTOPErpecCUy, CTPYKTyPHOH BEKTOPHOHM aBTOPerpecCMH M CTPYKTyPHOH BEKTOPHOM
KOPPEeKIINY OUIMOOK C MCIIOIb30BaHMEM ITaKeTa vars. Kpome Toro, oH npegocrasiser QyHKIUN
IJIS ~ OUAarHOCTUYeCKOTO  TeCTUPOBAaHUA, OLIEHKM Mojeleili C  OrpaHHYeHHIMH,
IPOTHO3UPOBAHMA, AaHAJIW3Aa INPUYNHHO-CIEJCTBEHHBIX CBfS3€l, aHaIW3a WMITYJIbCHBIX
XapaKTEePUCTUK U Pa3IOKeHUs JUCIePCHU OmMOOK Iporuo3a. Kpome toro, Aja oLeHKU 3TUX
Mozeneir BBomaATca Tpu (yHmameHtambHble ¢yHknuu: VAR, SVAR u SVEC. CpaBHenme
METOZOB OCHOBAaHO Ha OIleHKe CpefHeH OmMOKY, CO37aBaeMOH KaKIbIM IIOAXOIOM.
PesynpTaTsl HCCIemOBAaHUA IIOKA3BIBAIOT, YTO OJHOMEpHBIE JIMHEeITHbIe CTallHIOHAPHbIE METO/IbI
IIPeBOCXOJAT MHOTOMepHBle Mojenu. AHamu3 [AaHHBIX IIPOBOIUJICA C HCIOJB30BaHHEM
nporpaMMmHO# nnardopmer R. OcHoBHaA 1ers — oueHNUTh 3PPeKTUBHOCTh OZHOMEPHBIX U
MHOTOMEPHBIX MOJieJIeil BpeMeHHBIX PAIOB Ipu 06paboTke JaHHEIX. [Ipobes B ucciemoBaHUAX
3aKJIIOYaeTCs B HEOOXOZMMOCTH CpaBHUTeNbHOI oueHKu MeTonoB SARIMA u VAR mna
aHa/JIN3a BpeMEHHBIX PAJOB B KOHTEKCTe eXeMeCAYHBIX IIepeMeHHbIX OKpYXKalollei cpefbl.
Ot Mopenu ObUIM BbIOpaHBI U3-32 KX D5(P(PEKTUBHOCTH B OIpeNeeHHU BPEeMEHHBIX
3aBHCUMOCTEN U B3aMMOJEHCTBUI MeXTy MHOXECTBOM IIepeMEeHHBIX B JAHHBIX BPeMEHHBIX
pAmOB, obecreyrBas BCECTOPOHHUI aHAINW3 KJIMMAaTHYeCKUX Mojeseil B ropome Humaxsa,
Hpak. MccrnemoBaHue HaIpaBleHO Ha YCTpaHeHHe IIPOOEIOB B MCCIENOBAaHUAX ITyTEM
CpaBHEHMS DOSTUX Mojelelli M OOOCHOBaHUA HUX BBIOOpAa Ha OCHOBE HUX BO3MOXKHOCTEH
aHAJIN3UPOBATh YKa3aHHbIE JaHHbIe BpeMEeHHBIX PALOB.

Kiiogessie cmoBa: OpHoMepHEIH BpeMeHHOH psaz, MHoromepHsrii mporecc, B3anmuas

koppesanus u VAR, Ilporuos, Tect ARCH-LM, CtpyxkrypHas ycroitausocts (SVC)
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