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Abstract

This research explores how different types of distorting algorithms impact the Full-
Reference image quality assessment, particularly when subjective quality evaluations
are incorporated. We draw upon the TID2013 database, which contains 3000 images
distorted by 24 distinct algorithms, in conjunction with Mean Opinion Scores (MOS)
for quality ratings. We compare the results of Normalized Mutual Information (NMI)
for image quality score with WW?2, based on Weibull distribution, the common PSNR
similarity measure and MOS. We advocate for integrating of NMI into the repertoire
of image quality assessment metrics.
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1. Introduction

Assessing the quality of images is a crucial process for various applications, including pattern
recognition, classification, restoration, and others. The definition of quality, however, lacks
an unambiguous formal consensus, leading to the requirement of specific interpretations of
image quality and respective methods for its estimation. Three key methodologies exist for
evaluating image quality. Full-Reference methods are based on the comparison between a
distortion-free reference image and a test image, which is a distorted version of the original.
The level of distortion serves as an indicator of the quality of the test image. The change
in quality may either indicate a decrease or an increase, depending on the result of the
distortion process [1, 2.

On the other hand, No-Reference methods assess the quality solely based on the analysis
of the test image, taking into account its structural characteristics and other properties.
Reduced-Reference methods fall in the middle, employing partial information about the orig-
inal image in the assessment process.
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There is abundant research literature focusing on these three types of image quality
evaluation methods. These techniques can be bifurcated into two classes: objective and
subjective. Objective methods utilize formal image theory and image processing techniques,
whereas subjective methods rely on human visual system (HVS), based on expert quality
assessments. The average of these subjective assessment results is the MOS [3, 4].

Several primary factors influence the assessment of image quality. The first one is the
inherent quality of the test image and its depiction. The second are the distortions introduced
into the image content through processes like image acquisition, visualization, transmission,
etc. The third are the changes made in the image structure and parameters during image
processing using various mathematical or computational methods.

Given the diversity of these factors, universal methods for assessing the quality of any
image do not exist. Decisions on quality must consider the unique properties of the tested
images and the employed methods, in combination with the available subjective assessments.
Thus, there is continuous need for developing new quality criteria, similarity assessment
methods, and methods for analyzing and comparing different approaches.

Several image databases with MOS assessments exist that have been collected through
experimental procedures involving a large number of experts. For instance, 40 such databases
are critically examined in [4]. The literature provides extensive references to studies on
quality assessment through both objective and subjective methods [5]. In [6], the regularities
of influence of the type of distorting algorithm on the result of evaluating the image quality by
the Full-Reference method in the presence of subjective quality assessments were studied. As
an example, the TID2013 database [7] with 3000 images distorted by 24 types of algorithms
and subjective MOS quality ratings was used. An image quality score based on the Weibull
distribution model and the usual Peak Signal-to-Noise Ratio (PSNR) similarity measure was
applied. It was shown that the applied distorting algorithms are classified into two types
- normal, leading to results consistent with the HVS, and "anomalous”, the corresponding
quality estimates of which are disordered or chaotic.

In this research, we investigate another approach to image quality assessment using the
concept of NMI, which was introduced and studied in [8]. TIts theoretical grounding in
information theory [9] provides a robust and well-defined basis for measuring image simi-
larity. Additionally, NMI’s scale invariance makes it versatile and applicable to images of
diverse resolutions. Furthermore, its non-parametric nature eliminates the need for prior
assumptions about the image data, enhancing its adaptability to various image types. NMI
quantifies the amount of information shared between the reference and the distorted images.
This metric has shown potential between the reference and the distorted images [10].

As research on NMI and its applications in image quality assessment continues to evolve,
exciting possibilities emerge. The development of deep learning-based NMI variants, for
instance, holds promises for further enhancing accuracy and robustness in complex scenarios.

Within the scope of our investigation, we aim to rigorously examine and evaluate the
performance of the NMI metric across a diverse array of image distortion types and levels.
Our endeavor is directed towards discerning NMI’s nuanced impact and effectiveness in
capturing the similarities between datasets that have undergone different manifestations
and intensities of image distortion. The research article employs a structured approach,
encompassing research methodology and experimental results.

The paper is organized as follows. The next section introduces the considered measures.
In Section 3 experimental results on the TID2013 database are discussed. The paper con-
cludes in Section 4, summarizing key findings and advocating for a balanced consideration
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of both NMI and subjective evaluation methods.

2. Description of Considered Measures

First, we consider MOS, which is a subjective measure that represents the average opinion
of human observers. It is useful for the evaluation of other measures.

e [t quantifies the perceived quality of an image based on human evaluation.

e MOS scores are typically obtained through subjective experiments, where human ob-
servers rate the quality of images on a scale.

e Higher MOS scores indicate better perceived image quality.

e MOS is commonly used as a benchmark for objective image quality assessment algo-
rithms.

PSNR is a widely used metric in image quality assessment, commonly applied in image
processing and compression. It quantifies the fidelity of an image by comparing the maximum
signal power (original image) to the noise power (introduced during representation, often as
Gaussian noise). The key points are:

e (Objective Measure) PSNR provides an objective numerical assessment of image qual-
ity, enabling quantitative comparisons between different algorithms.

e (Decibel Scale) The use of decibels ensures a perceptually relevant representation of
quality ratios.

e (Higher Values, Better Quality) Higher PSNR values signify better image quality with
minimal noise interference [2, 13, 14].

While PSNR offers simplicity and objectivity in evaluating signal quality, it has limita-
tions in accurately reflecting human perception. It may not be suitable for all types of signals
or compression techniques. It is essential to consider its advantages and disadvantages care-
fully when using it for quality assessment in image and video processing applications.

W2 is an image quality metric. It measures the structural similarity between the original
image and the image with additive Gaussian noise. W? values range from 0 to 1, where 1
indicates perfect structural similarity. Higher W2 values suggest better image quality and
preservation of structural information. W? is commonly used for image restoration and
enhancement [15]. This image quality estimation is based on a Weibull distribution model
of image gradient magnitude, the density of which is given by the formula

o= 13 ol (] 20

where 1 > 0 is the shape parameter, A > 0 is the scale parameter. Distribution parameters
are estimated from the totality of all gradient magnitudes using the Sobel operator. The
similarity (proximity) of two images is estimated by the proximity of the estimates of the
parameters of the Weibull distribution by the formula
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min (N1, n2) min (A, Ag)

W? = .
max (m, n2) mazx (A1, Ag)
The research in [6] presented that this measure is sensitive to those types of distortions
that affect the structure and content of the image.

NMI is a measure of the distance between two images based on their joint probability
distribution. It quantifies the amount of information shared between two images, considering
both their individual distributions and their joint distribution. Higher NMI values indicate
greater distance, whereas lower NMI values indicate less distance.

Mutual information is a fundamental concept in information theory. Given two random
variables X and Y, the mutual information (MI) is defined as

I[(X;Y)=H(X) + HY) - H(X,Y),

where H(X) is the well-known notion of entropy [9]. MI is a non-negative quantity and can
be used as a similarity or distance measure depending on various applications.
We consider the following normalized version of MI

I(X;Y)
max H (X),H(Y)’

NMI =1-

which is a distance measure. It was proved in [11] that this measure satisfies metric
properties, in other words, it adheres to the criteria of a true metric, encompassing positive
definiteness, symmetry, and triangle inequality. At its core, the metric property aligns with
our intuitive understanding of distance, providing a foundational framework for quantifying
spatial relationships. NMI values range from 0 to 1, with 0 indicating perfect similarity and
1 indicating no similarity at all. Beside from information theory, NMI is widely used also
in image registration, image segmentation, and other applications [10], [12]. NMI is often
used to evaluate clustering algorithms or comparing different clusterings of the same data
[11]. NMI is based on the principles of information theory, which makes it theoretically
grounded and well-suited for various applications in fields such as machine learning, pattern
recognition, and data mining.

3. Experimental Results

The selected database is TID2013 [7]. This database contains 3000 images obtained from
25 originals, distorted by 24 different types of five levels each (for example, see Fig. 1).
The authors of the database conducted an extensive experiment on the visual assessment
of the quality of database images using a point system by a large number of people from
different countries. As a result of processing these data, each of the 3000 images is assigned
a numerical MOS score.

All necessary quantities are calculated using the developed software system, and the
results are entered into Excel tables. The base data are the results related to the original
and five distorted samples of a particular image.

For each such data set, three evaluation methods were employed: NMI, PSNR, W2, and
compared with MOS. These methods were utilized to assess and analyze the quality of the
images in the database.
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Fig. 1. The first, third, and fifth levels of distorted images from Image Number 10 in the TID
2013 database using the ’Sparse Sampling and Reconstruction’ method.

In numerous scenarios, NMI demonstrated similar sensitivity in comparison with alter-
native measures, for example on Fig. 2 five levels of Additive noise in color distortion are
demonstrated. The values of all measures for each level are given in Table 1.

Fig. 2. 5 Levels of Additive Noise in Color Distortion from the TID2013 Database: Image
Number 15.

Table 1. Experimental results for the 15th image from TID2013 database
(Additive noise in color)

NMI PSNR w2 MOS
0.14 42.33 0.87 6.09

0.17 39.45 0.78 5.82
0.22 36.47 0.66 5.64
0.27 33.61 0.53 4.89
0.34 31.39 0.38 4.64

In some cases, NMI demonstrates higher efficiency. For example, in the case of distortion
with the Non eccentricity pattern noise method, the W? values are close to one, which means
that it performs poorly in terms of human evaluation and human understanding, and the
NMI values are close to human evaluation (Table 2, Fig. 3).
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Fig. 3. Reference image and level 5 distorted image (Non eccentricity pattern noise)

Table 2. Experiment results for the 8th image from TID2013 database
(Non-eccentricity pattern noise).

NMI PSNR w2 MOS
0.06 43.33 1 5.65
0.10 41.30 1 5.43
0.16 39.08 0.99 4.87
0.20 37.82 0.99 4.75
0.24 36.92 0.99 4

4. Conclusion

Our experimental results revealed interesting insights into the performance of metrics across
different types of distortions. We found that NMI, being a normalized distance measure,
showed promising results for various distortion types. Particularly, it exhibited close align-
ment with human subjective evaluations in almost all cases, indicating its potential as an
effective image quality assessment metric.

Moreover, NMI’s theoretical foundation in information theory and its versatility in cap-
turing differences between images of diverse resolutions contribute to its robustness and
applicability in image quality assessment tasks. NMI consistently demonstrated its efficacy
for a wide range of distortions.

In conclusion, our findings advocate for integrating NMI into the repertoire of image
quality assessment metrics, complementing traditional measures like PSNR and W?2. By
leveraging NMI’s inherent advantages and considering its performance in conjunction with
subjective evaluations, we can enhance the accuracy and reliability of image quality as-
sessment methods, catering to diverse application scenarios in image processing, computer
vision, and beyond.
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Udthnthnid

Uju httmwgnunipjul ke dtlp unniqubiniph oquuwgnpodwdp niuntiGuuhpmyd Glp,
pbt hGywbtu GG wmwpptp mbtuwih wnuwywnnn wignphpiGbpp wgnmd ywwmytph npuyh
wipnnowlwl qGwhwndiwl Ypw, dwulwynpuytu, tpp Ghipunywo GG unpjtljnhy npuwyh
qiwhwwnwluwGGtpp: UtlGp oquymu tlp Tid2013 wnyjwltph pwqujhg, npp wwnpniGwynid
£3000 ywwybp, npnlp wnuyunyuo Gl 24 mwpptip wignphpuiGtinny, Jupohpltnh dhohG
dhwynpGtipnh (MOS) htim hwiwwntin: Utlp hwitdwunmd Glp Gnpiwjugduo thnfuwnupd
hGbnpiwghwjh wpyniGpGipp (NMI) wuwwmtph npuyh qGwhwwndwl hwdiwp dbjpnh
pwofudwl Jpw hhiGJuwo W2 wpnymbpGtph, hwymGh PSNR GdwlmpjuG swthh L MOS-
h htim: Utilp wylnnui GGp NMI- h hGuntgpnuip ywwmybph npwyh qGwhwndiwl swhdiwl
dtompniGGiph gubymu:

PwGwih pwnkp Mwwnltph npuy, wnuyuniwl mbuwlyibp, gGwhwniwl swthnuiGhn,
(npiwjwgywd thnfuwnupéd hGpnpiwghw:
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AnHoTanuys

B sTOM cTaThbe METOAOM CPAaBHEHUS C 3TAAOHOM MBI MCCAEAYEM, KaK Pa3AUYHBIE
TUIIBI AATOPUTMOB MCKa>KeHUSI BAUSIOT Ha OLleHKY KaueCTBa M300pa’keHus C IIOAHOM
CCBIAKOM, OCOOEHHO IIpYM BKAIOUYEHUU CYOBEKTHUBHBIX OII€HOK KadecTBa. Mer
onupaeMca Ha 0a3y apaHHbIX TID2013, kKoTopas copep>xkut 3000 m3o0pa>keHUH,
MCKa>KeHHBIX 24 Pa3AMYHBIMU aATOPUTMAaMH, B COUYETAHUM CO CPEAHUMM OlleHKaMu
mHenurt (MOS) AAd  PEeUTHMHIOB KauyecTBa. Mgbl cpaBHUBaeM pPe3yABbTATHI
HOPMAaAW30BaHHOU B3anMHOU nHGopManuu (NMI) Aas orfeHKH KauecTBa N300pa’kKeHUs
c W?, Ha ocHOBe paclpepereHusi BeitGyanra, 0o6IIero mokasaTeAss cXOACTBa PSNR
u MOS. Ms BeicTynaeM 3a mHTerpanuto NMI B penepTyap mokaszaTeAell OIleHKH
KayecTBa N300pa’KeHus.

KaroueBrle croBa: KauecTBO n300pa’keHNs, TUIIBI NCKaKEHUW, METPUKHU OI€HKH,
HOPMAaAW30BaHHAasA B3aMMHas WH(popMaug.
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