
Mathematical Problems of Computer Science 49, 41–48, 2018.

Dynamic Task Scheduling Based on Abelian Sandpile

and Rotor-Router Models

Hayk E. Nahapetyan and Suren S. Poghosyan

Institute for Informatics and Automation Problems of NAS RA

e-mail: hayknahapetyan@yahoo.com, psuren55@yandex.ru

Abstract

This study is dedicated to the possible usage of self-organized criticality models

in large-scale computing systems for load balancing and energy-awareness. Methods

and software tools aimed at modeling and visualization of dynamic tasks scheduling

in virtual distributed systems constructed over sandpile and rotor-router models, are

also presented.

Keywords: ASM, Rotor-Router decentralized systems, Dynamic task scheduling.

1. Introduction

The concept of self-organized criticality was first introduced by Bak, Tang and Wiesenfeld in
1987 [3], and gave rise to growing interest in the study of self-organizing systems. Bak et al.
argued that in many natural phenomena, the dissipative dynamics of the system is such that
it drives the system to a critical state, thereby leading to ubiquitous power law behaviors.
The Sandpile models, being a class of cellular automata, are among the simplest theoretical
models, which exhibit self-organized criticality. A special subclass of interest consists of so
called Abelian sandpile models (ASM). The Abelian sandpile and rotor-router models were
discovered several times by researchers in different communities operating independently.
The Abelian sandpile model was invented by Dhar [1], where the rotor-router model, a
deterministic analogue of random walk, was first defined by Priezzhev et al. under the name
of Eulerian walkers [2]. The Abelian property means that the final stable state of the CA is
independent of the order in which the updates of cells are carried out. This property plays
a key role during the numerical, as well as analytical studies of the ASM [4] – [7].

There are a number of solutions for tasks scheduling and load balancing based on the
Sandpile model [8]–[10]. Anyway, for large-scale real-time computing systems, critical perfor-
mance constraints are imposed by the environment, and the correctness depends not only on
the logical result of the computation, but also on the time at which the results are produced
with keeping energy-awareness. Newer solutions based on rotor-router model may provide
a better solution in the area. Besides, the paper presents appropriate software packages for
simulating and verifying large-scale cluster systems relied on sandpile and rotor-router-based
tasks scheduling.

The scheduler and load balancer possessing the above characteristics are constructed on
an agent system in which the agents render the cells of a cellular automaton. Thus, agents

41

42 Dynamic Task Scheduling Based on Abelian Sandpile and Rotor-Router Models

are essential components of the architecture, where the topology for interconnecting and
where collaborating the agents is another issue for consideration. As a model for simulation,
a 2-dimensional lattice is investigated, where every agent denotes itself as a computer node
with a private computing resource. Depended on the assigned workload, the node itself
makes a decision whether to migrate tasks to adjacent/neighboring nodes or not. Detailed
description of the proposed model is given in the third section.

2. Sandpile Model

Consider an undirected graph G = (V,E) described with the set of vertices V =
{v1, v2, . . . , vN} and the set of edges E. Each vertex vi ∈ V is assigned a variable hi which
takes integer values and represents the height of the sand at that vertex. hmax

i denotes the
maximal allowed height for the vertex vi in the graph G. For a d-dimensional lattice, we
take hmax

i = 2d + 1. CT denotes the set of heights hi, which determines the configuration
of the system at a given discrete time T . A configuration is called stable, if all heights
satisfy hi < hmax

i . The vertex vi is called closed, if hmax
i = deg(vi), where deg(vi) indicates

the degree of vi. The dynamics of the system is defined by the following rules. Consider
a stable configuration CT at a given time T . We add a grain of sand to a random vertex
vi ∈ V by setting hi to hi+1 (we assume that the vertex is chosen randomly with a uniform
distribution on the set V). This new configuration, if stable, defines CT+1. If hi ≥ hmax

i ,
then the vi becomes unstable and topples losing hmax

i grains of sand, while all neighbors of vi
receive one grain. Note that if the vertex is open, then the system loses grains. During the
toppling of the closed vertices, the number of grains is conserved. Note also that toppling
of a vertex may cause some of its neighboring vertices to become unstable. In this case,
those vertices also topple according to the same toppling rule. Once all unstable vertices are
toppled, a new stable configuration CT+1 is obtained. If the finite connected graph G has
at least one open vertex, then all vertices become stable after a finite number of topplings.
Moreover, the new stable configuration is independent of the toppling order. Let âi be an
operator, which acts on sandpile configurations and adds a grain to vertex i. It can be easily
shown that âiâj = âj âi. This is the reason why the sandpile model is called Abelian.

2.1 Rotor-Router Model

To define the rotor-router model on a directed graph G, for each vertex of G, fix a cyclic
ordering of the outgoing edges. To each vertex V we associate a rotor (V) chosen from among
the outgoing edges from V . A chip performs a walk on G according to the rotor-router rule:
if the chip is at V , we first increment the rotor (V) to its successor e = (v, w) in the cyclic
ordering of outgoing edges from v, and then route the chip along e to w. If the chip ever
reaches a sink, i.e., a vertex of G with no outgoing edges, the chip will stop there; otherwise,
the chip continues walking forever.

H. Nahapetyan and S. Poghosyan 43

Fig 1. Rotor-Router example.

3. Sand-Scheduler

In this section, we are going to describe a software tool that has a purpose of modeling
and visualizing dynamic tasks scheduling in distributed systems. As already mentioned, the
scheduling algorithm used by this tool is based on two well-known models: Abelian SandPile
model (ASM) and Rotor-Router model.

In original formulation of ASM, each site on a finite grid has an associated value that
corresponds to the slope of the pile. This slope builds up as ”grains of sand” (or ”chips”) are
randomly placed onto the pile, until the slope exceeds a specific threshold value at which time
that site collapses and transfers its sand grains to its adjacent sites, increasing their slope.
Bak, Tang, and Wiesenfeld considered the process of successive random placement of sand
grains on the grid; each such placement of sand at a particular site may have no effect,or it
may cause avalanches, which may have a cascading effect on many sites. The original interest
behind the model stemmed from the fact that in simulations on lattices, it is attracted to
its critical state, at which point the correlation length of the system and the correlation
time of the system go to infinity, without any fine tuning of a system parameter. In the
sandpile model dropping another grain of sand onto the pile may cause nothing to happen,
or it may cause the entire pile to collapse in a massive slide. We use the above mentioned
property of sandpile in order to dynamically schedule tasks, based on the background process
of avalanches that is visible in Debug enabled state.

In our workload, tasks may arrive in a group of up to 7 tasks and be assigned to some
node in the system. These tasks in a group are typically a set of multiple instances of the
same sequential program. That is why the tasks in a group are independent of each other
and can be executed in parallel. All the tasks in a group have only one important property,
assigned by ti, which shows the number of rounds needed for the task to be executed in a
system. All the tasks of a given group have the same ti. Preliminaries for the sandpile-based
dynamic scheduling problem are the following:

44 Dynamic Task Scheduling Based on Abelian Sandpile and Rotor-Router Models

Fig 2. Sand-Scheduler “Debug” enabled.

• Each task has its own required execution time ti.
• There is a set P of homogeneous processors, where |P | = nxm (10x10 in our example).
• Each processor can execute at most k task simultaneously at any given time. (k = 3

in our example)
• The nodes are connected between them and only interacting with the small subset of

the neighbours (at most 4).
• Each node has a working queue Q, |Q| ≤ 4 that gets filled up when all the resources

are taken.
• The total execution time for any task is said to be Ti = ti + si, where si is the time

required for the task to be scheduled(find empty slot in nodes) and start its execution.

3.1 Sandpile-Based Mode

In this mode, we study the system in a critical state, and the state of the system is being
reconfigured periodically. It is a cellular automaton, which models the process of dropping
on grains of sand on a surface and the collapsing of grains due to the increase of the height of
the slope. This process is going on regardless of the number of assigned tasks to the system.
The tasks are pretty similar to the grains of sand but they do not participate in avalanches
themselves. When the grains of the current node reach the maximum value, they start to
topple. In case there are tasks assigned to the node at that moment and these tasks are not
yet ready to be executed (all the computing resources of the node are reserved), they will
be toppled with the sands and move to another node along with the corresponding grain of
sand. The transition rule in this model is triggered when the height of the current grain is
bigger than the configured value for the system (4 in our study). This process of avalanches
is going on indefinitely, meanwhile, this system is dynamically balancing the distribution of
tasks among all buckets.

H. Nahapetyan and S. Poghosyan 45

Fig 3. Sand-Scheduler Debug mode. Green - executing tasks, Red - waiting tasks,

Blue - fictive sands for simulating avalanches, Black - fictive sands that are in critical state.

Another option that this scheduler supports, is the fault-tolerance. During the execution,
we can disable an arbitrary node or nodes, meanwhile, the scheduler will keep working
without this kind of failures that are common in large-scale computational systems. The
“Energy Aware mode is a modification of this scheduler in order to reduce the number of
nodes that are powered on. Depending on the number of non-scheduled tasks in the system
at any given moment of time, only the required (min count of nodes needed for executing
tasks at the same time) count of nodes are powered on.

Fig 4. Sand-Scheduler.

46 Dynamic Task Scheduling Based on Abelian Sandpile and Rotor-Router Models

3.2 Rotor-Router Mode

The software package developed implements one more scheduling mode based on the Rotor-
Router model. Relying on Priezzev’s [12, 13] Dhar’s studies [14], we can make sure that
grains in rotor-router configuration are equally distributed. So, if we change grains with
tasks we can be sure that load balancing will be provided in cluster systems. Moreover, we
are pushing forward a hypothesis that even for tasks with execution timing(the task will be
removed after execution and free up space) in rotor-router configuration tasks will be equally
distributed in the system, which is visible via software package described in this paper.

Fig 5.Sand-Scheduler. Non of the tasks is executed yet.

Fig 6. Sand-Scheduler. First tasks have been executed.

H. Nahapetyan and S. Poghosyan 47

4. Conclusion

In this paper, possible usage of ASM and Rotor-Router model in cluster systems has been
discussed. Also, appropriate software tools have been developed for cluster simulation and for
visualization of tasks dissemination. Perspectives of this work are to deploy ASM and Rotor-
Router-based algorithms for task distribution on real systems and obtain a comparative
analysis between real-world solutions.

5. Acknowledgement

The authors are grateful to Prof. Yu. H. Shoukourian and Dr. Y. Alaverdyan for important
discussions and critical remarks at all stages of the work. This work was supported by the
State Committee of Science MES RA, in the frames of the research project No. 16YR-1B008.

References

[1] D. Dhar, “Self-organized critical state of sandpile automaton models”, Phys. Rev. Lett.,
vol. 64, no. 14, pp. 1613–1616, 1990.

[2] B. Priezzhev, D. Dhar, A. Dhar and S. Krishnamurthy, “Eulerian walkers as a model
of self-organized criticality”, Phys. Rev. Lett., vol. 77, pp. 50795082, 1996.

[3] P. Bak, C. Tang and K. Wiesenfeld,“Self-organized criticality: An explanation of the
1/f noise”,Phys. Rev. Lett., vol.59, no. 4, pp. 381384, 1987.

[4] V. S. Poghosyan, S. Y. Grigorev, V. B. Priezzhev and P. Ruelle, “Pair correlations in
the sandpile model: A check of logarithmic conformal field theory”, Phys. Lett. B, vol.
659, pp. 768772, 2008.

[5] Su. S. Poghosyan, V. S. Poghosyan, V. B. Priezzhev and P. Ruelle, “Numerical study
of correspondence between the dissipative and fixed-energy Abelian sandpile models”,
Phys.Rev. E, 84, 066119, 2011.

[6] V. S. Poghosyan, S. S. Poghosyan and H. E. Nahapetyan, “The Investigation of models
of self-organized systems by parallel programming methods based on the example of
an Abelian sandpile model”, Proc. CSIT Conference 2013, Yerevan Armenia, Sept.
23-27, pp. 260-262, 2013.

[7] H. Nahapetyan, J.-Pierre Jessel, S. Poghosyan and Y. Shoukourian,“A multi user and
multi purpose CA simulator”,Phys. Rev. Lett., vol.59, no. 4, pp. 381384, 1987. Proc.
CSIT Conference 2017, Yerevan Armenia, Sept. 23-27, pp. 260-262.

[8] Y. Rabani, A. Sinclair, and R. Wanka, “Local divergence of markov chains and the
analysis of iterative load-balancing schemes”, In IEEE Symp. on Foundations of Com-

puter Science, pp. 694705, 1998.

[9] J. L. J. Laredo, P. Bouvry, F. Guinand, B. Dorronsoro and C. Fernandes, “The sandpile
scheduler”, Cluster Computing vol.17, pp 191204, 2014.

[10] J. Gsior and F. Seredyski, “A Sandpile cellular automata-based scheduler and load
balancer”, Journal of Computational Science, vol.21, pp. 460-468, 2017.

[11] L. Levine and Y. Peres, “Asymptotics for rotor-router aggregation and the divisible
sandpile”, Potential Analysis, 30: 1. https://doi.org/10.1007/s11118-008-9104-6

4 8 Dynamic Task Scheduling Based on Abelian Sandpile and Rotor-Router Models

[1 2] A . M. P o vo lo t s ky, V . B . P r ie z z h e v a n d R . R . S h c h e r b a ko v, \ D yn a m ic s o f E u le r ia n
wa lke r s " , P hysical review E , vo l.5 8 , D OI:h t t p s :/ / d o i.o r g / 1 0 .1 1 0 3 / P h ys R e vE .5 8 .5 4 4 9

[1 3] V . B . P r ie z z h e v, \ S e lf-o r g a n iz e d c r it ic a lit y in s e lf-d ir e c t in g wa lks " , a r X iv:c o n d -
m a t / 9 6 0 5 0 9 4

[1 4] D . D h a r , \ Th e o r e t ic a l s t u d ie s o f s e lf-o r g a n iz e d c r it ic a lit y" , P hysica A: Statistical M e-
chanics and its Applications, vo l. 3 6 9 , n o . 1 , p p . 2 9 -7 0 , 2 0 0 6

Submitted 04.09.2017, accepted 15.01.2018.

¸ÇÝ³ÙÇÏ ³é³ç³¹ñ³ÝùÝ»ñÇ åÉ³Ý³íáñáõÙ` ÑÇÙÝí³Í
²µ»ÉÛ³Ý ³í³½³ÏáõÛïÇ ¨ Rotor-Router Ùá¹»ÉÝ»ñÇ íñ³

Ð. Ü³Ñ³å»ïÛ³Ý ¨ ê. äáÕáëÛ³Ý

²Ù÷á÷áõÙ

²Ûë áõëáõÙÝ³ëÇñáõÃÛáõÝÁ ÝíÇñí³Í ¿ Ëáßáñ³Í³í³É Ñ³ßíáÕ³Ï³Ý Ñ³Ù³Ï³ñ·»ñáõÙ
ÇÝùÝ³Ï³½Ù³Ï»ñå ÏñÇïÇÏ³Ï³Ý Ùá¹»ÉÝ»ñÇ ÑÝ³ñ³íáñ û·ï³·áñÍÙ³ÝÁ Í³Ýñ³µ»éÝí³-
ÍáõÃÛ³Ý µ³ßËÙ³Ý ¨ ¿Ý»ñ·³ËÝ³ÛáÕáõÃÛ³Ý Ýå³ï³ÏÝ»ñáí: Ü»ñÏ³Û³óí³Í »Ý Ù»Ãá¹Ý»ñ
¨ Íñ³·ñ³ÛÇÝ ·áñÍÇùÝ»ñ, áñáÝù ÙÇïí³Í »Ý ³í³½³ÏáõÛïÇ ¨ éáïáñ-éááõï»ñ Ùá¹»ÉÝ»ñÇ
ÑÇÙ³Ý íñ³ Ï³éáõóí³Í íÇñïáõ³É µ³ßËí³Í Ñ³Ù³Ï³ñ·»ñáõÙ ¹ÇÝ³ÙÇÏ ËÝ¹ÇñÝ»ñÇ
åÉ³Ý³íáñÙ³ÝÁ ¨ ï»ë³µ»ñÙ³ÝÁ:

Äèíàìè÷åñêîå ïëàíèðîâàíèå çàäà÷, îñíîâàííûõ íà ìîäåëÿõ
àáåëåâîé ïåñ÷àíîé êó÷è è ðîòîð-ðîóòåðà

Ã. Íàãàïåòÿí è Ñ. Ïîãîñÿàí

Àííîòàöèÿ

Èññëåäîâàíèå ïîñâÿùåíî âîçìîæíîìó èñïîëüçîâàíèþ ñàìîîðãàíèçóþùèõñÿ
êðèòè÷íûõ ìîäåëåé â øèðîêîìàñøòàáíûõ ñèñòåìàõ äëÿ áàëàíñèðîâêè íàãðóçêè
è ýíåðãîñáåðåæåíèÿ. Òàêæå ïðåäñòàâëåíû ìåòîäû è ïðîãðàììíûå ñðåäñòâà,
ïðåäíàçíà÷åííûå äëÿ ìîäåëèðîâàíèÿ è âèçóàëèçàöèè ïëàíèðîâàíèÿ äèíàìè÷åñ-
êèõ çàäà÷ â âèðòóàëüíûõ ðàñïðåäåëåííûõ ñèñòåìàõ, ïîñòðîåííûõ íà ìîäåëÿõ
ïåñ÷àíîé êó÷è è ðîòîð-ðîóòåðà.

	051
	Hayk'sabstract_1

