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Abstract

In most existing machine learning and deep learning settings, classification and re-
gression prediction problems may be described as a process where the model output is
based on a single-stage input. In most real-life scenarios achieving the desired medical
state for the patient may involve dynamically solving drug prescription problems based
on the input data at different stages, where each stage is a logical grouping such as
timestep division, ICU stay, etc. Data at a given stage represents a recovery progres-
sion and can be fundamentally different from the datasets from the previous and future
stages. Although A single model may solve the task, a multi-stage learning procedure
may be more suitable. To solve this task, we propose an FNN-driven ensemble-based
approach for predicting the medications that the patient should receive at each stage
of the recovery process. The final medical discharge location is predicted as a result
of sequential predictions of drugs and features. In this work, we combine model en-
sembling and multi-stage iterative learning for solving an optimal drug prescription
generation task as a contribution to the existing literature.
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1. Introduction

In this work, we propose a feedforward neural network-based iterative ensemble model archi-
tecture for solving the target class classification task for the medical domain, where the target
class is the Home Discharge E] The proposed approach involves Feature, Drug, and Output
prediction networks, which can be considered as an extension of decomposition-based (e.g.,
divide and conquer) and multi-objective optimization-based ensemble methods. Similar to
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some of decomposition methods, the original dataset is divided into a collection of datasets
for multiple sub-processing, and similar to multi-objective optimization, we output multi-
ple diverse predictors instead of a single predictor. Unlike decomposition methods, single
Drug and Feature networks are optimized on different datasets at different stages instead of
multiple predictors being optimized of the same type. This approach provides flexibility in
adding more stages to the model architecture. This also means that the same set of network
parameters is updated multiple times during a single forward pass. The alternative could
be to construct a different network for each of the input datasets for each stage, where the
downside would be that the number of networks that need to be optimized linearly would
increase with each additional stage in the model architecture. Training is divided into three
fixed stages (steps). For each stage s except the last one, we train two distinct FNN models:
the Drug prediction network and the Feature prediction network, which predict drugs and
features for the next stage s + 1, respectively. The feature and drug prediction training
inputs at stage s+ 1 are concatenated with the features and drugs at stage s. The rationale
behind this approach is that the drugs given to a patient at each stage depend not only
on the drugs at the previous stage but also on the patient’s features at the previous stage.
The same logic applies to the features, which depend not only on the past features but
also on the past medication. We believe this approach results in more diverse datasets and
better learning. Currently, the actual datasets for model training are available only at the
first stage, and the training datasets at each stage s are iteratively generated based on the
predicted features and drugs using only the observed data at the first stage as an initializa-
tion point. For the last stage, we train an Qutput model for learning the discharge location
classes. Overall, we use three models across all stages: Drug network, Feature Network, and
Output network. The main method can be considered a model-based approach with a strong
emphasis on data-driven stage-based logic, data components, and logical variations of which
were first described in [I] and [2] and further detailed in this work. The contributions can
be summarized in the following points:

e We provide an ensemble-based iterative classification/regression pipeline that includes
not just one but three different networks, each being optimized simultaneously in the
forward pass. In addition, each Feature and Drug network is used multiple times de-
pending on the number of stages. This is different from some of the existing approaches,
where a new network is initialized at each stage.

e Having patient features for time ¢, we predict treatment for ¢ + n periods, where n is
the number of stages (3 for this experiment).

e We train our models on synthetic datasets and give a detailed description of the stage-
based data preprocessing technique.

2. Related Work

Ensemble methods have been widely used in research fields such as computational intel-
ligence and machine learning. Ensemble methods can be categorized into conventional
ensemble methods such as bagging, boosting and random forest, decomposition, negative
correlation learning multi-objective optimization-based methods, fuzzy ensemble, multiple
kernel learning ensemble, and deep learning ensemble Diversity is important in ensemble
methods, and the three ways to create diversity are data diversity, parameter diversity,
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and structural diversity [3, [4, [5]. Data diversity creates multiple datasets from the input
dataset to train different models. The more diverse the datasets, the more diverse the model
learning. Parameter diversity uses different parameter sets for generating different base pre-
dictors, and even with the same training set, the output of the predictors may differ. In
structural diversity, ensemble predictors have different structures and architectures, and this
kind of ensemble is also known as a heterogeneous ensemble [3]. Besides data, parameter,
and structural diversity methods, there are other methods such as divide and conquer [6],
multi-objective optimization [7], and fuzzy ensemble. In multi-objective classification, the
training process yields a collection of optimal and diverse predictors instead of a single pre-
dictor [3]. Divide and conquer is mostly seen in time series forecasting, where the original
dataset is often divided into a collection of parallel or hierarchical datasets, forming sub-
tasks. Predictors are applied to each subtask, and then the outputs are aggregated. Datasets
usually have different characteristics, and predictors mainly differ from each other. In di-
vide and conquer methods, the original time series is decomposed into a collection of time
series from which the original series can be reconstructed [6]. The goal is to obtain smaller
and simpler time series, apply predictions to the decomposed time series, and aggregate the
predictions. Both seasonal decomposition and wavelet transform are decomposition-based
ensemble methods. While the first approach implies a prediction algorithm such as an SVR
being applied to each seasonally decomposed component, in the second approach, a predic-
tion algorithm is applied to the sub-series obtained by decomposing the original series into
orthonormal series by the time domain [6]. [§] presents a divide-and-conquer-based hierar-
chical optimization framework for ensemble classifier learning. The framework includes a
data training environment (DTE) creation that divides the data into multiple clusters and
then trains heterogeneous base classifiers, which are later combined for an optimal ensemble.
For optimizing multi-stage cascade classifiers, [9] proposes a deep model, which jointly opti-
mizes multiple classifiers through several stages of backpropagation. Cascade classifiers were
first proposed in [10] for solving a multi-stage recognition problem. Since then, cascading
classifiers have been successfully applied to tasks such as image recognition [I1], name entity
recognition in clinical notes [12], anomaly detection and localization [13], and so on.

There are a few examples of multi-stage classification used in the medical domain. [14]
solves a multi- stage classification problem for HER2 breast cancer by proposing a transfer
learning-based approach used on the BCI dataset. [15] proposes an effective feature ensemble
with multi-stage classification for breast cancer diagnosis, and the verification happens on
a publicly available mammogram image dataset collected from the TIRMA project. [16]
proposes an automatic system involving multi-stage classification for diagnosing congestive
heart failure using short-term heart rate variability analysis. For the experiments, open
databases from Physionet, Normal Sinus Rhythm Database (NSR2DB), and Congestive
Heart Failure Rhythm Database (CHF2DB) are used. [I7] uses a multi-stage approach for
performing arrhythmia recognition and classification. [I8] uses a machine learning-based
multi-stage classification method to classify Alzheimer’s disease more efficiently. [19] uses a
two-stage machine learning classification approach for heart disease prediction. [20] proposes
a two-stage multi-modal learning algorithm for multi-label skin disease classification. [21]
proposes a multi-stage approach to detect tumors, classify them into glioma or meningioma
and perform their segmentation. [22] uses a transformer-based model for automatic multi-
stage classification of diabetic retinopathy. [23] uses multi-stage superpixel classification for
classifying four lung diseases and healthy lungs using chest X-ray images.
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3. Data

For the experiments from the MIMIC-III clinical database, we use ADMISSIONS, D_Items,
PRESCRIPTIONS, datasets, and a subset of the CHARTFEVETS dataset, the latter contain-
ing 5 million rows from the whole dataset. We use the datasets listed above for generating
Features and Drugs datasets. The Features dataset includes admissions and a list of those
features for which the patient has had between 10 and 300 measurements throughout the
stay. Similar logic is applied to the Drugs dataset, where we select the admission for which
the patient was given more than 10 drugs. These two datasets are further filtered based on
the admission IDs that are present in both. This approach is performed for the DIABETIC
KETOACIDOSIS diagnosis.

3.1 Stage-Based Features and Drugs

As a result of data processing, where we generate the initial versions of the Features and
Drugs datasets, the results of which can be observed in Table [T we proceed to do extra
stage-based processing to obtain the datasets for each time-stage.

3.1.1 Step 1 Processing

From Features and Drugs, we filter those observations where the patient’s stay length was
between 6 and 8 days. We define three stages and generate one Features dataset, and one
Drugs dataset for each stage and one Qutput dataset only for the third stage. The first stage
is defined as the Initial stage, the second as the Intermediary stage, and the third stage
as the Final stage. The features are O2 saturation pulse oximetry, Heart Rate, Respiratory
Rate, Non-Invasive Blood Pressure mean, Non-Invasive Blood Pressure systolic, Non-Invasive
Blood Pressure diastolic, Temperature Fahrenheit, Arterial Blood Pressure systolic, Arterial
Blood Pressure diastolic, Arterial Blood Pressure mean. We define a stage to be a period
corresponding to 2 days spent at the hospital for the first two stages and between 2 and 4
days spent at the hospital for the final third stage. This means that the features observed
and drugs given for the first 2 days become the Features and Drugs datasets for the first
stage, the ones for the 3rd and 4th days the datasets for the second stage, and from the 5th
day up to the 6th or to the 8th day, depending on admission, the datasets for the third stage.
The rationale behind choosing these numbers for defining the stages is that we want each
stage to have at least 2 days’ worth of data. The final stage can have up to two days of more
data compared to previous stages to loosen the restriction for the total admission duration
to be precisely 6 days. However, a bigger difference in the number of days between stages
means more time series observations for some stages compared to others, and we keep it to
2 to avoid increasing the tradeoff further. The more the difference between observations,
the more value padding should be performed to make sure that the datasets have the same
shape.

At this point, we have 3-dimensional data, where the first dimension (batch) is the given
admission, the second dimension (rows) is the number of time steps for each of the given
stage, and the third dimension (columns) is the features or the drugs, depending on if the
dataset is the Features or the Drugs. The structure of the Features dataset can be seen in
Table 2
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Table 1. Initial preprocessing results.

Dataset Statistics

Features Dataset Drugs Dataset

Original
N Observations 2949897 4945985
Unique Admissions 3869 47031
Unique Diagnoses 1445 13880
After Filtering
N Observations 2948538 474213
Unique Admissions 3859 3859
Unique Diagnoses 1443 1443

Table 2. Features dataset for a single batch before averaging.

Features Dataset

Timestep Feature 1 Feature 2 -.- Feature 10
t value 1 value 1 value 1
to value 2 value 2 . value 2
to value 10 value 10 - -- value 10

3.1.2 Step 2 Processing

Processing of this stage allows us to obtain datasets that will be used as a basis of synthetic
data generation used for modeling and experimentation. The processing described in Section
has one limitation. Each patient will surely have a different number of drugs given and
a different number of charted feature measurements for each stage. As most deep learning
frameworks, including the one used in this work, assume that each batch input (admission
data) for the model has the same shape, this means that all the batches need to be padded
with a predefined value for the input data to have a certain shape of (i, j, k). After padding,
we remove the second dimension by averaging the time series instances over the rows, which
we believe makes the data for each stage more representative and less dependent on a single
time-stage observation, which in most cases would be an artificially padded value. For the
Drugs dataset, each drug is first encoded and is assigned a discrete numerical value, but as
there is no natural ordering between the drugs, we further do a dummy conversion, which
means each drug will be present for each patient in the form of either 0 or 1 (absent or
present) showing whether the given drug was part of the patient’s treatment procedure for
the given stage. At this stage, we also generate an Qutput dataset, which again holds values
of 0 or 1, which are later used for the binary classification task. To summarize, we end up
with three datasets. In stages 1, 2, and 3, we get Features, Drugs, and Qutput datasets with
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the following shapes (n, 10), (n,902), and (n, 1), respectively, where n is the number of rows
or unique admissions. Note that the Output dataset is only present for the 3rd stage.

stage: 1 (initial) stage: 2 stage: 3 (final)

'"‘\ /- N N\
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Fig. 1. Multi-stage classification pipeline.

4.  Methodology

4.1 Synthetic Data Generation

Due to the particular data processing logic, the Drugs and Features datasets that we obtained
for DIABETIC KETOACIDOSIS have only 16 observations, a shape of (16,902). To be
able to train a machine learning model, we augment our datasets using a synthetic data
generation technique using the Synthetic Data Vault (SDV) package [24]. We use a TVAE
model, a VAE-based deep learning data synthesizer [25]. We augment each dataset to a
size of 5000 observations; however, not all the observations are eventually used for model
fitting. The average synthesized Features dataset similarity to the original Features dataset
across three stages is 64%, while the synthesized Drugs dataset similarity to the original
Drugs dataset across three stages is 98%. Output is generated as part of the Features for
the third stage. As you can see, the similarity is very high for the Drugs dataset, which
is understandable as the data is in a binary format compared to the continuous Features
dataset. There is still, however, a significant class imbalance in the augmented datasets. For
demonstration, there are only 184 instances where the final discharge outcome was positive
(labeled as 1), while for the rest of the observations, the labeling is 0. The model training
suffers from such imbalance, and the training results are poor. To overcome this problem,
from dataset instances that have discharge outcomes of 0, we filter the first 184 instances
and concatenate them to the other 184 instances that have positive discharge outcomes, and
we obtain perfectly balanced datasets. This is performed for both Drugs and Features for
each timestep. One may observe that the augmented datasets are significantly reduced, but
we do this action willingly to make sure that the model results are attributable to the model
itself and do not suffer from poor data. We still do acknowledge that results from synthetic
datasets may not be fully representative of the original datasets.

4.2  Networks and Evaluation

To solve the problem of multi-stage classification, we construct an Ensemble pipeline com-
prising three networks; Feature prediction network, Drug prediction network, and OQutput
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prediction network. Each network is a Feedforward Neural Network (FNN) model. The first
network predicts patient features at the next stage, while the second network predicts patient
drugs at the next stage. Each network takes a concatenated matrix of features and drugs
from the previous stage as an input, then predicts features, drugs, or output depending on
the network. Since learning is divided into multiple stages, which represent logical group-
ings, such as recovery periods in terms of time, using this approach allows obtaining feature
and drug predictions solely based on the features and drugs of the previous step, allowing
for more targeted learning. The Feature network essentially performs linear regression fit-
ting over the stages, while Drug and Output networks perform logistic regression fitting,
predicting probabilities as a result of sigmoid activation. Although we deal with 3 stages,
this process may iteratively continue for i stages until the last stage, where the features and
drugs at stage n — 1 are combined and trained in the Output network to predict the output.
The pipeline can be seen in Fig. 1. The parameters can be observed in Table [3]

Table 3. Pipeline parameters.

Parameters Values
Folds 5
Optimizer Adamax
Loss Function MSE Loss
Epochs 50
Batch Size 100

Learning Rate 0.01

We train the full pipeline using 5-fold cross-validation with shuffled observations, however,
shuffled observation IDs are still the same across stages to make sure that patient’s result
is trained against the results from other stages. Such validation means that 80% of the
observations are held for training, while the remaining 20% is for validation, and this is
performed 5 times. The parameters of the main network are reset for each fold. For all
three networks, we use an MSE loss function, which provides the best learning results. In
a single forward pass, which for each stage s predicts outputs for stage s + 1, including the
final stage, we use an Adamax optimizer that simultaneously optimizes the parameters of
the networks for all three stages. We evaluate learning using recall and F'I-scores on drug
prediction in Stages 2 and 3 and on output in Stage 3. The results are presented as averages
of folds for drugs and output, and each fold average is an average of batches.

Table 4. Multi-stage evaluation results on test folds for a given run.

Drug Prediction Output Prediction

Results Results

Metrics Stage 2 Stage 3 Output

Recall 99.09%  99.98% 99.41%
(fold average)

Flscore  —gg e 94.55% 66.37%

(fold average)
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5. Results

Model training results can be seen in Fig. 2. We see drastically decreasing loss when
predicting drugs and more oscillating loss when predicting the output. T7-T72 means we
predict timestep 2 drugs using timestep 1 input data, and T'2-T3 means we predict timestep
3 drugs using timestep 2 input data. The test evaluation results can be seen in Table[d The
model can predict drugs across stages with significantly high accuracy. There is room for
improvement in output network prediction. The results validate the model training results
shown in Fig. 2, where the learning of the output network is not very smooth. It should be
noted that evaluation results may change depending on the run as a result of cross-validation;
however, the results should be close across the runs.

DIABETIC KETOACIDOSIS

T1-T2 Drugs T2-T3 Drugs Output
0.40
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Fig. 2. Training results.

6. Limitations

We identify one main limitation of the paper. Stage-based and generated synthetic datasets
do not allow us to benchmark our approach and results with existing similar studies. Al-
though we provide evaluation results for these datasets, verifying the validity of the approach
with existing studies could add significant value to the work. Providing benchmark datasets
with the logic described in the paper can be part of future work.

7. Conclusion

In this work, we proposed an FNN-based pipeline that combines ensemble learning and
iterative classification for modeling a multi-stage drug prescription procedure. The goal of
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the approach was to make treatment assignments a dynamic rather than a one-stage static
process by utilizing multiple predictor networks. Preprocessed and synthetic datasets for
each stage are also provided. In addition, we also evaluated the performance of the whole
approach based on how well the pipeline predicted drugs and the output on the testing
folds. Although the results are promising, we acknowledge that the evaluations are based on
synthetically derived datasets, which may affect the findings.

As part of future work, we can try to achieve class balance for bigger datasets, provide
dataset benchmarks, improve the output prediction network, and come up with other logical
groupings of a stage besides time. We also acknowledge that treatment predictions may
become credible only after proper medical testing and validation.
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AnHoTanuys

B OoapmimHcTBeE Pe€aABHBIX CIieHapueB AOCTHMXXEeHHE >KeAdeMOr'o MepAUuIIMHCKOI'O
COCTOSAHMA IIallMeHTa MOJXET BKAIOYAThH AMHAMHWYECKOEe pelleHrne 3aAd49 Ha3HAa4YeHUsI
AC€KApPCTB HaA OCHOBE€ BXOAHBIX AAQHHBIX HaA PA3HBIX 3JTadlldX, TAe Ka}KABIfI oTaIll
IIpeACTaBASIET coboit AOTUYECKYIO I'DYIIIIMPOBKY, TAKYIO KdK pa3peAneHre BpeMEeHHBIX
I1aros, Hpe6BIBaHI/Ie B OTAEAEHUU MHTEeHCUBHOU Tepallu U T. A. AaHHLIe Ha AdHHOM
gTalle IIPEeACTABASIOT cobou IIporpecc BOCCTAaHOBA€HUA W MOI'YT IIPDHUHIOUIIMAABHO
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OTAMYATBCI OT HAOOPOB AQHHBIX C MPEABIAYIINX U OYyAYIIUX OTaIlOB. XoTs
OAHY MOAEAb MOJKeT PEeUIuTh 3aAadyy, MHOI'O3TAIlHAs MHpOoIlepAypa OOYUYeHUS MOJKET
0OKas3aThbCsd OoAee TOAXOASIIEH. AN pellleHHWd 3TOU 3apAauy MBI [IpeAAATaeM
ocHOBaHHEIM Ha FNN aHcaMOAeBBIM TOAXOA AAS IIPOTHO3MPOBAHUA AEKapCTB,
KOTOpBIE IaIeHT AOAKEH ITOAYYaTh Ha Ka’KAOM 3Talle Mpollecca BBI3AOPOBAEHUA.
OKOHUYaTEeABHOE MEeCTO MEAWIIMHCKOW BBIMMCKM IIPOTHO3UPYETCI B PpPe3yAbTaTe
IMOCAEAOBATEABHOTO MPOTHO3UPOBAHMS MpelapaToB U ocobeHHOCTeM. B aToit paboTe
MBI OOBEAVMHSEM aHCAaMOAb MOAEAEM ¥ MHOTO3TAIlHOE MTepaTUBHOE OOydYeHUe ANI
pelieHns 3apAauu CO3AaHUS ONTUMAABHOTO peljelTa Ha AeKapCTBa B KaueCTBe BKAAAQ
B CYILIECTBYIOIIYIO AUTEPATYPY.

KaroueBele cAoBa: MHoOrosTamHasi KAaCcCUPUKAIWSA, OINTAMM3AIINS A€UYEeHUS,
aHCAaMOAB MOAEAEN, MAllIMHHOEe OOy4YeHue.
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