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Abstract

Let G be a graph on n vertices and minimum degree § with degree sequence § =
di <ds < ... <d,. The minimum degree sum of two nonadjacent vertices in G is
denoted by o2. Let ¢ be the circumference - the order (the number of vertices) of a
longest cycle, and p be the order of a longest path in G. In 1952, Dirac proved: (1)
if G is a 2-connected graph, then ¢ > min{n,2d;}; (2) every graph with d; > % is
hamiltonian. Recently, these results were improved by Nikoghosyan in terms of degree
sequences: (3) if G is a 2-connected graph, then ¢ > min{n, ds+ds;+1}; (4) every graph
with ds + ds11 > n is hamiltonian. In this paper we present the dominating cycle
versions of these theorems: (i) if G is a 2-connected graph, then either ¢ > ds + d,
or ¢ > p—1 (that is G has a dominating cycle); (ii) every 2-connected graph with
ds + ds+1 > p — 1 has a dominating cycle. The results are sharp.
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1. Introduction

We consider only finite undirected graphs with neither loops nor multiple edges. A good
reference for any undefined terms is [1].

The set of vertices of a graph G is denoted by V(G), and the set of edges by E(G).
Let n be the order (the number of vertices) of G, ¢ the order of a longest cycle (called
circumference) in G and p the order of a longest path. The minimum degree sum of two
nonadjacent vertices in G is denoted by o,. In particular, the minimum degree in G is
denoted by 6. Let di,ds, ..., d, be the degree sequence in G with § = d; < dy < ... < d,.
We use N(v) to denote the set of all neighbors of a vertex v and d(v) = |N(v)| to denote
the degree of vertex v. A graph G is hamiltonian if G' contains a Hamilton cycle, that is a
simple spanning cycle. A cycle C' of GG is called a dominating cycle if every edge of G has at
least one of its end vertices on C, or, equivalently, if G — V(C) contains no edges.

We write a cycle (Q with a given orientation by 5 For z,y € V(Q), we denote by
xay the subpath of @ in the chosen direction from = to y. For z € V(Q), we denote the
successor and the predecessor of x on 5 (if such vertices exist) by T and x~, respectively.
For U C V(Q), we denote Ut = {ut|u € U} and U~ = {u"|u € U}. We say that the vertex
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36 Degree Sequences and Dominating Cycles in 2-Connected Graphs

z1 precedes the vertex zo on a path 5 if 21, 2o occur on 5 in this order and indicate this
relationship by 21 < z5. We will write z; < 29 when either z; = 25 or 21 < 25.

Let P = V105...0, be a longest path in G. Clearly, N(v;) U N(v,) C V(P). A vine of
length m on P is a set

of internally-disjoint paths such that

(a) V(L)NV(P) ={w;,z} (i=1,..,m),
(b) v =wy R wy < 21 Twz < 2 RWy <. R Wy < Zye1 < 2y = U, o0 P

—_—
The following result guarantees the existence of at least one vine on P in a 2-connected
graph.

The Vine Lemma [2]. If G is a 2-connected graph and P a path in G, then there is at
least one vine on P.

In 1952, Dirac [2] obtained the first lower bound for the circumference for 2-connected
graphs and the first sufficient condition for Hamilton cycles in terms of minimum degree ¢.

Theorem A [2]. If G is a 2-connected graph, then ¢ > min{n, 2§} = min{n, 2d;}.

Theorem B [2]. Every graph with § = d; > % is hamiltonian.

Theorems A and B were improved in [3] in terms of degree sequences.
Theorem C [3]. If G is a 2-connected graph, then ¢ > min{n,ds + ds;1}.
Theorem D [3]|. Every graph with ds + ds41 > n is hamiltonian.

In this paper we present the dominating versions of Theorems C and D.

Proposition 1 [4]. Let G be a connected graph with ¢ > p — 1. Then every longest cycle in
G 1s a dominating cycle.

Theorem 1. If G is a 2-connected graph, then ¢ > min{p — 1,ds + d,, }.

The next result follows from Theorem 1 immediately as a sufficient condition for the
existence of a dominating cycle.

Theorem 2. If G is a 2-connected graph with ds +d,, > p—1, then ¢ > p — 1.

If G = K541 + Ks, then ds = 6, dos = dyy = 20 = 09 and ¢ = 20 = 0o = p — 1. This
graph example shows that the conclusion "either ¢ > ds + d,, or ¢ > p — 17 in Theorem 3
cannot be replaced by "either ¢ > ds 4+ d,, or ¢ > p”. Next, let G = 0Ky + Ks_1. Then
ds = dos = dy, = 0, dosi1 = dpy11 = 30 — 2 and ¢ = 30 — 3 = p — 2. This graph example
shows that the conclusion ”either ¢ > ds+d,, or ¢ > p—1" in Theorem 1 cannot be replaced
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by "either ¢ > ds 4+ dy,+1 or ¢ > p — 17. Thus, Theorem 1 is best possible.

2. Proofs
Proof of Theorem 1. Let P = U1vs...1, be a longest path in G. Clearly,
N(v1) UN(v,) CV(P).
Assume that
(al) P is chosen so that d(v;) is maximum.

a2) P is chosen so that d(v,) is maximum subject to (al).
p

—
Let x1, xo, ..., z; be the elements of N(v;) occurring on P in a consecutive order, where

t =d(v1) > 0. Next, let y1, ya, ..., yr be the elements of N(v,) occurring on P in a consecutive
order. If either x, = v, or y; = vy, then we can form a path longer than P, a contradiction.
Hence, z; # v, and y; # v;. Observe that for each i € {1,2,...,t},

«— —
z; Pvix; Pv,
is a longest path in G, implying that

N@D)CV(P) (i=1,2,..,1).

By a symmetric argument,

Case 1. z; < yy.
Let .

be a vine of minimal length m on P. Since Pisa longest path in G, we have Ly, Ly € E(G).
Next, since m is minimal, we have x; < 29, 2+ < w3 and wy,—1 < Yf, Zm—2 < yr. Choose
27 € V(P) such that wy < 27 and |V(w2?zf)| is minimal. Analogously, choose w}, € V(P)
such that w}, < z,,_1 and |V(wjn?zm_1)| is minimal. Put
m—1
H=PU |J L U{viz], vpwp, }.

=2

By deleting the following paths
— — —
wi Pziy (1=3,4,...m—1), wy Pz}, w; Pzn

from H (except for their endvertices), we obtain a cycle C' with at least d(vy) + d(v,) + 1
vertices. Since the vertices 1,25, ...,z , ¥, v, ..., y]‘f are pairwise distinct, we have

d(v1) = max{d(wy), d(z;), .., d(xy), d(y), d(y5 ), ., d(yy)}
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> max{di,dy,...,di s} = diry = daw)rd(v,) = Aoy,
d(?}p) = max{d(yf), d(y;_)7 SR d(y}_)} = maX{d17 d27 ) df} = df = dd(vp) > d67

implying that
c>d(vn)+dv,) +1>ds+ doy,.

Case 2. y; < ;.
Case 2.1. N(v1) N Nt (v,) # 0.
Let v € N(v;) N NT(v,), that is v;v,v,v~ € E(G). Since

— —
viv Po,u~ Puy
is a cycle of order p, and G is connected, either p < |V(G)|, and we can form a path longer
than P (a contradiction) or p = |V(G)], implying that ¢ = p.
Case 2.2. N(v1) N N*(v,) = 0.

Case 2.2.1. N~ (v1) N N*(uv,) # 0.
Let v € N~ (v1) N N*(vp), that is z = z; =y for some i € {1,...,t} and j € {1,..., f}.
Clearly,
— o
vzt Puy,z™ Puy

is a cycle of order p — 1, that isc¢ > p — 1.

Case 2.2.2. N~ (v;) N NT(v,) = 0.
Since y5 < x;, we can choose two integers 1 < a <t and 1 < b < f such that y, < z,,
[N
and |V (y, P x,)| is minimum. Put

— —
C = vz, Popy, Py,

Clearly,
(N(v1) UNT(vp)) =y S V(O).

Hence,
¢ [V(O)| = |(N(v1) UNT(vp)) — | + {v1}]

= [N (ui)| + INT(v,)] = [N (v1)] + [N (vp)| = d(v1) + d(vp).
By the hypothesis, the following vertices
$1_’$2_’ “‘7‘1.t_7y;_7y;_7 “‘73/}_

are pairwise distinct. By (al) and (a2),

d(v) = max{d(zy ), d(xy), ..., d(z; ), d(y) ), d(y3 ), ... d(yf)}
> maX{dla d27 ) dt+f} = dt+f = dd(v1)+d(vp) > d(727
d(vy) = max{d(y{),d(yy ), ...d(yf )}
> max{dy,dy,...,ds} = dj = da(v,) = ds,

implying that
c>d(v) +d(vy) > ds + do,. =
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UunhtwlwjhG hwonpnuuwlnpnGabp L pndhGwlwm ghyitin
2-juuuigquo qpudbtinnid

U. Lnyupqyub
Udthnthnid

Qhgmp G-G n ququpwlh qpud k 6 GJuqugny)G wunhdwlind L 6 =d; < dy < < d,
wunhdwlwjhG hwonpnuwlnipyudp: UdkGwbpywp ghyth tpyupnpynilp GQwbGwlynmd
L cny, huy wikGwbtpyup pnpwjh tpyupnipymln (Qququpltph pwGwyp) p-ny: 1952-hG
Shpwlyl wywgnighg. (1) tph G-G 2-juuyuygqud qpud b, wyw ¢ > min{n,2d;}, (2)
Juiwjuwliwl gpuwd, npp pwjwpwpmd £ dy > F wuydwlhG, hwdhpuonlyub b dbpotpu
wju wpyniGpGhpp jwjugytighG wumhdwlwjhG hwonppuywlnipjniGltph tqyny” (3)
Juiwjwyuwa 2-juuyuygqud gpubmd ¢ > min{n, ds + dsi 1}, (4) ds + ds1 > n wuydwGhG
pujwpwpnn judwjwywl qpud hwihjunbGyub t (Zh.G. Nikoghosyan, Degree Sequences
and Long Cycles in Graphs, ArXiv:1711.04134): ‘Lbpjw wpuwwmwlpnyd ptpynmd GG 3) L
(4) ptinptdGtph wmwpptipwyGbpp gqnipGwlumn ghYtiph hwdwp: Unwgduwo wpnyniGpGtpp
(wywgGith stG:
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CrenieHHBIE TOCAEAOBATEABHOCTH U AOMUHAHTHEIE IJUKAERI
B 2-CBSI3HBIX Ipadax

M. Kynraksgan

AnHoTanuys

[Tycts G sABAgETCS n BepIIMHHBIM I'paoM ¢ MUHUMAABHOM CTeleHbIo 0 U
CTEeIIeHHOM ITOCAEAOBATEABHOCTBEIO 0 = di < dy < < d,. AAMHaA AAMHHEMIIIEero
IIMKAa OOO3HayaeTCsl 4epe3 ¢, a AAMHA AAMHHEWIeW Ienu (YUCAO e€ BeplIuH) -
yepe3 p. B 1952 ropy Aupak pokazan: (1) ecam G siBAsseTcs 2-CBSI3HBIM rpadoM,
TO ¢ > min{n,2d,}; (2) ecAu rpad yAOBAETBOPSIET YCAOBUIO d; > , TO OH SIBASETCS
raMUABTOHOBBIM. HepaBHO 3TH pe3yAbTAThl OBIAM YAYUIIIEHBI B TEPMMHAX CTEIeHHBIX
oCAepOBaTeAbHOCTeH: (3) ecan G IBASeTCsl 2-CBSI3HBIM Trpadom, To ¢ > min{n,ds +
dsi1}: (4) ecam rpad YAOBAETBOpSIET YCAOBUIO ds + dsi; > m, TO OH SIBASETCS
raMmuabTOHOBBEIM (Zh.G. Nikoghosyan, Degree Sequences and Long Cycles in Graphs,
ArXiv:1711.04134). B nHacrosuiel paboTe IIPEeACTaBASIOTCI Bepcum TeopeM (3) u (4)
AAST AOMUHAHTHBIX IIMKAOB. [ToAyueHHBIe pe3yAbTaThl HEYAYUIllaeMHbl.



