Mathematical Problems of Computer Science 59, 69-81, 2023.
doi: 10.51408/1963-0103

UDC 004.725, 004.852

Research of Model Increasing Reliability Intrusion
Detection Systems

Timur V. Jamgharyan

National Polytechnic University of Armenia, Yrevan, Armenia
e-mail: t.jamgharyan@yandex.ru

Abstract

The paper presents the results of the using, a recurrent neural network to detect
malicious software as part of the Snort intrusion detection system.The research was
conducted on datasets generated on the basis of athena, dyre, engrat, grum,
mimikatz, surtr malware exploiting vulnerability CVE-2022-20685 in the Snort
intrusion detection system. Processing of input traffic data was carried out before the
frag-3 and modbus preprocessors. The method of k nearest neighbors was used as a
mathematical apparatus. The simulation of the developed software at different
iterations.

All research results are presented in https://github.com/T-JN
Keywords: Machine learning, Dataset, Malware, Preprocessor, Metasploit, k nearest

neighbors method, Intrusion detection system.

Avrticle info: Received 8 January 2023; send to review 7 February 2023; accepted 7
March 2023.

1. Introduction

The intrusion detection systems (IDS) include many different software components designed to
detect various types of traffic with an embedded malicious component. Detection is carried out
according to a set of rules that are configured based on the threat model and security policies.
The security architecture of the Network Infrastructure (NI) is built taking into account possible
attacks according to various models: triad CIA (Confindentiality, Integrity, Availability, CIA),
Parker's hexad [1]. Network IDS, unlike host IDS, detect attacks directed at the network segment
and contain a set of complementary rules and security scripts that can neutralize an attack on the
network. Unlike host-based IDS, network-based IDS require more computing resources due to
the fact that a larger set of rules and detectors is activated during their operation [2]. When using
host IDS in the Infrastructure for a fleet of computing systems running Linux OS, can disable

69

https://github.com/T-JN

70 Research of Model Increasing Reliability Intrusion Detection Systems

the rules for Windows (or another OS), but hardly possible for a network IDS, since different
operating systems are used in the Infrastructure. Modern IDS are able to detect various types of
attacks at different levels of the OSI (Open System Interconnection, OSI) model: bad traffic,
system scanning, the use of known exploits to attack over various protocols, various backdoors,
various known malware [3]. A significant limitation of systems for analyzing network traffic and
the state of NI is the algorithmic and functional determinism inherent in them.

An important issue of Infrastructure security is the reliability of the processed data of the IDS
itself (data reliability — is, the property of the processed data not to have hidden errors [4]). The
processing of data streams in the IDS itself is determined by the functioning algorithms, data
presentation formats, and the formalization of signature classifiers. Protecting the IDS signature
database (both remote and local) is also one of the most important tasks. If the signatures
database has been attacked for availability, then when a new vulnerability appears, the IDS will
not receive the necessary signature and the Infrastructure perimeter will become vulnerable [5].
The development of M2M (Machine-to-Machine, M2M) and ML (Machine learning, ML)
technologies has increased the capabilities of both attack and defense tools. Various researchers
are conducting research on increasing (improving) various parameters of IDS with ML [6, 7, 8].
One of the parameters that improves when using ML modules as part of a standard IDS is its
variability. Unlike deterministic IDS, IDS with ML are capable of forming a multi-criteria
sample on the basis of which the detector operation scheme is formed within the given
constraints. But IDS with ML have certain limitations when integrating them into the NI
architecture. In particular, ML IDS are very sensitive to various implementations of «noise
attacks» («noise attack» is a variant of an availability attack in which a large number of random
and meaningless fragmented packets are sent to the attacked system, some of which contain
malware [9]). A dangerous consequence of a «noise attack» on a ML network IDS is that
attackers «attack» it for a long time with streams of datasets that cause false positives, «teach»
the ML IDS discriminator to be immune to this type of traffic (creating a cyclic chain of
operations: false positive--true negative--false negative--true positive, which overload both the
IDS itself and the SIEM system (Security information and event management, SIEM).

Various manufacturers combine IDS modules into different classes, which allows you to
quickly reconfigure the IDS itself for specific tasks. In particular, for Snort open source IDS,
there are many different types of preprocessors (frag-3, stream, performance monitor, SMTP,
POP, IMAP, SSH, DNS, DCE/RPC, SIP preprocessors, reputation preprocessor, modbus
preprocessor) each of which is functionally is responsible for handling the given protocol and/or
data type.
> IDS preprocessor is a software module that receives data from the network traffic decoding module

and outputs them to the input of intrusion detection modules.

As stated in the article «Attacks on Machine Learning Systems» [10], the most vulnerable
part of the ML IDS is the traditional IDS component (the deterministic part of the IDS). ML
systems, like any other, will be hacked using vulnerabilities in these traditional components. The
use of ML at the preprocessor level is due to the fact that when developing an IDS with ML, it is
not enough to create a functioning model that can detect a threat not described in a set of rules
(signatures) or generate new ones based on «known» signatures, but it is also necessary to
protect the IDS itself from probable infection with malware that can compromise the reliability
of the results issued by IDS.The choice of using a neural network at the preprocessor level is
also due to the fact that the IDS, which has a neural network in its component composition after
the preprocessor, is able to protect the NI, since malware not detected by standard datasets
(described in the signature/rule database) will be detected with varying probability neural
network. But with a «noise attack», the target is the IDS itself, which, when taken out of the
reliable functioning mode, will no longer detect malware. Undescribed at the preprocessor level,

T. Jamgharyan 71

malicious data embedded in IDS can be detected using performance preprocessors that evaluate
various kinds of statistics. But the problem is that, having determined the type of network IDS,
attackers can design an attack taking into account the work of preprocessors, and malware
embedded in the IDS itself will not go beyond the allowable statistical deviations. A lot of
research has been devoted to the task of applying machine learning as part of IDS, but only a
small part of them explores the use of machine learning at the preprocessor level. This limitation,
in particular, is due to the fact that the «response» of the neural network is probabilistic in nature
and it is necessary to introduce clear boundaries for the neural network itself. Otherwise, the
neural network will be an event generator, which will be classified as an attack by the IDS
detection modules. Thus, there is a recursion to the problem of stability and integrity of both the
IDS and the NI as a whole [11]. This research explores the potential of a recurrent neural
network (RNN) to detect malware at the preprocessor level. The choice in the research of RNN
from the entire set of neural networks is determined by the fact that RNN form a directed
sequence between elements, which allows processing a series of events in time (this
characteristic allows granular processing of fragmented datasets). The relevance of the work lies
in the ever-increasing role of IDS with ML in the NI security architecture and the increasing
security requirements of the IDS itself. The use of a neural network at the preprocessor level will
increase the reliability of malware detection results without affecting the main IDS signature
database, which will reduce the attack surface for the IDS itself. The novelty of the research lies
in the application of the k nearest neighbors (k Nearest Neighbors, kNN) method to detect
malware in IDS before preprocessors.
» The k nearest neighbors method is a metric algorithm for classifying objects.
Malicious software athena, dyre, engrat, grum, mimikatz, surtr obtained from publicly available
sources was used as calibration data [12--15]. The choice of the kNN method is determined by
the fact that it is necessary to minimize the value of the preprocessor error, and for this it is
necessary to carry out a preliminary grouping and classification of unknown input datasets in
normalized traffic.
» Traffic normalization - modification of packets of protocols of the transport, and network levels for
their subsequent processing by IDS detection modules.

2. Formulation and Description the Problem

It is necessary to detect a malicious dataset in normalized traffic.
The mathematical model construction was carried out on the basis of the formulas obtained in
the sources [16,17]. There are network traffic X inputs that contain malware fragments (1).

X™ = {(x1,y1) s o Ym) 3, ¢y
where,

X~ Network traffic datasets that do not contain malicious components,

V- Network traffic datasets containing malicious components,

m- number of the analyzed packet of the input dataset.

On the set of input traffic data sets, the distance function xp(y,y") is given. The greater the
value of the distance function, the less similar the entities are y, y', where y’- the minimum size
of a malware dataset that can be uniquely identified and classified with respect to y. For any
entity v in the data package, arrange the objects x; in ascending order (2).

p(v, xl;v) = p(v'xZ;v) S = p(v'xm:v)' (2)

72 Research of Model Increasing Reliability Intrusion Detection Systems

where x;.,, the set of network traffic data that is the i-th neighbor of the entity v. Similarly for the
i -th neighbor of the entity v in the dataset y;.,,. Using the formula (3 from the source [17], we
determine the malicious KNN components for the traffic arriving in the NI.

a(v) = arg maxZ[y(xi;v) = y| w(i,v), 3)
=1

where, w(i,v)- a given weight function that evaluates the degree of importance of the i-th
neighbor for the classification of the entity v. By changing the w(i,v) value, you can get
different versions of the k nearest neighbors method (4).
w(i,v) =[i < k). (4
When w(i,v) = [i = 1] malware is detected only in the given single value w. That is, the

RNN is only able to detect the malware datasets it was trained on. A graphical representation of
a RNN is shown in Fig. 1.

Input cell

Output cell

Recurrent cell

Entry node

Fig. 1. Recurrent neural network.

Attackers can load malware into the IDS itself not in a single package, but in fragments
(using the built-in frag-3 preprocessor as an internal attack tool), then the research task of
grouping and classifying malware fragments arises. Standard IDS do not cope with this task very
effectively, but ML IDS, in the presence of a training set, are able to solve this problem. The
disadvantage of ML IDS is that they can produce unreliable results if the preprocessor
responsible for a particular type of traffic/protocol is «damaged» as a result of a «noise attack».
A particular danger lies in the fact that any traffic entering the IDS preprocessors (both ML and
deterministic) is not checked for malicious components, since the task of the preprocessor is to
«reformat» traffic for processing by detectors.

3. Task Statement
It is necessary to develop and programmatically implement an algorithm and, based on it,

software that integrates a RNN capable of solving the problem of grouping and classification
with the IDS preprocessor.

T. Jamgharyan 73

. Boundary Conditions

1. The smallest fragment of the malware file (¢) that can be classified ¢ = 20byte (detection

was carried out using context-piecewise hashing (Context Triggered Piecewise Hashing,
CTPH), which is discussed in detail in [18].

. The delay in the processed module should not cause a «signal race». Traffic from the output
of the preprocessor module to the input of the detection modules must be sent synchronously.
As part of this condition, an additional restriction has been introduced - only UDP (User
Datagram Protocol, UDP) traffic is processed.

. The hardware must support the parallel computing mode.

The developed software connects the RNN to frag-3 and modbus preprocessors (frag- 3
preprocessor for defragmenting an IP packet, modbus - preprocessor for processing data from
a variety of devices operating in SCADA networks (Supervisory Control And Data
Acquisition, SCADA).Since the frag-3 preprocessor is designed to build packages, using a
trained RNN can neutralize the process of «assembling» malicious packages inside the IDS,
increasing the level of reliability of its functioning. On Fig.2 shows a diagram of the Snort
IDS with the proposed data processing software implemented on RNN.

Analyzed traffic
frag 3, stream

PreEProcessors

Decoders

J Fo----------- CTTTTTTTTTTTTTTTITIS Developed

/ software

Preprocessors

1
|
1
|
:
(frag3, stream, modbus, q_|_l

performance monifor, etc)

—

Detection modules

l

Qutput modules Detected Threat
Notification

Fig. 2. Snort IDS with developed data processing software.

74 Research of Model Increasing Reliability Intrusion Detection Systems

5. Description of the Module

The network traffic coming from the decoders is directed to the preprocessor processing module
(standard operation of the Snort IDS). The traffic that should processed by the frag - 3 and
modbus preprocessors is sent to the developed module based on the RNN. After processing
according to the developed algorithm, this traffic is again sent to the standard detection modules.
The task of the module is to carry out the primary «cut-off» of possible malware and protect the
IDS itself from being modified by malware.

The developed algorithm is shown in Fig. 3.

Input data _ i@ .
Distance .
from fg 3 ; S .
prepravesor calculatlonjl\ @ :
Inpur Dara N) . :
: \

3 T L
) C ;
Selection of ek objects, the Bufferlng duta 1o Da;;:::wwf“om
distances 1o which are minimal
(phase 2) —
\—\ f
% =0

k=1 (=

Getting the class of an object
(phase 3)

r |
i ‘ A ‘ ! Ps
P]]]
IR
T T
: | P l A ‘ P

Dretected malware
samples
Transmitring data fram
preprocessors module

Fig. 3. Developed algorithm.

Algorithm operation
The software that searches for fragmented malware receives network traffic datasets from
a decoder (Snort IDS a low-level interceptor) as input. Only traffic that must be processed by the
frag-3 and modbus preprocessors is subject to processing.
Step 1. Converting received datasets to «Data Frame». This conversion is necessary to speed up
the work of the RNN, since the traffic not processed by the developed module goes directly to

T. Jamgharyan 75

the preprocessor module and the processing delay should not exceed the boundary conditions
(boundary condition 2).

Step 2 phase 1. Calculation of the distance from the target object, which must be classified to
each of the sample objects (traffic). Computing a distance metric between likely malware
datasets. All calculations are performed in parallel mode (boundary condition 3),

» 2.1 k=0 calculation of the distance metric and detection of malicious datasets is not

performed, since the classification of malicious and non-malicious datasets is impossible,
» 2.2 k=1 the distance between malicious and non-malicious datasets is constant (k=const).
Only those malicious datasets that fall within the specified distance metric are detected,
» 2.3 k=m continuous detection mode.Upper limit: the value of m that the hardware can
handle,
» 2.4 k>m malicious datasets are not detected,
» 2.5 k<m malicious datasets are detected down to the minimum CTPH value. All calculations
were based on the scikit-learn ML library (using instances of the kNeighborsClassifier class).
Step 3 phase 2. Selection of k objects from the sample, the distances to which are minimal.

The RNN to fed only datasets, where corresponding to paragraphs 2.2, 2.3, 2.5. When a
number value with an undefined result NaN (Not-a-Number, NaN) appears in the handler, the
execution of the entire program is «stopped», which resets all values to zero (step 5).

Step 4 phase 3. Obtaining a class of sample objects based on the most frequently occurring k.
Setting the «weights» of the RNN. The weight setting is determined by the number of malware
hash values detected by the CTPH method. Increasing the value p(Ui,Xm;U) (increasing the

number of hits) for a certain type of dataset increases the «weight» of this dataset in the RNN.
The output is a class of malware datasets.
Step 5. Stop and reset all values when NaN values appear in the dataset.
Step 6. Buffering values one step before zeroing. The buffer always contains n-1 dataset values
(the n-dataset currently being processed).
Step 7. Detected malware datasets.
Step 8. Transfer of traffic to the input of the preprocessor module.

All class instances are implemented based on the StandardScaler library. The training
was carried out on the basis of the fit software library.

6. Description of the Experiment

In Windows Server 2016 Standard operating system environment installed the Hyper-V role
(Based on the Dell Power Edge T-330 server). A software-defined network (SDN) has been
deploy, in which Parrot OS is installed with the Metasploit framework and Ubuntu v20.04 OS in
which are installed: IDS Snort version 2.9.18, Clion development environment and developed
software. The introduction of traffic with malware that could lead to a denial of service for the
Snort IDS and an attack on the Infrastructure was carried out using the Metasploit framework
based on the Parrot OS pentest distribution kit. The malicious input was based on a pcap network
traffic dump file. The choice of version 2.9.18.1 of the Snort IDS is due to the fact that in this
version there is a vulnerability CVE-2022-20685 (CVE-2022-20685 Snort IDS vulnerability
leading to a denial of service, bypassing security restrictions and compromising the system[19])
when exploited, attackers can inject malware into the IDS itself and attack the Infrastructure.
With the correct operation of the developed software, the attack should be detected, which will
make it possible to further check the effectiveness of the software for possible and probable

76 Research of Model Increasing Reliability Intrusion Detection Systems

unknown attacks. Through this vulnerability, athena, dyre, engrat, grum, mimikatz, surtr
malware was introduced into the virtual Infrastructure. The Windows Server 2016 operating
system, which is the test.local domain controller, and the Windows 10 client machine were used
as the protected Infrastructure. To increase the reliability of the experiment results, all virtual
machines are connected to each other by a private virtual adapter and connected to different
VLAN (Virtual Local Area Network, VLAN, with vilan ID=100 and vlan 1D=101). Network
address translation (NAT) is configured between virtual networks 172.16.0.0/30 and
192.168.0.0/29.

The experiment was carried out in 2 stages.

Stage 1.

Injection of mimikatz malware through CVE-2022-20685 with kNN-based detection software
disabled. In the first case, the IDS did not detect the intrusion, and the mimikatz software
implemented through the Snort IDS in the «noise attack» mode compromised the domain
administrator's password and did not register the Snort network IDS in any way.

Stage 2.

Introduction of various types of malware (athena, dyre, engrat, grum, mimikatz, surtr) into
the Infrastructure through a vulnerability in the Snort network IDS. The mimikatz, surtr, engrat,
and grum malware were detected immediately, while the athena and dyre malware was detected
after the second iteration.

The scheme of the experiment is shown in Fig. 4.

Parrot OS
(Metasploit, CVE-2022-20685
network traffic dump)

Private virwal adapter
net 1(172.16.0.0/30)
vian ID 100

Protected Infrastructure
Windows Server 2016
____________ (Active Directory Domain Controller)

testfocal

Ubuntu 20.04
(Snort 2.9.18.1, IDE Clion
Developed software)

Private virtual adapter 5
net 2 (192.168.0.0./29) Windows 10
NAT

Software Defined Network

Windows Server 2016 (Hyper-V)

Fig. 4. Scheme of the experiment in SDN.

T. Jamgharyan 77

7. Results

Network traffic with malware embedded @ any datz @ dyre @ engrat @ grum athena @ surtr @ mimikatz @ Noclassiication

,’i'}" :..-
BF £
,_ 1".‘ i

f

Fig. 5. Visualization of datasets classified by the
kNN method of malware (l-iteration)

Network traffic with malware embedded @ any data @ dyre @ engrat @ grum

athena @ surtr @ mimikatz @ No classification

Vs w® .
0 '.:&‘:‘.'..
".'

’ :

“:w .1‘-6“...‘
o ;‘:}E’!

Fig. 6. Visualization of datasets classified by the
kNN method of malware (ll-iteration)

Network traffic with malware embedded @ 2ny datz @ dyre @ engrat @ grum @ athenz @ surtr @ mimikatz @ No classification

Fig. 7. Visualization of datasets classified by the
kNN method of malware (I11-iteration)

letwork traffic with malware embedded @ any data @ No classification @ engrat @ grum @ athena @ surtr @ mimikatz
L] d
L]
oo 7o} 9
L)
8 LN L .; ,
o .
] f .
E = (]
£%e . o™& =
=]
LR
- 1] %,
2 L}
I
2 ' ’-
% X
. .
S
Sigg
g

Fig. 8. Visualization of datasets classified by the
kNN method of malware (IV-iteration)

@1 Bk=20 Bk=50

|
|I’ “

mwllﬂlllmn

|| nlll

h U\ H!
it .‘Nn“m m

a

J"IMH'"llll\"l”"lllﬂ‘ “"lhnll‘“lﬂlm

30 50 7

Fig. 9. Visualization of datasets classified by
the KNN method of malware. k=1, 20, 50.

Bk=60 Bk=75 Bk=90

neural network -enable Recurrent neural network -disable

l
Hw)

*“\lllw | l,'

| | i:ﬁﬂﬂ'm.mﬂ

mlu

Fig. 10. Visualization of datasets classified
by the KNN method of malware. k=60, 75, 90.

78 Research of Model Increasing Reliability Intrusion Detection Systems

As part of the all research, was developed an IDS with ML. The results of the first model on a
real infrastructure are presented in Fig. 11,12. At this research stage, the sixth version of the
model has been developed and tested in SDN [20].

900

S

~ oo

==

S S
Lo W

2 2 o

=S 8 o

o
S
=]
@
=
=

g

NCIDENTS

0
500

w

73
=)
S

MBER
w
=
=

NUMBER OF INCIDENT:
W s
S S
IS}
[s]
=
=]
=]

NU
ra

=
=

200

=
1=}
=)

100 5 AL 95 73
e 78 65 /6556 yp5i-53-T56—Gd=5645 54 g T
0 —Eerh 3 0 = TE TN = <z i L

123456 7 8 910111213 14 15 16 17 18 19 20 21 22 23 24 123 456 7 8 9101112131415 16 17 18 19 20 21 22 23 24

OBSERVATION TIME OBSERVATION TIME

5556 6556 50—5 3135646 —i5mgg0n 54

network traffic, mbit/s number of incidents network traffic, mbit/s number of inddents

Fig. 11. Visualization of the work of the Snort IDS Fig. 12. Visualization of the work of the Snort IDS
in a 24-hour period without a module with ML. in a 24-hour period with a ML module.

Explanation of visualized results

The Fig. 5,6,7,8 present a visualization of the distribution of detected and classified
malicious datasets embedded in network traffic at different iterations. The first and second
iterations, the percentage of malware detection is about (7.6-8)%, the percentage of classification
is less than 3%. The third iteration, the improvement in the solution of the detection problem is
insignificant (7.9-8.02)%, but the solution of the classification problem becomes acceptable for
practical use (14-16)%. An increase in the number of iterations on the same dataset leads to
retraining of the RNN and an avalanche deterioration in the results of solving the problem of
malware classification (Fig. 8). The most effective detection occurs at speeds up to 50-60 Mbps.
The results of the work of the developed software integrated into the IDS Snort in various modes
shows on Fig. 9,10. As can be seen from Fig. 9, 10, the use of a RNN at the level before the
preprocessor increases the reliability of the data processed in the network IDS. An important
factor when using a RNN before the preprocessor is the need for training datasets to differ not
only quantitatively, but also variably.

Increase, in efficiency by (10-12)% managed to achieve only, the CTPH method.

8. Conclusion

The paper considers a software model for detecting malware using a RNN as part of the Snort
version 2.9.18.1 IDS. A pcap network traffic file with embedded malware was used as a dataset.
The training datasets for RNN are based on the source code of malware obtained from open
sources. The k nearest neighbors method was used as a mathematical apparatus for solving the
classification problem.
Based on the research, it can be concluded:

The use of the k nearest neighbors method at the preprocessor level is justified in the
presence of a large and unique training dataset.

T. Jamgharyan 79

The use of augmentation for training a, RNN included in the IDS before the preprocessor is
inappropriate, since solving the classification problem using the k nearest neighbors method
requires a data set with unique data that differ from each other in many criteria, which is difficult
to achieve using the augmentation method. The use of RNN as part of an IDS at the preprocessor
level is justified in the presence of a large computing resource (a special role is played by the
amount and type of RAM).

References

[1] G.Stoneburner, “Underlying Technical Models for Information Technology Security” ,
NIST Special Publication 800-33, 2001.

[2] R.Atefinia, M.Ahmadi, Performance Evaluation of Apache Spark Mlib Algorithms on
an Untrusion Detection Dataset. [Online].Available:https://arxiv.org/abs/2212.05269

[3] M. Bachi, A. Harti, J. Fabini and T. Zseby, Walling up Backdoors in Intrusion
Detection Systems. [Online].Available:https://arxiv.org/abs/1909.07866

[4] National standard of the Russian Federation, “Quality of official information”,
GOST R-51170-98, (2020)// 12, Moscow, Standardinform.

[5] B.E.Zolbayar et al, “Generating practical adversarial network traffic flows using
NIDSGAN”, [Online].Available:https://arxiv.org/abs/2203.06694
F. Zhong et al, “MalFox: Camouflaged adversarial malware example generation based
on Conv-GAN againist black—box detectors”,
[Online].Available:https://arxiv.org/abs/2011.01509

[6] Dominik Kus et al, “A false sense of security? Revisting the state of machine learning-
based industrial intrusion system”, [Online]. Available:https://arxiv.org/abs/2205.09199

[7] K.Jallad, M. Aljnidi and M.Desoki, «Big data analysis and distributed deep learning for
next-generation intrusion detection system optimization», (2022)//[Online].Available:
https://arxiv.org/abs/2209.13961

[8] A. Branitsky and I. Kotenko, «Analysis and classification of methods for detecting
network attacks», Proceedings of SPIIRAS, (2016) // issue 45, pp. 207-244.

[9] Electronic resource dedicated to digital transformation technologies.
[Online].Available:https://www.osp.ru/os/2020/03/13055601

[10] T.V.Jamgharyan and V.H.Ispiryan, “Network infrastructures assessment stability”

Proceedings of 13" International Conference on Computer Science and Information
Technologies (CSIT), Yerevan, Armenia, pp. 199-203, 2021.
[11] Malware Bazaar Database. [Online]. Available:https://bazaar.abuse.ch/browse/

[12] Malware database. [Online]. Available:http://vxvault.net/ViriList.php

[13] Malware repository. [Online]. Available:https://avcaesar.malware.lu/

[14] Viruses repository. [Online]. Available:https://virusshare.com/

[15] G.Campos, A.Zimek, et al, «On the evaluation of unsupervised outlier detection:
measures,datasets, and an empirical studys.
[Online].Available:https://link.springer.com/article/10.1007/s10618-015-0444-8

[16] Professional information and analytical resource dedicated to machine learning, pattern

recognition and data mining. [Online].Available: http://www. machinelearning.ru

https://arxiv.org/abs/2212.05269
https://arxiv.org/abs/1909.07866
https://arxiv.org/abs/2203.06694
https://arxiv.org/abs/2011.01509
https://arxiv.org/abs/2205.09199
https://arxiv.org/abs/2209.13961
https://www.osp.ru/os/2020/03/13055601
https://bazaar.abuse.ch/browse/
http://vxvault.net/ViriList.php
https://avcaesar.malware.lu/
https://virusshare.com/
https://link.springer.com/article/10.1007/s10618-015-0444-8

80 Research of Model Increasing Reliability Intrusion Detection Systems

[17] T.Jamgharyan, “Research of obfuscated malware with a capsule neural network”,
Mathematical Problems of Computer Science, vol. 58, 67-83, 2022.

[18] Website for identifying, defining and cataloging publicly disclosed cybersecurity
vulnerabilities.

[Online].Available:https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-

20685

[19] T.Jamgharyan, ‘“Modernization of intrusion detection system via the generative
model”, «Haikakan Banak» («Armenian Army») Defense-Academic journal, National
Defense Research University, Ministry of Defense, Republic of Armenia, no. 2,
pp.75-79, 2021.
[Online].Available:https://razmavaraget.files.wordpress.com/2022/01/hb2-final.pdf

Ukpjunidmudubph huyunbtwpkpdwt hundwjupgh
huJuunhnipjut pupdpugdwt Unnbih
htwnwgnunmd

Fhunip 9. Quuunupju

Zuyuunwih wqquyhtt ynjhnbjuthjuijwt hwdwjuwpw, Bphwb, Zujwunut
e-mail: t.jamgharyan@yandex.ru

Udthnthnid

znnjudnmid ubipjuyugus L Snort 2.9.18.1 ukpunidnidubph hwynbwpbkpdw
hudwlwnpgh juqunud ntljniptun tkjpntwghtt gmugh jhpundwt hEnmwgnunnipjut
wpyniupbpp: Zbnwgnunipmniut hpwlwbwgylk] Lo athena, dyre, engrat, grum,
mimikatz, surtr Juwuwptp spwgpuyhtt wmywhnydwt Ejuljtnnughtt Ynnh hhdwt Jpu
Jupnigumé njujitph hwjwpwéniubpny: Twhwgnpéyty £ CVE-2022-20685 Snort
ubpjunidnidutiph hwynbwpbpdwt hwdwljupgnid jungbjhnipniup: Uninpuyghtt
ppwdhyh dowlnudp hpwwiwgyt]; E dhty frag-3 b modbus wptuwpngtunpubpp:
Nputu Jwpbdwnhjujut wywpuwn oguuugnpdyl) £ k dnnnwlju hwplwbubph
Ubkpnnp: Ppulwtwgyt] b Spugpujhtt wmywhnddwt hpugnpsdwt Unpbjwydnpnid
wnwppkp Yplunipniiutipnud b wpyniupubph wpnwugninud: ZonJusmd sukpundws
htwnwgnunipjut wpyniuputipp hwuwubh B https://github.com/T-JN Juypnid:
Pwbwh punkp diphbwjulul mumgnud, wdjuyibph hwjupwsnt, Yuwuwpkp
dpwgpuyhtt wywhnynud, k uUnwnwlw hwphwbtbph Jdbpnnp, ubkppunidnidubph
hwjntuwpbpdwt hwdwlwng, CVE-2022-2068:

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-20685
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-20685
https://razmavaraget.files.wordpress.com/2022/01/hb2-final.pdf
https://github.com/T-JN

T. Jamgharyan 81

HccaenoBanmne Moae 1M MOBBIIIEHUS JOCTOBEPHOCTH CHCTEMbI
00HapYy KeHUsI BTOPKeHU I

Tumyp B. [Ixxamrapss

HanwmonansHbli nonuTexHU4ecKuil yHuBepcuteT Apmenu, Epesan, ApMeHus
e-mail: t.jamgharyan@yandex.ru

AHHOTALINA

B craree mpexacTaBieHBl pE3yNbTATBl HCCIEAOBAHUS TPHUMEHEHHS PEKYpPEHTHOM
HEHPOHHOU ceTH ans OOHApYKEHHS BPEAOHOCHOTO IMPOTPAMMHOTO OOECIIEYEeHHUs] B COCTaBe
CHCTEeMBI OOHapy)KeHHsI BTOp)keHWi Snort. MccnemoBanme mpoBOIMIIOCh Ha Habopax IJaHHBIX
copMHPOBAHHBIX HA OCHOBE BPEJAOHOCHOTO IMporpaMMHOro obecrieuenus athena, dyre, engrat,
grum, mimikatz, surtr ¢ skcruiyaranueii B cucteMe OOHApY)KEHHs BTOpXKEHHIT SnoOrt Bepcumn
2.9.18.1 ys3Bumoctu CVE-2022-20685. OOpaboTKa JaHHBIX BXOJIHOTO TpaduKka OCYIIECTBIISIACH
00 npenpoyeccopos frag-3 u modbus. B kauecTBe MaTeMaTHUECKOTO armapara HCIIOJIb30BaJIC
Meron k Oaudcaiiwux cocedeu. llpoBeneHO MoAenupoBaHHE pabOThl MPOrPaMMHOIO
oOecrieyeHHs TIPU Pa3HBIX UTEPAIUAX U BU3YaJU3aIUs Pe3ylbTaToB. Pe3ynbTaThl HCCie0BaHUS
HE BHECEHHBIE B CTAThIO MPEICTaBIeHBI 10 aapecy https://github.com/T-JN

KiroueBbie cioBa: MmamuHHOe oOydeHue, BpemoHocHoe [1O, Meron Ommkalmmmx

cocejieit, cucremMa 0OHapy)XKeHHUsI BTOp KeHH, npenpoieccop, CVE-2022-2068.

https://github.com/T-JN

