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Abstract

The goal of speaker diarization is to identify and separate different speakers in a
multi-speaker audio recording. However, noise in the recording can interfere with the
accuracy of these systems. In this paper, we explore methods such as multi-condition
training, consistency regularization, and teacher-student techniques to improve the re-
silience of speaker embedding extractors to noise. We test the effectiveness of these
methods on speaker verification and speaker diarization tasks and demonstrate that
they lead to improved performance in the presence of noise and reverberation. To
test the speaker verification and diarization system under noisy and reverberant con-
ditions, we created augmented versions of the VoxCelebl cleaned test and Voxconverse
dev datasets by adding noise and echo with different SNR values. Our results show
that, on average, we can achieve a 19.1% relative improvement in speaker recognition
using the teacher-student method and a 17% relative improvement in speaker diariza-
tion using consistency regularization compared to a multi-condition trained baseline.
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1. Introduction and Related Work

Speaker recognition (SR) is a broad field of study that addresses two major tasks: speaker
identification and speaker verification. Speaker identification is the task of identifying a
person, whereas speaker verification is the task of determining whether the speaker is who
they claim to be. In this study, we focus on far-field, text-independent speaker recognition,
where the speaker’s identity is determined by the speaking style rather than the content of
the speech. Typically, such speaker recognition systems operate on unconstrained speech
utterances that are converted into a fixed-length vector known as speaker embedding. Many
speechO-processing tasks use speaker embedding such as speaker diarization (SD) [1, 2],
automatic speech recognition (ASR) [3], and speech synthesis [4, 5].
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In recent years, deep neural networks have actively been employed for speaker embedding
extractors since d-vector [6] was proposed. Subsequently, the x-vector [7] was widely used
because of the superior performance achieved by employing statistical pooling and time delay
neural network (TDNN). Other architectures such as ResNet-based convolutional neural net-
works and CNNs with cross-convolutional layers [8, 9] were employed for capturing the traits
of speech. In addition, to deal with variable-length inputs, Transformer [10], CNN-LSTM
[11] and a slew of variants of TDNN [12] were applied for DNN-based speaker embedding
extractors. Finally, to reduce the computational complexity and make the models smaller,
[13, 14] employed 1D depth-wise separable convolutions for the speaker recognition task.

Metric learning techniques have been successful in speaker recognition tasks. These
methods aim to create speaker embeddings with small distances between embeddings of
the same speaker and large distances between embeddings of different speakers since unsu-
pervised clustering will be applied to embeddings later in the speaker diarization pipeline.
The triplet loss was proposed in [15] which required a careful selection of a triplet because
the effectiveness of the performance depended on the contrast between negative and query
samples. The prototypical loss was proposed in [16], where many negative samples were
used and the Euclidean distance between the centroid of all negative samples and the query
embedding was maximized. In the generalized end-to-end loss [17], every utterance in the
mini-batch functions as a query as opposed to just one in the prototypical loss. The angular
prototypical (AP) loss [18] used only one utterance from each class as the query like the
prototypical loss, but with a cosine similarity-based metric.

The primary use case for speaker embeddings is speaker diarization. Speaker diarization
is the process of dividing an input audio stream into homogeneous segments according to
the speaker’s identity. A typical speaker diarization system usually consists of several steps:
(1) Speech segmentation, where the input audio is segmented into short sections that are
assumed to have a single speaker, and the non-speech sections are filtered out by Voice
Activity Detection (VAD), (2) Speaker embedding extractor, where speaker embeddings are
extracted from segmented sections, (3) Clustering, where the extracted audio embeddings
are grouped [1] into clusters based on the number of speakers present in the audio recording,
and optionally, (4) Resegmentation step is performed to further refine clustering results.

In real-world environment, noise causes significant degradations to the performance of
speaker diarization systems, and is, hence, a major problem requiring special attention.
The goal of noise-tolerant speaker diarization is to achieve improved performance in noisy
environments. A recent work [19] tackles this problem using the auto-encoder architecture
as a dimensionality reduction module. They extract two low-dimensional codes from speaker
embeddings, representing the speaker identity and irrelevant noise information, then remove
the noise factors. To our knowledge, there hasn’t been a lot of research done in this particular
area. ASR systems also suffer deterioration due to audio noise, and this has been the subject
of extensive research [20, 21, 22], some of which inspired us.

In this paper, we explore several approaches, borrowed from unsupervised domain adapta-
tion, to make the speaker recognition models noise tolerant. In particular, we apply teacher-
student and consistency regularization techniques on speaker recognition and diarization
tasks and compare them with multi-condition training when various noise augmentations
are used.

We were inspired by the significant results of this work for teacher-student [22], where
clean and noisy audios are fed to the teacher and the student, respectively, to enforce sim-
ilarity between the output distributions. Consistency regularization is a commonly-used
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technique amongst a variety of tasks in machine learning. This work [20] applies it in a
manner similar to that mentioned previously, only here clean and noisy inputs are both fed
to the student model. In the paragraphs that follow, we’ll discuss in detail how we apply
these concepts to obtain noise-robust speaker recognition and diarization.

2. Improving Noise Robustness of Speaker Diarization System

There are several ways to improve the performance of speaker diarization systems in noisy
and reverberant environments. For instance, work in [1] proposed the sequence of refinement
operations to smooth and denoise data in the similarity space. In this work, we will focus
only on the speaker embedding extraction part, and we are going to use unsupervised domain
adaptation techniques to make the model noise tolerant.

Given a training dataset consisting of pairs (z;, y;) where x; represents an audio signal and
y; represents the speaker id. Our goal is to learn a parametrized function fy, which should
be able to compress any given audio into a d-dimensional vector, also known as a speaker
embedding. Moreover, if two audio signals are spoken by the same speaker, then the cosine
similarity between their corresponding embeddings should be higher. Conversely, if the
two audios are spoken by different speakers, the cosine similarity between their embeddings
should be lower. The additive angular margin (AAM) loss, as proposed in [23], is a prevalent
method for training speaker embedding extractors. The aim of the AAM loss is to minimize
the angle between speaker embeddings belonging to the same speaker while simultaneously
maximizing the angle between speaker embeddings belonging to different speakers.

2.1 Consistency Regularization

The core idea behind consistency regularization (CR) is to make sure that the network
produces similar embeddings for the augmented versions of the same unlabeled utterance
20, 24, 25]. It is enforced by an additional regularization term in the loss function:

Lon = 3_ 1Al A) - fa( A

where fp is an embedding extractor with parameters 6, N represents the total number
of training examples within the dataset. By A(z) we denote a stochastic operation that
augments the audio in such a way that the speaker identity remains the same. So the
difference is most likely non-zero. The final form of loss is a weighted combination of L 445,
and Lcgr as shown below:

L= (1 — OJ)LAAM + OJLCR,

where « is a hyperparameter taking values between 0 and 1.

2.2 Teacher-Student

One critical problem with Log loss is that it is not stable because of unstable target. To
mitigate unstable target problem, the teacher-student model was proposed in [26], where
two separate models were used: a Student network with 6 parameters and a Teacher with
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0" parameters. On unlabeled examples, the Teacher network provides the learning target for
the Student network:

N
1 uden eacher
Lrg = N; | [ (Alz)) — forer (A()) |5

Student is trained as usual. Teacher model is not trained via back-propagation. Instead, its
weights are updated at each iteration using the weights from the Student network. Again,
the final loss is a weighted combination of £ 440 and Lpg as shown below:

L= (1 — Oz)LAAM + alLrg.

2.3 Knowledge Distillation

If the teacher model is already trained, it is desirable that its weights remain constant. This
training setup is known as "knowledge distillation”, where the Student model is trained to
mimic a pre-trained, larger model [27].

3. Experiments

3.1 Model Architecture

In all experiments, we will use the SpeakerNet [13] architecture as the backbone model.
SpeakerNet models are made up of 1D Depth-wise separable convolutional layers. On top
of the model, a statistical pooling layer is used to obtain a fixed-length vector. The pro-
posed variation of SpeakerNet (SpeakerNet-M) has fewer parameters (5M) when compared
to SOTA and shows very similar performance on VoxCelebl [28] trial files when compared
to SOTA systems. The model provides embeddings of size 256 for a given audio sample.

In teacher-student experiments, both the teacher and the student have the same archi-
tecture.

3.2 Datasets

The VoxCelebl [28] and VoxCeleb2 [29] datasets are widely recognized benchmarks in the
field of speaker recognition. These datasets have pre-defined development and test sets,
which allow for an objective and consistent evaluation of speaker recognition models. We
trained our speaker recognition models using only the development part, which consisted of
7205 distinct speakers.

For evaluation of speaker embeddings quality, we use VoxCelebl cleaned test trial file.
The test trial file contains a list of audio pairs, and the model’s performance is evaluated
based on its ability to correctly determine whether the two recordings belong to the same
speaker or not. To evaluate speaker diarization, we use the VoxConverse [30] development
set. The dataset statistics are shown in Table 1.

3.3 Metrics

The equal error rate (EER) metric is used to evaluate the speaker verification. This is the
rate used to determine the threshold value for a system when its false acceptance rate and
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Table 1: Statistics of datasets used for training SpeakerNet.

Dataset # Speakers Duration (k) # Utterances
VoxCelebl 1211 340.4 148642
VoxCeleb2 5994 2359.77 1,092,009

false rejection rate are equal. We calculate EER on VoxCelebl cleaned test trial file under
original, noisy and echo conditions.

For diarization evaluation purposes, we used diarization error rate (DER). This is the
sum of three error terms: false alarm (FA), missed detection (MS) and speaker confusion
error rate (CER). Similar to the previous works [12, 14], we use collar 0.25 sec and ignore
overlap speech regions for confusion error rate calculation. We test the diarization system
in original, noisy, and echo scenarios, just like we do for speaker verification.

Both EER and DER are calculated using the cosine similarity back-end.

3.4  Experiment Setup
3.4.1 Input Features

Our audio pre-processing procedure is identical to the one described in the SpeakerNet paper
[13]. For each frame window of 20 ms, shifted by 10 ms, 64-dimensional acoustic features
were calculated from the speech recordings. Each utterance fed to the encoder has a size
T x 64, where T' is the number of frames in a given audio sample. We crop speech segments
into random chunks from 3 to 8 seconds. With larger chunks, the model converges faster.

3.4.2 Clean Teacher

Our first baseline is a clean teacher trained on VoxCelebl and VoxCeleb2 datasets with
additive angular margin loss. We set the AAM loss hyperparameters to s = 30 and m = 0.2,
as it was shown in [13, 14], these values give the best results. To avoid overfitting, we added
SpecAugment [31] to the training pipeline, which randomly masks blocks of frequency and
time channels.

3.4.3 Noisy Teacher

Our second baseline is a noisy teacher trained with the same objective as a clean baseline,
and with the additional augmentation steps described below:

e No Augment: Leave the utterance unchanged

e RIR Augment: Reverberate an input audio using an impulse response from RIRS
dataset [32]

o Noise Augment: Add noise from MUSAN [33] dataset with signal-to-noise (SNR)
values randomly chosen from 0-50DB

e RIR-Noise Augment: Apply noise and echo perturbations to the same audio at the
same time
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o Speed Augment: Speed perturbation with 0.95x and 1.05x speeds

RIR, Noise, and RIR-Noise augmentations all have a probability of 0.25 and are mutually
exclusive. Speed augmentation is applied independently with a probability of 0.1.

3.4.4 Consistency Regularization

We add an extra mean squared loss between embeddings for the augmented and non-
augmented versions of the same utterance to the AAM loss during training.
We set the o hyperparameter in the final loss to 0.1.

3.4.5 Teacher-Student

In order to supervise the student model, we choose our Clean-Teacher baseline as the teacher.
We did not update teacher weights during the training and no perturbations were applied
to the input of the teacher model. The flow chart of teacher-student training is presented in
Fig. 1. During the training procedure, in addition to the AAM loss, the mean squared loss
between the student and teacher-produced embeddings is minimized.

We set the o hyperparameter in the final loss to 0.1.

MSE Loss

Student

=
J

Fig.1. Flow chart of teacher-student learning for improving noise robustness of SR.

3.4.6 Optimization

All models are trained for 200 epochs with an SGD optimizer, with an initial learning rate
(LR) of 0.08 using a cosine annealing LR scheduler on 4 A100 GPUs.

3.5  Evaluations
3.5.1 Speaker Verification

All the experiment findings are displayed in Table 2. The results of the original SpeakerNet
and the pre-trained checkpoint! publicly released by Nvidia are also provided for comparison.

1
https:
//catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/speakerverification_speakernet
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The pre-trained checkpoint was trained solely with noise augmentation using the above-
mentioned datasets. In order to examine the speaker verification system under noisy and
reverberant conditions, we created augmented versions of VoxCelebl clean test trials by
injecting noise and echo with different SNR, values.

Table 2: Comparison of different speaker verification models under noise and reverb conditions.
The results are reported in equal error rates. The more aggressively noise has been applied, the
lower the SNR values were. A noise level of 0 db indicates that the sound and the noise have the
same energy.

Model Orig 0db 5db 10db Rir
SpeakerNet [13] 2.14 - - - -

SpeakerNet (NVIDIA) 192 9.75 543 3.61 16.5
Clean Teacher 1.87 129 6.94 421 16.5
Noisy Teacher 26 935 584 423 1274
Consistency Reg. 1.76 8.05 4.40 3.13 12.26
Teacher-Student 1.73 9.16 479 3.26 9.18

Table 2 showcases the effectiveness of the methods applied. We can see that training
the SpeakerNet model with data augmentation (Noisy Teacher) improves the results in the
noisy /reverberant environment with a small deterioration of EER on the original (not per-
turbed) audios. The Teacher-Student method achieves the lowest EER scores in original and
reverberant cases (RIR), whereas the consistency regularization method shows the best re-
sults for noisy audios. Using the teacher-student method, we were able to improve the EER
by an average of 19.1% compared to the multi-condition trained model. With consistency
regularization, we were able to improve the EER by an average of 14.8% compared to the
multi-condition trained model.

3.5.2 Speaker Diarization

We employ our trained SpeakerNet models for speaker diarization task to see which model
has the smallest performance degradation in noisy conditions. We found that the optimal
sliding window size and shift for speech segmentation are 1.5 and 0.5 seconds, respectively. In
addition, diarization experiments are based on oracle VAD to evaluate the VAD-independent
performance. The affinity matrix A is constructed using the cosine similarity between seg-
ment embeddings. We further apply the following sequence of refinement operations to the
affinity matrix A:

e Row-wise Thresholding: For each row, keep top-12 largest elements and set the rest to
0

o Symmetrization: Y = 1(A+ AT)
o Diffusion: Y = AAT

We use the spectral clustering method [34] to obtain speaker labels. To get a full picture,
we present the diarization results for both known (oracle) and unknown numbers of speakers.
In the latter case, we utilize the maximal eigen-gap approach to determine the number of
speakers [1].
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Table 3: Comparison of speaker diarization systems with various speaker embedding extractors
under noise and reverberant conditions. The results are reported in diarization error rate (DER).

Model Known #Speakers Unknown #Speakers

0db 5db 10db Rir Orig Avg| 0db 5db 10db Rir Orig Avg
Clean Teacher 12.13 448 1.96 244 1.26 4.45 | 1544 759 274 448 1.78 6.40
Noisy Teacher 9.20 449 3.13 3.12 157 430 [13.09 794 418 414 195 6.26

Consistency Reg. | 9.50 346 20 250 145 3.78 | 1340 4.90 2.57 3.45 1.67 5.20
Teacher-Student | 9.84 3.41 211 243 136 383 | 1399 6.17 3.09 352 1.61 5.67

In order to assess the performance of the speaker diarization system under noisy and
reverberant conditions, we modified the Voxconverse dev dataset by adding noise and echo at
various signal-to-noise ratios. The results, shown in Table 3, indicate that the teacher-student
and consistency regularization methods generally outperform the multi-condition baseline
model for both scenarios involving known and unknown numbers of speakers. In particular,
when the number of speakers is unknown, we observed approximately 17% and 9.5% relative
performance improvements for the consistency regularization and teacher-student methods,
respectively, compared to the multi-condition baseline.

However, it is worth noting that in certain specific scenarios, the baseline models may
outperform the models with the overall best average performance.

4. Conclusions

In this research, we explore ways to increase the accuracy of speaker recognition and speaker
diarization in noisy and reverberant environments, such as multi-condition, teacher-student,
and consistency regularization. The key component of the methods used is the additional
regularization term between embeddings for augmented and non-augmented versions of the
same utterance. Through the use of teacher-student and consistency regularization, we were
able to improve the performance of SpeakerNet on speaker recognition and diarization tasks
in noisy and reverberant situations.
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SNR wpdtipGtpny $nGwjhl wninly L wpdwqubp: Uwnmwgywo wpnniGpGhpp gniyyg GG
nwhu, np hohG hw)yny Yunpbih £ hwult] unuGuyltnh GonyGuwwliwgdwb d2qpumpjul
hwpwptpwwl pwpbjuydwip’ 19,1%-ny" oquuwugnpdtiing nunighg-wywltpnm dkpnnp
L funuGuyGtph nhwphqughwh Gqpunipjul hwpwpbtpwlwl pwpbudwan’  17%-
ny' oquuuqgnpotiny Yuwynimpjul YJupquynpiwl dtpngp” hwdbdwnmwo  wnmwpptin
wniqutiimwghwltpny yupdhgywo vnntijh htin:

Pwluwh pwntp funuGuyGtph  GnyyGuwluwlugmd, funuGuyGbiph  nhwphqughw,
wnuijw-nhiwgynilnipnil, ntunighg-wpwytinm, Juninipjwl Jupguynpnid:
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OObecnieyeHne MIyMOYCTOMYUBOCTUA CUCTEMEI
AMApHU3aLUH AMKTOPOB
Aasup C. Kapamsu®?, T'purop A. Kupakocsu®?, Caten A. ApyTioHsH?

1PocCI/II7ICI<0-ApM;1H(:KI/H71 yHuBepcuretT, EpeBan, ApmeHusa
2Krisp.ai, EpeBan, ApmeHua
3I/IH(:TI/ITyT mareMatuku HAH PA, EpeBaH, ApMeHUus
e-mail:  dkaramyan, sharutyunyan, gkirakosyan@krisp.ai}

AnHoTanuys

Lleapto cuCTEMBI AUAPU3ALUUA AUKTOPOB SBASETCS MACHTUMUIIUPOBAHUE U
pa3peAeHUepasHbIX AMKTOPOB B aypauosanucu. OAHAKO IIyM B 3allUCH MOJKET
IIOBAMATBH HA TOYHOCTD 3TUX CUCTEM. B 3TOU cTaTbe MBI UCCAEAYEM TaKUE METOABI, KaK
oOy4yeHHe C PA3AWYHBIMU QyTMEHTAIUAMH, PEryAspu3alus COrAACOBAHHOCTH (COn-
sistency regularization) u MeTop "y4UTEeAb-YYEHUK', 4TOOBI IIOBBICUTH YCTOMYUBOCTH
SKCTPAKTOPOB pEYEeBBIX XapPaKTEPUCTUK K IyMy. Mel nipoBepseM 3(p(peKTUBHOCTH
35TUX METOAOB B 33Aa4aX PACIO3HABAHUS AMKTOPOB IO T'OAOCY U AWAPU3ALNUA
AUKTOPOB U A€MOHCTPUPYEM, YTO OHU IIPUBOAAT K YAYUIIEHUIO YCTOUYUBOCTHU IIPU
HAaAWYMU IIymMa KU peBepOepanuu. UYTOOBI NPOBEPUTH CUCTEMY PACHO3HABAHUA
U AVaApu3allud AUKTOPOB B YCAOBHUAX IIyMa U peBepOepanuy, Mbl CO3AAAU
pacmiupenHble Bepcuu VoxCelebl m HabopoB paaHHBIX Voxconverse dev, A0OaBUB
IIyM W 3XO C pa3HbIMH 3HadeHuAMH SNR. Hamm pesyabTaThl HNOKa3bIBAIOT, 4TO
B CpPeAHEeM MBI MOJKEM AOOUTBCS OTHOCUTEABHOI'O YAYYIIEHHS PACHO3HAaBAaHUSA
AMKTOPOB Ha 19, 1% ¢ ncnoab30BaHUEM METOARQ "YUUTEAb-YUYEHUK' U OTHOCUTEABHOTO
YAYUIIEeHUS AMapU3alliu AUKTOPOB Ha 17% C UCIIOAB30BaHUEM METOAA PEeTyAIpU3aIiuu
COTAQCOBAHHOCTU IIO CPABHEHUIO C 0OA30BOU MOAEABI), OOy4EeHHOU C IIOMOIIBIO
Pa3sAMYHBIX ayIMEeHTAlluu.

KaroueBEBIe CAOBa:pacIiO3HAaBAHUE 110 TOAOCY, AUAPU3aLUsI AUKTOPOB, YCTOUYNUBOCTD
K ILIYMY, YUYUTEAb-YYEHUK, PETryAIPU3AIUA COTAACOBAHHOCTH.
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