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Abstract

Dominant areas of computer science and computation systems are intensively linked
to the hypercube-related studies and interpretations. This article presents some trans-
formations and analytics for some example algorithms and Boolean domain problems.
Our focus is on the methodology of complexity evaluation and integration of several
types of postulations concerning special hypercube structures. Our primary goal is
to demonstrate the usual formulas and analytics in this area, giving the necessary set
of common formulas often used for complexity estimations and approximations. The
basic example under considered is the Boolean minimization problem, in terms of the
average complexity of the so-called reduced disjunctive normal form (also referred to
as complete, prime irredundant, or Blake canonical form). In fact, combinatorial coun-
terparts of the disjunctive normal form complexities are investigated in terms of sets of
their maximal intervals. The results obtained compose the basis of logical separation
classification algorithmic technology of pattern recognition. In fact, these considera-
tions are not only general tools of minimization investigations of Boolean functions, but
they also prove useful structures, models, and analytics for constraint logic program-
ming, machine learning, decision policy optimization and other domains of computer
science.
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1. Hypercube and Related Structures

The metric theory of Boolean functions (BF) [1], [2] arose in the 70’s, in parallel with the
emergence of broader design and implementation ideas for mechanical and electronic com-
putation devices. It was then that it turned out that the system of binary representation of
numbers is the most optimal, both from the point of view of the algorithmic implementation
of arithmetic calculations and also from the point of view of developing physical carriers
of performing these calculations [3]. BF — functions with only binary variables, and also
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with values in the domain {0, 1}, although simple among the other similar mathematical
concepts, they are quite complex in solving problems associated with their transformations
and optimization. The metric theory of Boolean functions provides the necessary knowledge
for coding, transforming and implementing binary functions. Although the way to minimal
BF representations are and remains difficult, a rather complete picture of the main forms
of function representation of functions has been obtained, and the basic role here takes the
concept of disjunctive normal forms. Successive steps of several transformations of functions
are found to achieve minimal forms as a chain from the table or formula representation to
the reduced d.n.f., then to the deadlock forms and finally — the minimal structures. The ac-
companying structures and bottlenecks of achieving acceptable optimization are investigated
intensively [1], [4]-[7]. Here we will not cover the whole theory but will pay attention to one
fundamental construction, — to the concept of reduced disjunctive normal forms (r.d.n.f.) of
Boolean functions. R.d.n.f. is the collection of all minimal conjunctions and geometrically
- the system of all maximum intervals/sub-cubes of functions. These forms are a universal
concept, and they also arise in problems such as circuit design from set of functional ele-
ments (logical part of chip design), in the theory of pattern recognition (logic separation
algorithm, and generation of logical regularities) [8]-[11], in biological models of heredity
and mutations (phylogeny, parsimony) [12, 13], etc. Turning to the complexity characteriza-
tion of structures associated with the reduced disjunctive normal form, where two types are
usually considered: the largest and most typical characteristics, we will focus on the second
component. In a concise survey of the domain, the initial studies of [5], [14], and [15], should
be mentioned, that give the formulas of average numbers of maximal intervals in Boolean
functions. [16], [17] extended these results to the case of partially defined Boolean functions.
An alternative track of papers in these topics includes the articles [18], [19], [20]. Current
research on the topics of BF and complexities might be demonstrated through the papers
[21]-]26]. Methodologically, in studies in the area of BF, it should be taken into account that
the function determination domain, as well as the number of functions itself, are finite, de-
pending on the number of the variables — the dimensionality. So, considering the parameter
7(f) over the functions, we get the split of these functions into finite classes by the values
of this parameter. These are the rates and intensity of the accepted values of the parameter
7(f). In some cases, it is convenient to refer to these valuations as probabilistic distributions,
which is not obligatorily but is convenient in some contexts. In this concern, there appears
a link to the model of Random Boolean functions and the combinatorial theories initiated
by A. Renyi and P. Erdos [27], [28].

1.1 Concepts and Definitions in the Binary Domain

Elementary conjunction, Direction. Let & and 3 — be arbitrary vertices of the n-
dimensional unite cube. And let j;,¢ = 1,2,---,r be all coordinates, those where o, = 3;,.
Consider the formula

r

K(z1, x9, -+ x0) = )\ x?ji,
i=1
with 0, = a;,, 1 = 1,2,---,r. We say that K is an elementary conjunction stretched on
the pair of vertices & and B of the n-dimensional unit cube FE,,. The number of literals in K
is the rank of . The geometrical counterpart of K is a sub-cube defined as follows. Assign
0 values to all but ji, jo,- -+, J, coordinates and denote this vertex by vg. Similarly, assign
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these coordinates by the value 1, obtaining the vertex v;. These are the minimal and maximal
vertices that belong to K, and they determine a unique sub-cube of all truth vertices of .
n — r, the number of variable coordinates of K is the size of its sub-cube.

Let A = {j1,72, -+, jr} be a collection of r indices drawn up of variables x1,xo, -, x,,
and let A\ be the complementary to the A set of indices. Conjunctions of the form AJ_, :1:;7]
and the corresponding intervals will be called conjunctions and intervals of the direction
A. For a fixed r there are C] different directions, and each of them is determined by the
appropriate selection of an r subset {ji,ja, -, .} of the set {1,2,...,n}. The individual
interval in the direction {ji, jo, - -, j- } appears in result of assigning the values o1, 09, -, 0,
to the variables x;,, x;,, -, zj,.

This also means that

there are 2"7" conjunc-

(1:1'1'1:1:1) tions and intervals in one

/ of the r-directions. The

collection \ of indices de-

fines another set of direc-
tions.

Let F be an arbitrary
logical formula and M C
B". We say that F ab-
sorbs or covers M if on
each tuple @ € M the for-
mula F accepts the unite
(true) value.

Let & € E™ be an ar-
bitrary vertex. Call the
/ value | & |= Y1,
°(0,0,0,0,0,0) the module or the weight
of a. The set of all ver-
tices B e E", with
pla, ) =| & & B |=k,
call the k—the layer of £
in relation to the vertex &
(@ — mentions mod2 sum-
mation).

Fig. 1. Geometry of hypercube.

Intervals Nx1 and Nz,

T 1 T 2

o (e
K'(z1, 29, ,1,) = /\{E] and K*(xy, 29, -, 2,) = /\ x;

Ji i
=1 =1

of the same size and the same direction we call neighbors if p(6',5?) = 1, where p — be the
Hamming distance, p(6',6%) = Xi_, | 0j, — 02, | . Let then j;, is the number of that unique

coordinate for which 0]1-1_0 + a?-io. Then we say that the conjunctions K and K? (or the pair
of neighbor intervals corresponding to them) joined by the coordinate zj, , and, as a result,
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a new conjunction (interval) appears:

T
Uji
/\ Lj; -

itig,i=1
Partition the variable set xq,xs,---,x, in an arbitrary manner into two nonempty
groups: I, Ty, -, Tk as the first group, and z;,_ ., 24, ,, -+, 2;, as the second. Then,

the n-dimensional unit cube FE,, may be represented as the Cartesian multiplication
B x B of two sub-cubes: B* and B"* generated correspondingly by the sets of variables
Tiy, Tiy, o, gy, and Ty, Ty oy 00, Ty, - Let us enumerate the vertices of B"* by the layers
relative to the vertex 0 of B"*. Enumeration among the vertices of a particular layer is
arbitrary, but the first group that is enumerated by low numbers is layer zero, then the
first layer, and so on. Additional ordering among layer vertices may use lexicographic order,
binary value based order, etc.

Consider an arbitrary k-dimensional sub-cube B* of E™, the first k-dimensional inter-
val BY in the direction of B*. List the neighbor intervals to the considered one, BY, -
By, B%, .- BF_, ... Let f be an arbitrary (partially defined) Boolean function that satisfies
the following conditions:

a) BY doesn’t contain zero value vertices of f: (Va € BF, f(a) # 0),

B) Each of the neighbor with Bf interval contains at least one ‘unit’ value vertex f :
(Vj, .]:27377n_k+1 H&EB;C7 f(&)zl)a

v) BF contains at least one ‘unit’ vertex of f: (3a € BY, f(a) =1).

In conditions «), £), 7), we say that BY is a maximal interval of the function f. d.n.f.,
composed of all elementary conjunctions, corresponding to maximal intervals of function f
is named the reduced disjunctive normal form of f. The number of disjunctive members of
this formula is considered as its complexity. Denoting by 74(f) the number of all maximal
k—intervals of the function f we get the formula of complexity of the reduced disjunctive
normal form of f:

2. On the Maximum Number of k-Dimensional Maximal Intervals of RBF

Consider the class P,(n) of all Boolean functions of n variables xy, 9, -, x,. Let
p, 0 <p <1 beafixed number, and F, — the probability distribution on P»(n), generated
in the following way. The function f € Py(n) is induced as a result of a randomized
experiment, where the values of the function on vertices of E™ are derived randomly. The
value 1 appears with a probability p and the 0 value — with a complementary probability
1 —p. The vertices of E™ take part in this experiment independently of each other, and the
probabilistic distribution F), over the set of Boolean functions is generated in this way. The
probability of an individual Boolean function f under the distribution F,, depends on the
balance between the 0 and 1 values of the function f (the volumes of the sets N and E"—Nj).
For f € Py(n), this probability is equal to p™t!(1 — p)>" =M1l When p = 1/2 this probability
is simply 1/2%"and the corresponding distribution becomes the uniform distribution over
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the Py(n). We introduce the notation 74 (f) for the number of k-dimensional maximal
intervals of the function f € Py(n). And let ri(n,p) be the average value of the number of
k-dimensional maximal intervals of functions f € P»(n) under the distribution F,. It is
easy to make sure, that

r(n,p) = 3 Fp(f)*re(f) (1)

fEP2(n)
The number 7 (n, p) in the expression (1) is given by its definition as a sum over all functions
of f € P»(n), counting all their k-dimensional maximal intervals and taking into account the
probabilities of f in the distribution F,.
Further evidence of these constructions is provided by the following scheme:

- 2n-1
F,(): ¢ pg*t pra p¥
— _
SN W f—
f152 f2ri1 fom_ane [y fom
I N 7\ -1 - ,A \ 1
1 Ny e y”~ - 1 .= - Ml \ |
\ 7 - - \
| v - \ N~ - v1 1
\, - z- - \ \
| .~ \ . F | -~ v |
7\ pA - \ \
b 2w _=2= A- L %
e S y -7 A 3
XK1 KiK. Kok Ky Kkon-k

Fig. 2. This figure presents the bipartite graph of functions and k-dimensional maximal intervals.
Upper line functions are placed in order of the number of their ”true” values, from 0 to 2. Different
functions include different numbers of k-dimensional maximal intervals and have different proba-
bilities under the distribution Fj,. Instead, each interval presented in the bottom line is connected
to the same number of functions. This is because the sizes of intervals is the same. The order
of intervals is by groups of intervals, that belong to the same direction. Numeration inside the
functions with the same number of "ones” and inside the groups of intervals of the same direction
is arbitrary.

Following [5], we change the order of counting in 1, first considering all k-dimensional
intervals in E™. We relay two events to these intervals: the one, about their maximality, and
then the second, about the set of functions that accept the first event about maximality. In
this regard, it is also convenient to split the E™ in parts: the current k-dimensional interval /C
and its all n — k neighboring k-dimensional intervals Ky, KCq, - - -, K, _x. This part, the current
interval and its neighbors, covers an area &; of 2*(n — k + 1) vertices of E™. And the second
part that we consider, consists of the complementary area & to £ up to E™. The probability
of maximality of K for the function f becomes the product of probability of maximality of
IC together with the conditional probability of f when K is given to be maximal. The first
probability equals pzk(l — ka)”*k. The first and second parts consist of events, and their
sums of probabilities are equal to 1 as a probabilistic distribution. Now, when we sum up
the mentioned conditional probabilities with all f, we get the probability 1, and the final
probability of maximality of X, under the conditions of F),, becomes ka(l — ka)”_k. It
reminds us to take this probability for all k-dimensional intervals, obtaining the following
equivalent form for (1),
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_ k L .n—k
ri(n,p) = CR2"p* (1—p*) . (2)
Theorem 1. 74(n,p) is a concave function of the parameter k in the interval [0, n].

It is important to know the behavior of the function ry(n, p defined on the interval [1,n].
Initially, it is useful to calculate the values of the function at the boundary points of the
domain of definition: £ =0,1,...,n — 1,n. We give these values both for the arbitrary p and
the value 1/2.

Table 1: Values of ri(n,p) on boundary points, such as k =0,1,...,n — 1, n.

Boundary point values of r(n, p)
Dimension k of || ri(n,p) ri(n,1/2)
maximal interval
k=0 2"p(1 —p)" 1/2
F=1 R R 2yt | (/)32
k=n—1 n2" g (1 —p¥ ) | n2n (1= 1/22 ) 2
k=n p*" 1/2%"

As we can see, both the left and right boundary point values of the interval (0,n) are
small, but there is a noticeable increase from left to right at the left end, and a decrease
from left to right at the right end. To get a complete picture of the behavior, consider a
number of special intermediate point values of the function at:

1 )
, ko =log ogn , and ki1 = log n
—logp —logp —logp

ki1 = log

The technical element of choosing of these values is in simple evaluation of sub-formula
E, = 22k, which is an important functional part of the 1. Substituting k;, ko, and ky into
Ey we get:

Ex, =1/2, Ex, =1/n, Ey, =1/2". (3)

Let us start the proof of postulations 1-3. For this, conduct a preliminary analysis of the
expression (2) for rg(n,p). Consider an arbitrary integer value function k(n) that obeys
the restriction 0 < k(n) < n, and substitute it into the expression 2. We are interested in
the behaviour of the received function 74, (n,p) depending on the parameter k(n) as
n — oo.

First let’s make sure that with the increase of k the expression 74 (n,p) increases mono-
tonically by the k < [ko], and then it decreases, when |ko[< k. By doing this we compose
the relation

_ ren(np) _ (n=k)p (L4 p? )
Ry, = rk(n,p) o 2(k+1>(1_p2k+1> . (4)

This expression can be considered for an arbitrary (not only for the integer) assignment
to the parameter k. We will follow by checking if this function is concave in the interval
0 < k < n for large n. The direct way of this is to derive the expression of the fraction
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Ry and treat it for a possible constant/zero value of it. In such consideration, the most
important role takes the part Ay = (n — k)pzk of the base expression 4. Substituting ko

logn —log
l

into A; we obtain that (n — ko)p* = (n — ko)p' o) = (n — ko)2'%% Toar ) = 2= which
is converging to 1 as n — oco. With the help of formulas in Section 3. we see that the part
By = (14 p*" )" % of (4) is limited at the point ko: (6) gives (1 + p*°)" — e as n — 00, S0
that (1 + p2k°)”_k0 also tends to e. Compose the fraction By,1/Bjy in the following form:

n—k—1 1+ ok ok \ M H
(1 +p2kp2k) ( 1ip21;“ )
Bk+1/Bk - R n—k = 1 + ok ok (5)
(1 + p? ) pp

k ok
Note that the fraction 12° ’,’f
1+p2?

is less than 1, so its n — k de-
gree is also less than 1. And
the denominator of (5) is greater
than 1 so that, finally, the ex-
pression (5) is less than 1 for
all k, which means a monotonic
decrease of the expression Ry in
(5). In general, as k in-
creases, all the factors of (4), other
than By, decrease monotonically
and, besides this, as n — oo ,
this expression tends to zero at
the point ky and grows in-
finitely when k£ = ko — 1. Fi-
nally, we receive that with in-
creasing k, for the beginning,
ir(n,p) increases, achieving its
maximal value at the point [ko]
Fig. 3. Differential of growing r¢(n,p). or ko[, and, then, it de-
creases.

3. On the Dependency of Number of k-Dimensional Maximal Intervals on

k

Consider the parameter ko = logfzgp. Since 0 < p <1, we have ky =logn + ¢, where c¢

represents an absolute constant determined by the fixed value of p. We intend to obtain an
asymptotic formula for ix(n,p) by the n — oo for the values of k of the form ks + const.
We make use of the following expressions C* ~ "k—’;, (1— p2k) ~ 1, and n!~n"e /210
as n — 00, which are based on the formulas

1.If 0<x<1 and 0 <y, then

exp(a(l—3)y) < (1+2)" < eap(ey). (6)
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2. If 0<2x <1 and 0 <y, then
(1 - =) < exp(—zy); and (7)
exp(—z(1 — z)y) < (1 — 2)¥, when additionally 0 < x < 1/2.
3. If x and y be natural numbers, and z < y, then

T

1j1— < (1— =)= h (8)

2y

Q@\E%

and are valid for the mentioned values of the parameter k, and for this reason

k
kek2n—kp2

ir(n,p) ~ N = ix(n, p). 9)

Theorem 2. The probability, that functions of the class Pa(n) under the distribution F,
have mazimal intervals of sizes k, k < [ki] or k > [ko], where ki = log—-— and
ko = tends to zero with n — oo.

On the right side of (9) we have expression, that depends on the continuous argument
k, and which is equivalent to the expression ix(n,p) for the integer values of the parameter
k, of the form ky 4 const. In the mentioned area, ix(n,p) decreases monotonically with
the increase of k, iy, (n,p) tends to infinity, and ix,41(n, p) tends to zero, when n — oo,
so that ix(n,p) — 0, for values k >]ko[ and ix(n,p) — oo for values ko < k < [ko], by
n — 0o. Let us also denote, that we do not insist that i,(n,p) as n — oo converges to
any appropriate value.

In what follows, we will use the first Chebyshev inequality (1). The first inequality lets
formulate an extension of a postulation from [29] for the case of the probability distribution
F,. Actually, if to consider the expression ix(f), as a parameter of m(f) then for the
values k >]ko[ ix(n,p) =0 by n — oo, and taking into the force the first inequality for
the arbitrary €(n) >0 P(ix(f) > €(n)) - 0 when n — co.

A similar situation takes place in the region of small values of the parameter k. For the
value k = k; and p = 1/2 by the (3) p*"* = 1/2 and ry, (n, p) — 0o as n — oo. For p > 1/2,
already for the value k; — 1, we observe that ry, _1(n,p) — 0 as n — oo. This is just because

%is a decreasing exponent, which together with C* tends to 0.
-p

4. Conclusion

This article has two goals: first, it considers the set of formulas needed to analyze the com-
plexity of structures associated with a multidimensional unit cube, providing the necessary
transformations and approximations for these formulas. Further, the paper considers a typ-
ical study for this field using these formulas. The problem under consideration estimates
the complexity of the reduced disjunctive normal form of Boolean functions on average, or,
what is the same, for almost the entire class of functions.
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AeBoH A. AcransaH, Mpuna A. ApcensH, Buank M. Kapaxaasaa, AcMuk A. CaaksaH

WucturyT npodbaeM nHpopMaTuku u aproMatrzanuu HAH PA, EpeBan, ApMeHusa
e-mail: kavilik@gmail.com

AnHoTanuys

AaHHAsA CTaTbsl [pPECAEAyeT ABe IIeAU: BO-IIEPBBIX, B HEW pacCMaTpUBAETCH
Habop (POpMyA, HEOOXOAUMBIX AASl @HAAW3Aa CAOKHOCTU CTPYKTYpP, CBSI3@HHBIX C
MHOTOMEPHBIM E€AMHUYHBIM KyOOM, IIPEAOCTaBASII HEOOXOAMMBIE IpeoOpa3zoBaHUA
U AaNIpOKCUMAUU AN OTHUX (POpPMYA. Aaree, B cTaTbe pacCMaTpPUBAETCH
TUIINYHOE HCCAEAOBAaHUE AAS AQHHOM OOAAQCTH C MCIOAB30BAaHUEM 3THUX (POPMYA.
PaccmaTpuBaemas mpoOaeMa OIleHMBAET CAOJKHOCTb COKPAIleHHOU AU3BIOHKTHUBHOM
HOPMAaABHOM (OPMBI OYA€BBIX (DYHKIIVUM B CPEAHEM, UAH, YTO TO JKE€ CaMoe, IIOUTH AN
BCero Kaacca (PyHKIIUNU.

KaroueBrle caoBa: OyaeBa (DYHKIWSA, MHOTOMEPHBIU €AMHUYHBIN KyO, CAOJKHOCTB,
ACHUMIITOTUKAE, COKpAllleHHAad AU3BIOHKTUBHASA HOPMaAbHAA popMae.
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