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Abstract

Dominant areas of computer science and computation systems are intensively linked
to the hypercube-related studies and interpretations. This article presents some trans-
formations and analytics for some example algorithms and Boolean domain problems.
Our focus is on the methodology of complexity evaluation and integration of several
types of postulations concerning special hypercube structures. Our primary goal is
to demonstrate the usual formulas and analytics in this area, giving the necessary set
of common formulas often used for complexity estimations and approximations. The
basic example under considered is the Boolean minimization problem, in terms of the
average complexity of the so-called reduced disjunctive normal form (also referred to
as complete, prime irredundant, or Blake canonical form). In fact, combinatorial coun-
terparts of the disjunctive normal form complexities are investigated in terms of sets of
their maximal intervals. The results obtained compose the basis of logical separation
classification algorithmic technology of pattern recognition. In fact, these considera-
tions are not only general tools of minimization investigations of Boolean functions, but
they also prove useful structures, models, and analytics for constraint logic program-
ming, machine learning, decision policy optimization and other domains of computer
science.
Keywords: Boolean function, Hypercube, Complexity, Asymptotic, Reduced disjunc-
tive normal form.
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1. Hypercube and Related Structures

The metric theory of Boolean functions (BF) [1], [2] arose in the 70’s, in parallel with the
emergence of broader design and implementation ideas for mechanical and electronic com-
putation devices. It was then that it turned out that the system of binary representation of
numbers is the most optimal, both from the point of view of the algorithmic implementation
of arithmetic calculations and also from the point of view of developing physical carriers
of performing these calculations [3]. BF – functions with only binary variables, and also
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with values in the domain {0, 1}, although simple among the other similar mathematical
concepts, they are quite complex in solving problems associated with their transformations
and optimization. The metric theory of Boolean functions provides the necessary knowledge
for coding, transforming and implementing binary functions. Although the way to minimal
BF representations are and remains difficult, a rather complete picture of the main forms
of function representation of functions has been obtained, and the basic role here takes the
concept of disjunctive normal forms. Successive steps of several transformations of functions
are found to achieve minimal forms as a chain from the table or formula representation to
the reduced d.n.f., then to the deadlock forms and finally – the minimal structures. The ac-
companying structures and bottlenecks of achieving acceptable optimization are investigated
intensively [1], [4]–[7]. Here we will not cover the whole theory but will pay attention to one
fundamental construction, – to the concept of reduced disjunctive normal forms (r.d.n.f.) of
Boolean functions. R.d.n.f. is the collection of all minimal conjunctions and geometrically
- the system of all maximum intervals/sub-cubes of functions. These forms are a universal
concept, and they also arise in problems such as circuit design from set of functional ele-
ments (logical part of chip design), in the theory of pattern recognition (logic separation
algorithm, and generation of logical regularities) [8]–[11], in biological models of heredity
and mutations (phylogeny, parsimony) [12, 13], etc. Turning to the complexity characteriza-
tion of structures associated with the reduced disjunctive normal form, where two types are
usually considered: the largest and most typical characteristics, we will focus on the second
component. In a concise survey of the domain, the initial studies of [5], [14], and [15], should
be mentioned, that give the formulas of average numbers of maximal intervals in Boolean
functions. [16], [17] extended these results to the case of partially defined Boolean functions.
An alternative track of papers in these topics includes the articles [18], [19], [20]. Current
research on the topics of BF and complexities might be demonstrated through the papers
[21]–[26]. Methodologically, in studies in the area of BF, it should be taken into account that
the function determination domain, as well as the number of functions itself, are finite, de-
pending on the number of the variables – the dimensionality. So, considering the parameter
π(f) over the functions, we get the split of these functions into finite classes by the values
of this parameter. These are the rates and intensity of the accepted values of the parameter
π(f). In some cases, it is convenient to refer to these valuations as probabilistic distributions,
which is not obligatorily but is convenient in some contexts. In this concern, there appears
a link to the model of Random Boolean functions and the combinatorial theories initiated
by A. Renyi and P. Erdos [27], [28].

1.1 Concepts and Definitions in the Binary Domain

Elementary conjunction, Direction. Let α̃ and β̃ – be arbitrary vertices of the n-
dimensional unite cube. And let ji, i = 1, 2, · · · , r be all coordinates, those where αji = βji .
Consider the formula

K(x1, x2, · · · , xn) =
r∧

i=1

x
σji
ji ,

with σji = αji , i = 1, 2, · · · , r. We say that K is an elementary conjunction stretched on
the pair of vertices α̃ and β̃ of the n-dimensional unit cube En. The number of literals in K
is the rank of K. The geometrical counterpart of K is a sub-cube defined as follows. Assign
0 values to all but j1, j2, · · · , jr coordinates and denote this vertex by v0. Similarly, assign
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these coordinates by the value 1, obtaining the vertex v1. These are the minimal and maximal
vertices that belong to K, and they determine a unique sub-cube of all truth vertices of K.
n− r, the number of variable coordinates of K is the size of its sub-cube.

Let λ = {j1, j2, · · · , jr} be a collection of r indices drawn up of variables x1, x2, · · · , xn,
and let λ̄ be the complementary to the λ set of indices. Conjunctions of the form

∧r
i=1 x

σji
ji

and the corresponding intervals will be called conjunctions and intervals of the direction
λ. For a fixed r there are Cr

n different directions, and each of them is determined by the
appropriate selection of an r subset {j1, j2, · · · , jr} of the set {1, 2, ..., n}. The individual
interval in the direction {j1, j2, · · · , jr} appears in result of assigning the values σ1, σ2, · · · , σr

to the variables xj1 , xj2 , · · · , xjr .

Fig. 1. Geometry of hypercube.

This also means that
there are 2n−r conjunc-
tions and intervals in one
of the r-directions. The
collection λ̄ of indices de-
fines another set of direc-
tions.

Let F be an arbitrary
logical formula and M ⊆
Bn. We say that F ab-
sorbs or covers M if on
each tuple α̃ ∈ M the for-
mula F accepts the unite
(true) value.

Let α̃ ∈ En be an ar-
bitrary vertex. Call the
value | α̃ |= ∑n

i=1 αi

the module or the weight
of α̃. The set of all ver-
tices β̃ ∈ En, with
ρ(α̃, β̃) =| α̃ ⊕ β̃ |= k,
call the k–the layer of En

in relation to the vertex α̃
(⊕ – mentions mod2 sum-
mation).

Intervals NK1 and NK2 ,

K1(x1, x2, · · · , xn) =
r∧

i=1

x
σ1
ji

ji and K2(x1, x2, · · · , xn) =
r∧

i=1

x
σ2
ji

ji

of the same size and the same direction we call neighbors if ρ(σ̃1, σ̃2) = 1, where ρ – be the
Hamming distance, ρ(σ̃1, σ̃2) =

∑r
i=1 | σ1

ji
− σ2

ji
| . Let then ji0 is the number of that unique

coordinate for which σ1
ji0

̸= σ2
ji0
. Then we say that the conjunctions K1 and K2 (or the pair

of neighbor intervals corresponding to them) joined by the coordinate xji0
, and, as a result,
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a new conjunction (interval) appears:

r∧
i ̸=i0,i=1

x
σji
ji .

Partition the variable set x1, x2, · · · , xn in an arbitrary manner into two nonempty
groups: xi1 , xi2 , · · · , xk as the first group, and xik+1

, xik+2
, · · · , xin as the second. Then,

the n-dimensional unit cube En may be represented as the Cartesian multiplication
Bk×Bn−k of two sub-cubes: Bk and Bn−k generated correspondingly by the sets of variables
xi1 , xi2 , · · · , xik and xik+1

, xik+2
, · · · , xin . Let us enumerate the vertices of Bn−k by the layers

relative to the vertex 0̃ of Bn−k. Enumeration among the vertices of a particular layer is
arbitrary, but the first group that is enumerated by low numbers is layer zero, then the
first layer, and so on. Additional ordering among layer vertices may use lexicographic order,
binary value based order, etc.

Consider an arbitrary k-dimensional sub-cube Bk of En, the first k-dimensional inter-
val Bk

1 in the direction of Bk. List the neighbor intervals to the considered one, Bk
1 , -

Bk
2 , B

k
3 , · · · , Bk

n−k+1. Let f be an arbitrary (partially defined) Boolean function that satisfies
the following conditions:

α) Bk
1 doesn’t contain zero value vertices of f : (∀α̃ ∈ Bk

1 , f(α̃) ̸= 0),

β) Each of the neighbor with Bk
1 interval contains at least one ‘unit’ value vertex f :

(∀j, j = 2, 3, · · · , n− k + 1 ∃α̃ ∈ Bk
j , f(α̃) = 1),

γ) Bk
1 contains at least one ‘unit’ vertex of f : (∃α̃ ∈ Bk

1 , f(α̃) = 1).

In conditions α), β), γ), we say that Bk
1 is a maximal interval of the function f. d.n.f.,

composed of all elementary conjunctions, corresponding to maximal intervals of function f
is named the reduced disjunctive normal form of f. The number of disjunctive members of
this formula is considered as its complexity. Denoting by rk(f) the number of all maximal
k–intervals of the function f we get the formula of complexity of the reduced disjunctive
normal form of f :

n∑
k=0

rk(f).

2. On the Maximum Number of k-Dimensional Maximal Intervals of RBF

Consider the class P2(n) of all Boolean functions of n variables x1, x2, · · · , xn. Let
p, 0 < p < 1 be a fixed number, and Fp – the probability distribution on P2(n), generated
in the following way. The function f ∈ P2(n) is induced as a result of a randomized
experiment, where the values of the function on vertices of En are derived randomly. The
value 1 appears with a probability p and the 0 value – with a complementary probability
1−p. The vertices of En take part in this experiment independently of each other, and the
probabilistic distribution Fp over the set of Boolean functions is generated in this way. The
probability of an individual Boolean function f under the distribution Fp depends on the
balance between the 0 and 1 values of the function f (the volumes of the setsN{ and En−N{).
For f ∈ P2(n), this probability is equal to p|N{|(1− p)2

n−|N{|. When p = 1/2 this probability
is simply 1/22

n
and the corresponding distribution becomes the uniform distribution over
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the P2(n). We introduce the notation rk(f) for the number of k-dimensional maximal
intervals of the function f ∈ P2(n). And let rk(n, p) be the average value of the number of
k-dimensional maximal intervals of functions f ∈ P2(n) under the distribution Fp. It is
easy to make sure, that

rk(n, p) =
∑

f∈P2(n)

Fp(f) ∗ rk(f) (1)

The number rk(n, p) in the expression (1) is given by its definition as a sum over all functions
of f ∈ P2(n), counting all their k-dimensional maximal intervals and taking into account the
probabilities of f in the distribution Fp.

Further evidence of these constructions is provided by the following scheme:

Fig. 2. This figure presents the bipartite graph of functions and k-dimensional maximal intervals.
Upper line functions are placed in order of the number of their ”true” values, from 0 to 2k. Different
functions include different numbers of k-dimensional maximal intervals and have different proba-
bilities under the distribution Fp. Instead, each interval presented in the bottom line is connected
to the same number of functions. This is because the sizes of intervals is the same. The order
of intervals is by groups of intervals, that belong to the same direction. Numeration inside the
functions with the same number of ”ones” and inside the groups of intervals of the same direction
is arbitrary.

Following [5], we change the order of counting in 1, first considering all k-dimensional
intervals in En. We relay two events to these intervals: the one, about their maximality, and
then the second, about the set of functions that accept the first event about maximality. In
this regard, it is also convenient to split the En in parts: the current k-dimensional interval K
and its all n−k neighboring k-dimensional intervals K1,K2, · · · ,Kn−k. This part, the current
interval and its neighbors, covers an area E1 of 2k(n− k+1) vertices of En. And the second
part that we consider, consists of the complementary area E2 to E1 up to En. The probability
of maximality of K for the function f becomes the product of probability of maximality of
K together with the conditional probability of f when K is given to be maximal. The first
probability equals p2

k
(1 − p2

k
)n−k. The first and second parts consist of events, and their

sums of probabilities are equal to 1 as a probabilistic distribution. Now, when we sum up
the mentioned conditional probabilities with all f, we get the probability 1, and the final
probability of maximality of K, under the conditions of Fp, becomes p2

k
(1 − p2

k
)n−k. It

reminds us to take this probability for all k-dimensional intervals, obtaining the following
equivalent form for (1),
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rk(n, p) = Ck
n2

n−kp2
k

(1− p2
k

)
n−k

. (2)

Theorem 1. rk(n, p) is a concave function of the parameter k in the interval [0, n].

It is important to know the behavior of the function rk(n, p defined on the interval [1, n].
Initially, it is useful to calculate the values of the function at the boundary points of the
domain of definition: k = 0, 1, ..., n− 1, n. We give these values both for the arbitrary p and
the value 1/2.

Table 1: Values of rk(n, p) on boundary points, such as k = 0, 1, ..., n− 1, n.

Boundary point values of rk(n, p)
Dimension k of
maximal interval

rk(n, p) rk(n, 1/2)

k = 0 2np(1− p)n 1/2

k = 1 n2n−1p2(1− p2)n−1 (n/4)(3/2)n−1

... ... ...

k = n− 1 n2n−1p2
n−1

(1− p2
n−1

) n2n−1(1− 1/22
n−1

)/22
n−1

)
k = n p2

n
1/22

n

As we can see, both the left and right boundary point values of the interval (0, n) are
small, but there is a noticeable increase from left to right at the left end, and a decrease
from left to right at the right end. To get a complete picture of the behavior, consider a
number of special intermediate point values of the function at:

k1 = log
1

−logp
, k0 = log

logn

−logp
, and k1 = log

n

−logp
.

The technical element of choosing of these values is in simple evaluation of sub-formula
Ek = 22

k
, which is an important functional part of the 1. Substituting k1, k0, and k2 into

Ek we get:
Ek1 = 1/2, Ek0 = 1/n, Ek2 = 1/2n. (3)

Let us start the proof of postulations 1-3. For this, conduct a preliminary analysis of the
expression (2) for rk(n, p). Consider an arbitrary integer value function k(n) that obeys
the restriction 0 ≤ k(n) ≤ n, and substitute it into the expression 2. We are interested in
the behaviour of the received function rk(n)(n, p) depending on the parameter k(n) as
n → ∞.

First let’s make sure that with the increase of k the expression rk(n, p) increases mono-
tonically by the k ≤ [k0], and then it decreases, when ]k0[≤ k. By doing this we compose
the relation

Rk =
rk+1(n, p)

rk(n, p)
=

(n− k)p2
k
(1 + p2

k
)n−k

2(k + 1)(1− p2k+1)
. (4)

This expression can be considered for an arbitrary (not only for the integer) assignment
to the parameter k. We will follow by checking if this function is concave in the interval
0 < k < n for large n. The direct way of this is to derive the expression of the fraction
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Rk and treat it for a possible constant/zero value of it. In such consideration, the most
important role takes the part Ak = (n − k)p2

k
of the base expression 4. Substituting k0

into Ak we obtain that (n − k0)p
2k0 = (n − k0)p

( logn
−logp

) = (n − k0)2
logp(−logn

logp
) = n−k0

n
, which

is converging to 1 as n → ∞. With the help of formulas in Section 3. we see that the part
Bk = (1 + p2

k
)n−k of (4) is limited at the point k0: (6) gives (1 + p2

k0 )n → e as n → ∞, so
that (1 + p2

k0 )n−k0 also tends to e. Compose the fraction Bk+1/Bk in the following form:

Bk+1/Bk =

(
1 + p2

k
p2

k
)n−k−1

(
1 + p2k

)n−k =

(
1+p2

k
p2

k

1+p2k

)n−k

1 + p2kp2k
(5)

Fig. 3. Differential of growing rk(n, p).

Note that the fraction 1+p2
k
p2

k

1+p2k

is less than 1, so its n − k de-
gree is also less than 1. And
the denominator of (5) is greater
than 1 so that, finally, the ex-
pression (5) is less than 1 for
all k, which means a monotonic
decrease of the expression Rk in
(5). In general, as k in-
creases, all the factors of (4), other
than Bk, decrease monotonically
and, besides this, as n → ∞ ,
this expression tends to zero at
the point k0 and grows in-
finitely when k = k0 − 1. Fi-
nally, we receive that with in-
creasing k, for the beginning,
ik(n, p) increases, achieving its
maximal value at the point [k0]
or ]k0[, and, then, it de-
creases.

3. On the Dependency of Number of k-Dimensional Maximal Intervals on
k

Consider the parameter k2 = log n
−logp

. Since 0 < p < 1, we have k2 = logn+ c, where c
represents an absolute constant determined by the fixed value of p. We intend to obtain an
asymptotic formula for ik(n, p) by the n → ∞ for the values of k of the form k2 + const.

We make use of the following expressions Ck
n ∼ nk

k!
, (1− p2

k
) ∼ 1, and n! ∼ nne−n

√
2πn

as n → ∞, which are based on the formulas

1. If 0 ≤ x ≤ 1 and 0 ≤ y, then

exp(x(1− x

2
)y) ≤ (1 + x)y ≤ exp(xy). (6)
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2. If 0 ≤ x ≤ 1 and 0 ≤ y, then

(1− x)y ≤ exp(−xy); and (7)

exp(−x(1− x)y) ≤ (1− x)y, when additionally 0 ≤ x ≤ 1/2.

3. If x and y be natural numbers, and x ≤ y, then

(1− x

y
)
x−1
2 ≤

x−1∏
i=1

(1− i

y
) ≤ (1− x

2y
)x−1. (8)

and are valid for the mentioned values of the parameter k, and for this reason

ik(n, p) ∼
nkek2n−kp2

k

kk
√
2πk

= ĩk(n, p). (9)

Theorem 2. The probability, that functions of the class P2(n) under the distribution Fp

have maximal intervals of sizes k, k < [k1] or k > [k2], where k1 = log 1
−logp

and
k2 = log n

−logp
tends to zero with n → ∞.

On the right side of (9) we have expression, that depends on the continuous argument
k, and which is equivalent to the expression ik(n, p) for the integer values of the parameter
k, of the form k2 + const. In the mentioned area, ĩk(n, p) decreases monotonically with
the increase of k, ĩk2(n, p) tends to infinity, and ĩk2+1(n, p) tends to zero, when n → ∞,
so that ik(n, p) → 0, for values k >]k2[ and ik(n, p) → ∞ for values k0 ≤ k ≤ [k2], by
n → ∞. Let us also denote, that we do not insist that i]k2[(n, p) as n → ∞ converges to
any appropriate value.

In what follows, we will use the first Chebyshev inequality (1). The first inequality lets
formulate an extension of a postulation from [29] for the case of the probability distribution
Fp. Actually, if to consider the expression ik(f), as a parameter of π(f) then for the
values k >]k2[ ik(n, p) → 0 by n → ∞, and taking into the force the first inequality for
the arbitrary ϵ(n) ≥ 0 P (ik(f) ≥ ϵ(n)) → 0 when n → ∞.
A similar situation takes place in the region of small values of the parameter k. For the
value k = k1 and p = 1/2 by the (3) p2

k1 = 1/2 and rk1(n, p) → ∞ as n → ∞. For p > 1/2,
already for the value k1 − 1, we observe that rk1−1(n, p) → 0 as n → ∞. This is just because
2n−k1+1

1−p2
k1−1 is a decreasing exponent, which together with Ck

n tends to 0.

4. Conclusion

This article has two goals: first, it considers the set of formulas needed to analyze the com-
plexity of structures associated with a multidimensional unit cube, providing the necessary
transformations and approximations for these formulas. Further, the paper considers a typ-
ical study for this field using these formulas. The problem under consideration estimates
the complexity of the reduced disjunctive normal form of Boolean functions on average, or,
what is the same, for almost the entire class of functions.
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