Two Generalized Lower Bounds for the Circumference Mossine S. Koulakzian and Zhora G. Nikoghosyan Institute for Informatics and Automation Problems of NAS RA e-mail: mossine@hotmail.com, zhora@ipia.sci.am #### Abstract In 2013, the second author obtained two lower bounds for the length of a longest cycle C in a graph G in terms of the length of a longest path (a longest cycle) in G-C and the minimum degree of G (Zh.G. Nikoghosyan, "Advanced Lower Bounds for the Circumference", Graphs and Combinatorics 29, pp. 1531-1541, 2013). In this paper we present two analogous bounds based on the average of the first i smallest degrees in G-C for appropriate i instead of the minimum degree. Keywords: Circumference, Minimum degree, Degree sums. #### 1. Introduction Let c be the circumference - the length of a longest cycle of a graph G and δ the minimum degree in G. In this paper we present the following two results. **Theorem 1**. Let C be a longest cycle in a graph G, \hat{p} the order of a longest path in G - C and μ the average of the first \hat{p} smallest degrees in G - C. Then $$c \ge (\hat{p} + 1)(\mu - \hat{p} + 1).$$ **Theorem 2**. Let C be a longest cycle in a graph G, \hat{c} the order of a longest cycle in G-C and μ the average of the first \hat{c} smallest degrees in G-C. Then $$c \ge (\hat{c} + 1)(\mu - \hat{c} + 1).$$ Observing that $\mu \geq \delta$ in Theorems 1 and 2, we obtain the original lower bounds [2] as immediate corollaries in terms of \hat{p} , \hat{c} and δ . **Theorem A** [2]. Let C be a longest cycle in a graph G and \hat{p} the order of a longest path in G - C. Then $$c \ge (\hat{p} + 1)(\delta - \hat{p} + 1).$$ **Theorem B** [2]. Let C be a longest cycle in a graph G and \hat{c} the order of a longest path in G-C. Then $$c \ge (\hat{c} + 1)(\delta - \hat{c} + 1).$$ ## 2. Definitions We use Bondy and Murty [1] for terminology and notation not defined here, and consider only finite undirected graphs without loops and multiple edges. The vertex set of a graph G is denoted by V(G) or just V; the set of edges by E(G) or just E. For a subgraph H of G we also use G - H short for G - V(H), and |H| short for |V(H)|. Paths and cycles in G can be considered as connected subgraphs of G, having a maximum degree 0,1 or 2. The length of a path P and of a cycle Q, denoted by l(P) and l(Q), is |V(P)|-1 and |V(Q)|, respectively. We denote l(P)=-1 and l(Q)=0 if and only if $V(P)=V(Q)=\emptyset$. A graph is said to be Hamiltonian if its longest cycle passes through all of its vertices. The vertices and edges in G can be interpreted as cycles of lengths 1 and 2, respectively. An (x,y)-path is a path with end vertices x and y. Given an (x,y)-path L of G we denote by \overrightarrow{L} the path L with an orientation from x to y. If $u,v\in V(L)$ then $u\overrightarrow{L}v$ denotes the consecutive vertices on \overrightarrow{L} from u to v in the direction specified by \overrightarrow{L} . The same vertices, in reverse order, are given by $v\overleftarrow{L}u$. For $L=x\overrightarrow{L}y$ and $u\in V(L)$, let $u^+(\overrightarrow{L})$ (or just u^+) denote the successor of u ($u\neq y$) on \overrightarrow{L} and u^- denote its predecessor ($u\neq x$). If $A\subseteq V(L)-y$ and $B\subseteq V(L)-x$, then we denote $A^+=\{v^+|v\in A\}$ and $B^-=\{v^-|v\in B\}$. A similar notation is used for the cycles. If Q is a cycle and $u\in V(Q)$, then $u\overrightarrow{Q}u=u$. For $v\in V$, put $N(v)=\{u\in V|uv\in E\}$, d(v)=|N(v)| and $\delta=\min\{d(u)|u\in V\}$. ## 3. Special Definitions For the remainder of this section, let a subgraph F of a graph G and a path (or a cycle) \overrightarrow{M} in G-F be fixed. **Definition 1**. (*i)-minimality, (*i)-maximality. We use the notions of (*i)-minimality and (*i)-maximality defined with respect to certain operations for i = 1, 2, ..., 10. They will be described in detail currently. **Definition 2.** MF-extension; $\overrightarrow{T}(u)$; \dot{u} ; \ddot{u} . For each $u \in V(M)$, let $\overrightarrow{T}(u) = u\overrightarrow{T}(u)\ddot{u}$ be a path in G, having only u in common with V(M). If $V(T(u)) \cap V(T(v)) = \emptyset$ and $V(T(u)) \subseteq V(G - F)$ for all distinct vertices $u, v \in V(M)$, then the forest T, defined by $\{T(u)|u \in V(M)\}$, is said to be MF-extension. If $\ddot{u} \neq u$ for some $u \in V(M)$, then we use \dot{u} to denote $u^+(\overrightarrow{T}(u))$. **Definition 3.** Φ_u ; $\varphi(u)$; $\Psi(u)$; $\psi(u)$. Let T be an MF-extension. For each $u \in V(M)$, put $$\Phi_u = N(\ddot{u}) \cap V(T), \quad \varphi_u = |\Phi_u|,$$ $$\Psi_u = N(\ddot{u}) \cap V(F), \quad \psi_u = |\Psi_u|.$$ **Definition 4.** U_0 ; \overline{U}_0 ; U_1 ; U^* . Let T be an MF-extension. Put $$U_0 = \{ u \in V(M) | u = \ddot{u} \}; \quad \overline{U}_0 = V(M) - U_0,$$ $$U^* = \{ u \in \overline{U}_0 | \Phi_u \subseteq V(T(u)) \}; \quad U_1 = V(M) - (U_0 \cup U^*).$$ **Definition 5**. Maximal MF-extension. An MF-extension T is said to be maximal if it is extremal with respect to the following operation: - if there exists an edge $\ddot{u}z$ such that $u \in V(M)$ and $z \notin V(T) \cup V(F)$, then replacing T(u) by $uT(u)\ddot{u}z$, we obtain a new MF-extension T' with |V(T')| > |V(T)|. **Definition 6.** (U_0) -minimal and (U_0, U^*) -minimal MF-extensions. An MF-extension T is said to be (U_0) -minimal, if it is chosen such that U_0 is (*6)-minimal (see the proof of Theorem 1). A (U_0) -minimal MF-extension T is said to be (U_0, U^*) -minimal if it is chosen such that U^* is (*10)-minimal (see the proof of Theorem 2). **Definition 7.** B_u ; B_u^* ; b_u ; b_u^* . Let T be an MF-extension and $u \in V(M)$. Put $B_u = \{v \in U_0 | v\dot{u} \in E\}$ and $b_u = |B_u|$. By the definition, $B_u = \emptyset$ for each $u \in U_0$. Furthermore, for each $u \in U_0$, let $B_u^* = \{v \in \overline{U}_0 | u\dot{v} \in E\}$ and $|B_u^*| = b_u^*$. #### 4. Preliminaries The proofs of the following lemmas can be find in [2]. **Lemma 1**. Let C be a cycle in a graph G and P a path in G-C. Let $\overrightarrow{P}_0,...,\overrightarrow{P}_p$ be pairwise disjoint paths in G-C with $\overrightarrow{P}_i=v_i\overrightarrow{P}_iw_i$ (i=0,1,...,p), having only $v_0,...,v_p$ in common with P. Then either there is a cycle in G longer than C or $$|C| \ge \sum_{i=0}^{p} |Z_i| + \left| \bigcup_{i=0}^{p} Z_i \right|,$$ where $Z_i = N(w_i) \cap V(C)$ (i = 0, 1, ..., p). **Lemma 2.** Let F be a subgraph of a graph G and R a longest cycle in G - F with a (U_0) -minimal RF-extension T. Then either there is a cycle longer than R or $l(R) \ge \varphi_u + b_u + 1$ for each $u \in U_1$. **Lemma 3**. Let F be a subgraph of a graph G and P a path in G-F with a (U_0) -minimal PF-extension T. Then either there is a path longer than P or $l(P) \ge \varphi_u + b_u$ for each $u \in U_1 \cup U^*$. #### 5. Proofs **Proof of Theorem 1**. Let $Q = u_0...u_q$ be a path in G - C with a (U_0) - minimal QCextension T. Assume without loss of generality that C is (*1 - *4)-extremal, and Q is (*7 - *9) -extremal. Since G is non-Hamiltonian, we have $q \ge 0$. Claim 1. If $u \in U_0$ and $v \in \overline{U}_0$, then $\Phi_u \cap V(T(v)) \subseteq \{v, \dot{v}\}.$ **Proof.** Suppose otherwise. Let $z \in V(T(v)) - \{v, \dot{v}\}$. Then, replacing T(u) and T(v) by $uz\overrightarrow{T}(v)\ddot{v}$ and $v\overrightarrow{T}(v)z^-$, respectively, we can form (denote this operation by (*6)) a new QC-extension, contradicting the (U_0) - minimality of T. \square Claim 2. If $u \in U_0$, then $\varphi_u \leq q + b_u^*$. **Proof.** The proof follows immediately from Definitions 3, 7 and Claim 1. \square Claim 3. If $u \in \overline{U}_0$, then $\varphi_u \leq q - b_u$. **Proof.** Using Lemma 3 with the fact that Q is (*7 - *9)-extremal, we obtain $q \ge \varphi_u + b_u$ for each $u \in \overline{U}_0$, and the result follows. \square Observing that $$\sum_{u \in U_0} b_u^* = \sum_{u \in \overline{U}_0} b_u$$ (by the definition) and using Claims 2 and 3, we obtain $$\sum_{i=0}^{q} \varphi_{u_i} \le q(q+1) + \sum_{u \in U_0} b_u^* - \sum_{u \in \overline{U}_0} b_u = q(q+1).$$ Suppose first that $\varphi_{u_i} + \psi_{u_i} \neq d(\ddot{u}_i)$ for some $i \in \overline{0,q}$. Then there exists an edge $\ddot{u}z$ such that $z \notin V(T) \cup V(C)$. Adding $\ddot{u}z$ to T we obtain a new QC-extension, contradicting the maximality of T (Definition 5). Now let $\varphi_{u_i} + \psi_{u_i} = d(\ddot{u}_i)$ (i = 0, ..., q). Then $$\sum_{i=0}^{q} \psi_{u_i} = \sum_{i=0}^{q} d(\ddot{u}_i) - \sum_{i=0}^{q} \varphi_{u_i} \ge \sum_{i=0}^{q} d(\ddot{u}_i) - q(q+1).$$ It follows, in particular, that $$\max_{i} \{\psi_{u_i}\} \ge \frac{1}{q+1} \sum_{i=0}^{q} \psi_{u_i} \ge \frac{1}{q+1} \sum_{i=0}^{q} d(\ddot{u}_i) - q.$$ By Lemma 1, $$c \ge \sum_{i=0}^{q} \psi_{u_i} + \max_{i} \{\psi_{u_i}\}$$ $$\ge (q+2) \left(\frac{1}{q+1} \sum_{i=0}^{q} d(\ddot{u}_i) - q\right) \ge (q+2)(\mu_q - q).$$ **Proof of Theorem 2.** Let $H = u_1...u_ku_1$ be a cycle in G - C with an (U_0, U^*) -minimal HC-extension T. Let H be (*5)-extremal. Put $$U_1^* = \left\{ u \in U^* | \varphi_u \le \frac{h}{2} \right\}, \quad U_2^* = \left\{ u \in U^* | \varphi_u \ge \frac{h+1}{2} \right\}.$$ Claim 1. If $u \in U_0$ and $v \in \overline{U}_0$, then $\Phi_u \cap V(T(v)) \subseteq \{v, \dot{v}\}.$ **Proof.** The proof is very similar to that of Claim 1 in Theorem 1. \Box Claim 2. If $u \in U_0$, then $\varphi_u \leq h - 1 + b_u^*$. **Proof.** Immediate from Definitions 3, 7 and Claim 1. \square Claim 3. If $u \in U_1$, then $\varphi_u \leq h - 1 - b_u$. **Proof.** Since H is (*5)-extremal, by Lemma 2, $h \ge \varphi_u + b_u + 1$ for each $u \in U_1$, and the result follows. \square Claim 4. If $u \in U^*$, then $\varphi_u \leq h - 1 - b_u + \varphi_u - \frac{h}{2}$. **Proof.** Since H is (*5)-extremal, by the standard arguments, $h \geq 2(b_u + 1)$ for each $u \in U^*$, and the result follows immediately. \square Claim 5. If $u \in U_1$, then $\varphi_u \leq h - 1 - b_u$. **Proof**. Immediate from Claims 3 and 4. \square If $U_2^* = \emptyset$, then by Claims 2 and 5, $\sum_u \varphi_u \le h(h-1)$. But then, as in Theorem 1, $c \ge (h+1)(\lambda_1 - h + 1)$, where $\lambda_1 = \frac{1}{h} \sum_{i=1}^k d(\ddot{u}_i) \ge \mu_h$. Now let $U_2^* \ne \emptyset$. Choose $v \in U_2^*$ such that $$\varphi_v = \max_{u \in U_2^*} \{ \varphi_u \}. \tag{1}$$ Claim 6. If $u \in U_2^*$, then $\varphi_u \leq h - 1 - b_u + \varphi_v - \frac{h}{2}$. **Proof.** Immediate from (1) and Claim 4. \square Using Claims 2, 5, 6 and recalling that $\sum_{u \in U_0} b_u^* = \sum_{u \in \overline{U}_0} b_u$ and $|U_0| + |U_1 \cup U_1^*| + |U_2^*| = h$, we get $$\sum_{u} \varphi_{u} = \sum_{u \in U_{0}} \varphi_{u} + \sum_{u \in U_{1} \cup U_{1}^{*}} \varphi_{u} + \sum_{u \in U_{2}^{*}} \varphi_{u} \le h(h-1) + |U_{2}^{*}| \left(\varphi_{v} - \frac{h}{2}\right). \tag{2}$$ By Definition 3, $\Phi_v \subseteq V(T(v))$. Let $v_1, ..., v_t$ be the elements of Φ_v^+ , occurring on $\overrightarrow{T}(v)$ in a consecutive order with $v_t = \ddot{v}$. Clearly $t = |\Phi_v| = \varphi_v$. Put $$N(v_i) \cap V(T) = \Phi'_i, \quad N(v_i) \cap V(C) = Z'_i \quad (i = 1, ..., t).$$ (3) If $\Phi'_i \cap (V(T) - V(T(v))) \neq \emptyset$ for some $i \in \overline{1, t}$, then replacing T(v) by $$v\overrightarrow{T}(v)v_i^-\overrightarrow{v}\overleftarrow{T}(v)v_i,$$ we form (denote this operation by (*10)) a new HC-extension, contradicting the minimality of $|U^*|$. So, we can assume $\Phi'_i \subseteq V(T(v))$ (i = 1, ..., t). Assume w.l.o.g. that $\max_i |\Phi'_i| = |\Phi'_t| = \varphi_v$. So, $$\max_{i} |\Phi'_i| = |\Phi'_t| = |\Phi_v| = \varphi_v = t. \tag{4}$$ Since $\psi_{u_i} = d(u_i) - \varphi_{u_i}$ (i = 1, ..., h) and $|Z'_i| = d(v_i) - |\Phi'_i|$ (i = 1, ..., t - 1), we have $$\sum_{i=1}^{h} \psi_{u_i} + \sum_{i=1}^{t-1} |Z_i'| = \sum_{i=1}^{h} (d(u_i) - \varphi_{u_i}) + \sum_{i=1}^{t-1} (d(v_i) - |\Phi_i'|)$$ $$= \sum_{i=1}^{h} d(u_i) + \sum_{i=1}^{t-1} d(v_i) - \sum_{i=1}^{h} \varphi_{u_i} - \sum_{i=1}^{t-1} |\Phi'_i|.$$ (5) Put $$\lambda_2 = \frac{1}{h+t-1} \left(\sum_{i=1}^h d(u_i) + \sum_{i=1}^{t-1} d(v_i) \right) \ge \lambda_1 \ge \mu_h.$$ Case 1. $|U_2^*| = 1$. By (2), (4) and (5), $$\sum_{i=1}^{h} \psi_{u_i} + \sum_{i=1}^{t-1} |Z_i'| \ge (h+t-1)\lambda_2 - h(h-1) - t + \frac{h}{2} - \sum_{i=1}^{t-1} t$$ $$= (h+t-1)\lambda_2 - h^2 - t^2 + \frac{3h}{2}.$$ It follows, in particular, that $$\max_{i} \{ \psi_{u_i}, |Z_i'| \} \ge \lambda_2 - \frac{h^2 + t^2 - \frac{3h}{2}}{h + t - 1} \ge \lambda_2 - \frac{3h}{2} + 2.$$ If $\lambda_2 \leq h-1$, then clearly $c \geq (h+1)(\lambda_2-h+1)$. Let $\lambda_2 \geq h \geq t+1$. Applying Lemma 1 to $Q = \ddot{v} \stackrel{\longleftarrow}{T} (v) v \stackrel{\longrightarrow}{H} v^-$, we get $$c \ge \sum_{i=1}^{h} \psi_{u_i} + \sum_{i=1}^{t-1} |Z_i'| + \max_{i} \{\psi_{u_i}, |Z_i'|\}$$ $$\ge (h+1)(\lambda_2 - h + 1) + (t-1)(\lambda_2 - t - 1) \ge (h+1)(\lambda_2 - h + 1).$$ Case 2. $|U_2^*| \ge 2$. Choose $w \in U_2^* - v$ such that $\varphi_v \ge \varphi_w \ge \varphi_u$ for each $u \in U_2^* - \{v, w\}$. Define w_i, Z_i'', Φ_i'' (i = 1, ..., r) for T(w) in the same way as v_i, Z_i' and Φ_i' were defined for T(v). As in (4), we can assume w.l.o.g. that $\max_i |\Phi_i''| = |\Phi_v''| = |\Phi_w| = \varphi_w = r$. Clearly, $t + r = \varphi_v + \varphi_w \ge h + 1$. Then $$\sum_{i=1}^{t} |Z_i'| + \sum_{i=1}^{r} |Z_i''| = \sum_{i=1}^{t} (d(v_i) - |\Phi_i'|) + \sum_{i=1}^{r} (d(w_i) - |\Phi_i''|)$$ $$= \sum_{i=1}^{t} d(v_i) + \sum_{i=1}^{r} d(w_i) - \sum_{i=1}^{t} |\Phi_i'| - \sum_{i=1}^{r} |\Phi_i''| \ge (t+r)\lambda_3 - t^2 - r^2,$$ where $$\lambda_3 = \frac{1}{t+r} \left(\sum_{i=1}^t d(v_i) + \sum_{i=1}^r d(w_i) \right) \ge \mu_h.$$ In particular, $$\max_{i} \{ |Z'_{i}|, |Z''_{i}| \} \ge \lambda_{3} - \frac{t^{2} + r^{2}}{t + r}.$$ Applying Lemma 1 to $Q = \ddot{v} \stackrel{\leftarrow}{T} (v) v \overrightarrow{H} w \overrightarrow{T} (w) \ddot{w}$, we get $$c \ge \sum_{i=1}^{t} |Z_i'| + \sum_{i=1}^{r} |Z_i''| + \max_i \{|Z_i'|, |Z_i''|\} \ge (t+r)\lambda_3 - t^2 - r^2 + \lambda_3 - \frac{t^2 + r^2}{t+r}$$ $$\geq (h+1)(\lambda_3-h+1)+\lambda_3(t+r-h)+h^2-1-t^2-r^2-\frac{t^2+r^2}{t+r}.$$ If $\lambda_3 \leq h-1$, then clearly, $c \geq (h+1)(\lambda_3-h+1)$. Otherwise, $$c \ge (h+1)(\lambda_3 - h + 1) + h(t+r) - 1 - t^2 - r^2 - \frac{t^2 + r^2}{t+r}$$ $$\ge (h+1)(\lambda_3 - h + 1) + (h-1)(t+r) - t^2 - r^2.$$ Observing that $$h-1 \ge \max\{t, r\} \ge \frac{t^2 + r^2}{t + r},$$ we obtain $c \ge (h+1)(\lambda_3 - h + 1)$. Thus, $c \ge (h+1)(\lambda - h + 1)$, where $\lambda = \min\{\lambda_1, \lambda_2, \lambda_3\} \ge \mu_h$. ### References - [1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications. Macmillan, London and Elsevier, New York, 1976. - [2] Zh.G. Nikoghosyan, "Advanced lower bounds for the circumference", Graphs and Combinatorics 29, pp. 1531-1541, 2013. Submitted 22.08.2017, accepted 24.12.2017. ## Գրաֆի ամենաերկար ցիկլի երկարության երկու ընդհանրացված գնահատականներ Մ. Քուլաքգյան և Ժ. Նիկողոսյան #### Ամփոփում 2013-ին երկրորոդ հեղինակը G գրաֆի ամենաերկար C ցիկլի երկարության համար ստացավ երկու ստորին գնահատականներ՝ արտահայտված G-C-ի ամենաերկար շղթայի երկարության (ամենաերկար ցիկլի երկարության) և G գրաֆի նվազագույն աստիճանի բնութագրիչներով (Zh.G. Nikoghosyan, Advanced Lower Bounds for the Circumference, Graphs and Combinatorics 29, pp. 1531-1541, 2013)։ Ներկա աշխատանքում ներկայացվում են երկու համանման գնահատականներ, որտեղ նվազագույն աստիճանի բնութագրիչը փոխարինված է G-C-ի գագաթների առաջին i ամենափոքր աստիճանների միջին թվաբանականով G-C-ով պայմանավորված որոշ i պարամետրի համար։ # Две обобщенные нижние оценки для длины длиннейшего цикла графа М. Кулакзян и Ж. Никогосян #### Аннотация В 2013 году второй автор получил две нижние оценки для длины длиннейшего цикла графа G выраженные через длину длиннейшей цепи (длиннейшего цикла) подграфа G-C и минимальную степень графа G (Zh.G. Nikoghosyan, Advanced Lower Bounds for the Circumference, Graphs and Combinatorics 29, pp. 1531-1541, 2013)? В настоящей работе представляются две обобщенные аналогичные оценки, где вместо минимальной степени рассматривается средняя арифметическая степеней первых i наименьших степеней вершин подграфа G-C для подходящего параметра i.