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Abstract

In 2013, the second author obtained two lower bounds for the length of a longest
cycle C in a graph G in terms of the length of a longest path (a longest cycle) in G—C
and the minimum degree of G (Zh.G. Nikoghosyan, ” Advanced Lower Bounds for the
Circumference”, Graphs and Combinatorics 29, pp. 1531-1541, 2013). In this paper
we present two analogous bounds based on the average of the first ¢ smallest degrees
in G — C for appropriate 7 instead of the minimum degree.
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1. Introduction

Let ¢ be the circumference - the length of a longest cycle of a graph G' and ¢ the minimum
degree in G.
In this paper we present the following two results.

Theorem 1. Let C' be a longest cycle in a graph G, p the order of a longest path in G — C'
and p the average of the first p smallest degrees in G — C'. Then

c>(P+1)(p—p+1).

Theorem 2. Let C' be a longest cycle in a graph G, ¢ the order of a longest cycle in G —C
and p the average of the first ¢ smallest degrees in G — C'. Then

c>(E+1)(u—eé+1).

Observing that x> § in Theorems 1 and 2, we obtain the original lower bounds [2] as
immediate corollaries in terms of p, ¢ and 9.

Theorem A [2]. Let C be a longest cycle in a graph G and p the order of a longest path in
G — C. Then

c>(p+1)0—p+1).
Theorem B [2]. Let C be a longest cycle in a graph G and ¢ the order of a longest path in
G — C. Then

c>(E+1)(d—c+1).

18



M. Koulakzian and Zh. Nikoghosyan 19

2.  Definitions

We use Bondy and Murty [1] for terminology and notation not defined here, and consider
only finite undirected graphs without loops and multiple edges. The vertex set of a graph G
is denoted by V(G) or just V; the set of edges by E(G) or just E. For a subgraph H of G
we also use G — H short for G — V(H), and |H| short for |V (H)|.

Paths and cycles in G can be considered as connected subgraphs of GG, having a maximum
degree 0,1 or 2. The length of a path P and of a cycle @, denoted by [(P) and [(Q), is
|[V(P)| — 1 and |V(Q)], respectively. We denote [(P) = —1 and [(Q) = 0 if and only if
V(P)=V(Q) =0. A graph is said to be Hamiltonian if its longest cycle passes through all
of its vertices. The vertices and edges in GG can be interpreted as cycles of lengths 1 and 2,
respectively.

An (z,y)-path is a path with end vertices z and y. Given an (x,y)-path L of G we denote
by T the path L with an orientation from x to y. If u,v € V(L) then wLv denotes the
consecutive vertices on L fr;o_m u to v in the_giirection specified by f._}The same vertices, in
reverse order, are given by v Lu. For L=x Ly andu € V(L), let ™ ( L) (or just «™) denote
the successor of u (u # y) on T and u~ denote its predecessor (u # x). If AC V(L) —y
and B C V(L) — x, then we denote A* = {vT|v € A} and B~ = {v"|v € B}. A similar
notation is used for the cycles. If @ is a cycle and v € V(Q), then uau =u. Forv eV,
put N(v) ={u € V]uv € E}, d(v) = |[N(v)| and § = min{d(u)|u € V}.

3. Special Definitions

For the remainder of this section, let a subgraph F' of a graph G and a path (or a cycle) M
in G — F be fixed.

Definition 1. (xi)-minimality, (*i)-maximality.

We use the notions of (xi)-minimality and (x¢)-maximaliy defined with respect to certain
operations for ¢ = 1,2, ..., 10. They will be described in detail currently.

Definition 2. M F-extension; ?(u), Uy .

— —
For each w € V(M), let T (u) = uT (u)i be a path in G, having only u in common
with V(M). If V(T(u)) N V(T (v)) = 0 and V(T (u)) € V(G — F) for all distinct vertices
u,v € V(M), then the forest T, defined by {T'(u)|u € V (M)}, is said to be M F-extension.
If @i # u for some u € V(M), then we use u to denote u*(?(u))

Definition 3. ®,; o(u); U(u); ¥(u).

Definition 4. Uy; Uy; U;; U*.
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Let T' be an M F-extension. Put

Us={ueUy®, CV(T(u)}; Uy=V(M)—(UyuUU*).
Definition 5. Mazimal M F-extension.
An M F-extension T is said to be maximal if it is extremal with respect to the following
operation: - if there exists an edge iz such that v € V(M) and z ¢ V(T) U V(F), then
replacing T'(u) by uT'(u)iiz, we obtain a new M F-extension 7" with |V (T")| > |V(T))].
Definition 6. (Uy)-minimal and (Uy, U*)-minimal M F-extensions.
An M F-extension T is said to be (Up)-minimal, if it is chosen such that Uy is (x6)-minimal
(see the proof of Theorem 1). A (Up)-minimal M F-extension T is said to be (Up, U*)-minimal
if it is chosen such that U* is (x10)-minimal (see the proof of Theorem 2).
Definition 7. B,; B;; b,; b}.
Let T be an M F-extension and v € V(M). Put B, = {v € Uplvi € E} and b, = |B,|.

By the deﬁ_nition, B, = 0 for each u € U,. Furthermore, for each v € U, , let
B ={v e Upluv € E} and |B}| = b}.

4. Preliminaries
The proofs of the following lemmas can be find in [2].
— —
Lemma 1. Let C be a cycle in a graph G and P a path in G—C'. Let Py, ..., P, be pairwise

disjoint paths in G — C with ?z = Ui?iwi (t=0,1,...,p), having only vy, ..., v, in common
with P. Then either there is a cycle in G longer than C or

P
Uz

=0

Y

p
C1 = > 12| +
=0

where Z; = N(w;) NV (C) (1 =0,1,....p).

Lemma 2. Let F' be a subgraph of a graph G and R a longest cycle in G — F with a (Up)-
minimal RF-extension T. Then either there is a cycle longer than R or [(R) > ¢, + b, + 1
for each u € Uy.

Lemma 3. Let F' be a subgraph of a graph G and P a path in G—F with a (Uy)-minimal PF -
extensionT. Then either there is a path longer than P or [(P) > @,+b, for eachu € U UU*.
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5. Proofs

Proof of Theorem 1. Let Q) = wy...u, be a path in G — C with a (Uy)- minimal QC-
extension T. Assume without loss of generality that C is (x1 — x4)-extremal, and Q is
(%7 — %9) -extremal. Since G is non-Hamiltonian, we have q > 0.

Claim 1. If u € Uy and v € Uy, then ®, N V(T (v)) C {v,v}.

Proof. Suppose otherwise. Let z € V(T'(v)) — {v,0}. Then, replacing T'(u) and T'(v) by
uz?(v)ij and v?(v)z_, respectively, we can form (denote this operation by (%6)) a new
QC-extension, contradicting the (Up)- minimality of 7. O

Claim 2. If v € Uy, then ¢, < ¢+ b}.
Proof. The proof follows immediately from Definitions 3, 7 and Claim 1. O

Claim 3. If u € Uy, then ¢, < g — b,,.
Proof. Using Lemma 3 with the fact that @ is (%7 — *9)-extremal, we obtain ¢ > ¢, + by,
for each u € Uy, and the result follows. O

Observing that
> b= b
u€lp uEﬁo

(by the definition) and using Claims 2 and 3, we obtain

Zsoul<qq+1 + U= > bu=qlg+1).

uelUy uely

Suppose first that ¢, + 1, # d(ii;) for some i € 0,q. Then there exists an edge iz such
that z ¢ V(T) U V(C). Adding iz to T we obtain a new (QC-extension, contradicting the
maximality of T (Definition 5). Now let ¢,, + 1, = d(ii;) (i =0, ...,q). Then

D by, =D d(i) =Y ou > D d(i) —q(g+ 1)
=0 =0 =0

=0
It follows, in particular, that
J R I &
m?X{¢ui} > o ;djui > i1 2 d(ii;) — q.
By Lemma 1, ,

> > thu, + max{t, }

=0

1 &
>(q+2) (—= > dlis) —q) > (@ +2) (g —q). ™
q+1;=3
Proof of Theorem 2. Let H = w;...upuy be a cycle in G — C with an (Up, U*)-minimal
HC-extension T. Let H be (x5)-extremal. Put

h+1

h
Uf = {uéU*|gpu SE}’ Uy = {ue U*|pu ZT}
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Claim 1. If u € Uy and v € Uy, then ®, N V(T (v)) C {v,v}.
Proof. The proof is very similar to that of Claim 1 in Theorem 1. O

Claim 2. If u € Uy, then ¢, < h —1+10}.
Proof. Immediate from Definitions 3, 7 and Claim 1. O

Claim 3. If u € Uy, then ¢, < h —1—1b,.
Proof. Since H is (x5)-extremal, by Lemma 2, h > ¢, + b, + 1 for each u € Uj, and the
result follows. O

Claim 4. If v € U*, then ¢, < h—l—bu—l—gou—%.
Proof. Since H is (x5)-extremal, by the standard arguments, h > 2(b, + 1) for each u € U™,
and the result follows immediately. O

Claim 5. If u € Uy, then ¢, < h —1—10,.
Proof. Immediate from Claims 3 and 4. O

If Uy = 0, then by Claims 2 and 5, >, ¢, < h(h — 1). But then, as in Theorem 1,
¢ > (h+1)(A\ —h+1), where \y = + 3% d(ii;) > pup. Now let U; # ). Choose v € U such
that

o = max{i, }. (1)

Claim 6. If u € U;, then ¢, < h—l—bu—i—gov—%.
Proof. Immediate from (1) and Claim 4. O

Using Claims 2, 5, 6 and recalling that 3=,c¢, by = X, 57, bu and |Ug|+ U, UUT |+|Us | = h,
we get

Sem Y et ¥ et e chb-n+lil(e-3). @)

u€ely ueU1 Uy uels

By Definition 3, ®, C V(T'(v)). Let vy, ...,v; be the elements of @, occurring on ?(U)
in a consecutive order with v; = ¢. Clearly t = |®,| = ¢,. Put

Nw)NnV(T)=9®;, N(u)NV(C)=2Z; (i=1,..,1). (3)
If &; N (V(T) —V(T(v))) # 0 for some i € 1,¢, then replacing T'(v) by
U?(U)U{i)?(v)vi,

we form (denote this operation by (x10)) a new HC-extension, contradicting the minimality
of |[U*|. So, we can assume ®; C V(T'(v)) (i = 1,...,t). Assume w.l.o.g. that max;|P}| =
[P} = ¢, So,

max |]] = [9]] = [9,] = ¢, = & (4)

Since 1y, = d(u;) — o, (i =1,...,h) and |Z]| =d(v;) — |P}| (i = 1,...,t — 1), we have
h t—1

>+ Z 2] = S () — o) + S (d(w:) — |B)

i=1 i=1
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t—1

—Zd(ui)Jrild(vi) _;% _il|q>;|. (5)

i=1
Put

o (i d(us) + fd(@) > >

:h+t_1 i=1 i=1

Case 1. |Uj| = 1.
By (2), (4) and (5),

h t—1 h t—1
S Yu + > 12l > (h+t—1))\2—h(h—1)—t+§—2t
i=1 i=1 i=1

3h
=(h+t—1)X — h2—t?+7
It follows, in particular, that
h? 4+t — 32 3h
Nz > Ny — —m—— 49,
miaX{Q/Jul,|Zz|}_)\2 h+t—1 > Ao 5 +

If Ay <h—1, then clearly ¢ > (h+ 1)(Ay — h+1). Let A\, > h > ¢+ 1. Applying Lemma 1
— —
to @ =0T (v)vHv™, we get

t—1

c> del + Z |Z/| + max{wum |Z/|}

>h+1D)N—h+1)+Et-1)N—t—1)>(h+1)( A —h+1).

Case 2. |U| > 2.

Choose w € Uy — v such that ¢, > ¢, > ¢, for each v € Uy — {v,w}. Define w;, Z!, &
(t=1,...,r) for T(w) in the same way as v;, Z; and &} were defined for T'(v). Asin (4), we
can assume w.l.o.g. that max; |®/| = |®!| = |®,| = ¢, = r. Clearly, t+7r = @, +@w > h+1.
Then

Z|Z/|+Z|Z”|*Z |CI>/ +Z CI)”

i=1
t t T

=D _d(v;) + 3 d(wi) = Y | = > [@F] = (t+7)As — 7 =17,
i=1 i=1

i=1 i=1
where

1 t r

—_— dlv;) + ) dw;) | > up.

+r<;(> > >) "
In particular,
12+
t+r

max{|Z|, |Z]|} = As —

— R —
Applying Lemma 1 to Q = 4T (v)v Hw T (w)w, we get

t T t2 2
> S 1ZU 12 max{|Z2L 2} 2 () — £ = A - ti:
i=1 i=1
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2 2 o Ur?
>(h+1)ANs—h+1)+X(t+7r—h)+h"—1—t"—1r*— oo
If A3 <h —1, then clearly, ¢ > (h+ 1)(A3 — h + 1). Otherwise,
P
c>(h+1)As—h+1)+h(t+r)—1—t"—1r*—
t+r
>h+1)M—h+1)+(h—=1)t+r)—t* =1
Observing that
2 .2
h —1 > max{t,r} zt r )
t+r
we obtain ¢ > (h+1)(A3—h+1). Thus, ¢ > (h+1)(A—h+1), where A = min{ A1, Ao, A3} > pp.
=
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Gnwdh wibkGwbpywnp ghyh Gpunpnipjud
tpynt pnhwipugyuwo qGuwhwnwlubGatn

U. Lnijupqyub L d. ‘Ghynnnujwul
Udthnthnid

2013-hG tpypnpnn htnphGuwyp G qpudh wikGubtpyup C ghyh GpyupnipjulG hwdwnp
unwgwy bpynt unnphl qGwhwnmwywlitpn”  wpnwhwyumjwo G — C-h wdtGwbpywup
mpwjh tpyupmipjuwl  (wikbGuwbpyup ghyth Gpjwpmpyjub) L G gqpudh Guqugnyl
wumhdwbh pGnipugnppsGipny (Zh.G. Nikoghosyan, Advanced Lower Bounds for the Cir-
cumference, Graphs and Combinatorics 29, pp. 1531-1541, 2013): ‘Lhpjw wuwwmwlpnid
Gipyuwjywgynd GG Gpynt hwiwlGiwl qGwhwmwyubltpn, npuntn GJuquagniyG wunhdwbh
pGnipwgphsn hnjuwphGywo t G — C-h ququpltipnh wnwoh ¢ wikGwihnpp wuwmhdwGGtph
UhohlG pyuwpwGwywinyg G — C-ny wuwjdwGwynpywod npny ¢ wupwdtwmph hwdwp:
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ABe 000011IeHHEIEe HUJKHUE OILI€HKHU AASI AAMHEL
AAMHHEMIero quKAa rpada

M. KyaakagaH u 7K. Hukorocsau

AnHoTanus

B 2013 roay BTOpOM aBTOP IOAYYHUA ABE HUJKHUE OII€HKU AAS AAMHBI AAMHHEMNIIIero
nmKAa rpadga (G BHIpa’KeHHbIe depe3 AAMHY AAMHHeHNIIeN 1enu (AAWHHeMIero
1mKAa) nmoprpada G — C' u MuHUMaAbBHYIO cTeneHb rpada G (Zh.G. Nikoghosyan,
Advanced Lower Bounds for the Circumference, Graphs and Combinatorics 29,
pp. 1531-1541, 2013)? B HacTosIel paboTe MPEACTaBASIIOTCSI ABe OOOOIIeHHBIEe
aHaAOTUYHBIE OIIEHKH, TA€ BMECTO MUHUMAABHOM CTEIIeHN pacCMaTPUBAETCS CPEAHSS
apudmMeTriecKkas CcTelleHed MepBBIX ¢ HaWMEHBIINX CTelleHel BepIInH IoArpada
G — C AAS TIOAXOAMAIIETO TTapamMeTpa 1.



