Mathematical Problems of Computer Science 58, 84-90, 2022.
doi: 10.51408/1963-0095

UDC 004.62:004.946

Data Processing and Persistence in Virtual Reality
Systems

Arman A. Hovhannisyan

National Polytechnic University of Armenia
e-mail: aahovhannisyanl@gmail.com

Abstract

Data processing and persistence are key aspects of developing a Virtual
Reality system. In this paper, an improvement is offered to the distance
calculation algorithm of the Unity Engine. Additionally, data persistence
mechanisms provided by the Unity Engine are reviewed, and File System is
selected as an appropriate option. Storage of object coordinates to the File System
is implemented. The results provide a baseline for developing a system for
creating virtual stands for professional research.

Keywords: Virtual reality, Data management, File System, Serialization.
Article info: Received 29 March 2022; received in revised form 9 October 2022;
accepted 17 November 2022.

1. Introduction

In virtual reality, data is represented both in primitive types (int, float, string) and complex types
provided by the engine. Object positions in space are determined in the Cartesian coordinate
system [1] (see Fig. 1).

A common task is to compare the distance of 2 points from a given point A(xy, y; z1).
The Unity Engine Scripting API [2] provides a complex data type called Vector3 to store object
coordinates, along with its Vector3.Distance() method to calculate distance between 2 points.
Given the points (x,,y,,2,), C(x3,¥3,23), this method may be used to accomplish the task,
comparing the following values: Vector3.Distance(B, A), Vector3.Distance(C, A).
A more efficient solution may be applied using the formula of the distance between 2 points [1]:

dap = J(xz - x1)2 + (2 — 3’1)2 + (22— 21)2’ 1)

84

A. Hovhannisyan 85

dac = \[(x3 - x1)2 + (3 —)’1)2 + (25 — Z1)2 (2)

Instead of comparing values for d,z and dy., the radicands may be compared, saving CPU
time on unnecessary calculations.

+y
C(x3, ¥3, 23
A(XI) Yl, Zl) ’ (Y)
x B(xo, y2, 22) +x

Origin

+Z

Fig. 1. Object positions in space.

To have persistent data between sessions, the user progress has to be stored on the disk.
There are several methods of managing data storage, including SQL database, PlayerPrefs and
OS File System. On specific events during the runtime, which are to be defined, data containing
all the current values have to be stored. These events may include user interaction, object state
mutation, or events may be set to trigger on specific timestamps, e.g., every 10 seconds. Then, on
the next program run, these stored values have to be fetched and transmitted to the engine to
render the objects in the same state and position, as they were when the last event was triggered.

2. Persistent Data

To have persistent data between sessions, the user progress has to be stored on the disk. Below
are listed several methods of managing data storage.

1. SQL Database

SQL is useful when there is relational data. It supports queries to fetch related data sets. In
our case, we have just objects that need to be memorized and then retrieved on the next run.
Such simple operations are easier to implement and faster in work on File System. SQL is a
dedicated software and isn’t an integrated part of Operating Systems, as File System is. Also,
a connection to SQL service should be kept active during the runtime.

2. PlayerPrefs

PlayerPrefs is a class provided by Unity Engine that stores Player preferences between game
sessions. It stores values in the OS registry. Though it is possible to store data using this

86 Data Processing and Persistence in Virtual Reality Systems

method, it is not recommended to do so. This method should be used for data, that can be
afforded to lose, such as user settings and preferences. Sensitive and relatively big data
should not be kept in registries.

3. File System

To store data in files, it needs to be formatted in some way. It may be serialized [3] to binary
format and written to a file. That data will then be successfully deserialized and used in the
application. But since binary is not human-readable, it makes this format insufficient.
Moreover, it is not possible to edit the saved data manually. Using JSON data type allows
bypassing these problems.

Taking into account the points mentioned above, it was decided to handle data storage using
File system and Serialization, so every time data needs to be stored, it is serialized to JSON
format and written to a file (see Fig. 2). Then, to restore the state in the application, the file is
read and data is deserialized to object (see Fig. 3).

Object File
Serialize —— Read
JSON JSON
Write —— <«——— Deserialize
File Object
Fig. 2. Storing Data. Fig. 3. Using Stored Data.

3. Saving Object Position

A specific and common example is persisting the object position. In this example, we have a
cube placed on a table (see Fig. 4). The Origin (0, 0, 0) can be located on the ground.

\4
o
{

B "

A. Hovhannisyan 87

Fig. 4. Cube.
To save the cube position after it is replaced, a class called SaveManager is created,
which contains 2 methods: save and load. These methods use a file called "position.dat” to
write/read data.

SaveManager.cs
public class SaveManager

{

public static void save(Vector3 pos)

{
string path = Path.Combine(Application.persistentDataPath, "position.dat™);
File.WriteAllText(path, JsonUtility. ToJson(pos));

¥

public static Vector3 load()
{
string path = Path.Combine(Application.persistentDataPath, "position.dat™);
string result = File.ReadAllText(path);
Vector3 pos = JsonUtility.FromJson<Vector3>(result);
return pos;
}

}

The save and load methods would then be invoked from a script, which is bound to the
object. The save method would be bound to the XR Grab Interactable component [4] “Select
Exited” event to save data every time the object is released. The load method would be invoked
from the Start method to set object positions from the saved data on a fresh program run.
CubeScript.cs
public class CubeScript : MonoBehaviour
{

/I Start is called before the first frame update
void Start()
{
Vector3 position = SaveManager.load();
transform.position = position;

}

public void Save()
{

SaveManager.save(transform.position);

¥
¥

88 Data Processing and Persistence in Virtual Reality Systems

© VRvien o x

Fig. 5. Cube position changed via left controller.

The saved file position.dat:
{"x":-0.0030583017505705358,"y":0.838373601436615,"2":-2.0934112071990969}

After restarting the program, we still have the cube in its new place (see Fig. 5).

Now we can modify this file content, and set the coordinates to (0, 0, 0).

{"x":0,"y":.0,"z":0}

After modifying and saving the file, and running the program again, we can see that the cube
appears on the Origin as expected (see Fig. 6).

© VR View o X

Fig. 6. Cube position manually set to Origin.

4. Conclusion

In this article, an improvement to the Unity Engine distance calculation algorithm was suggested.
Additionally, data types provided by the Unity Engine were reviewed. Data storage options were
compared and decided to use the OS File System and data serialization. As an example, a cube
position storage and loading were implemented. This method will be used also for custom
complex data types to store, marking the class representing the data type as Serializable.

A. Hovhannisyan 89

References

[1] Wikipedia, (2012) Cartesian Coordinate System. [Online]. Available:
https://en.wikipedia.org/wiki/Cartesian_coordinate_system

[2] Unity Engine Scripting APl Reference. [Online]. Available:
https://docs.unity3d.com/ScriptReference/

[3] Microsoft Docs, (2021) Serialization (C#). [Online]. Available:
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/serialization/

[4] The Khronos Group Inc., “The OpenXR Specification”.

[5] Unity Learning, (2020) Create with VVR. [Online]. Available:
https://learn.unity.com/course/create-with-vr?uv=2020.3

SYjuyutiph dpunudp b yuwhuywinidp Jhpnniwy hppuljumipjut
hundwjupgqtpnud

Updwt U. Znghwuthuyyw
Zuyuunwth wqqujhtt wnjhnkjuhjulwb hwdwjuwput
e-mail: aahovhannisyanl@gmail.com

Udthnthnid

SYwjutph dowlnudp b ywhywinidp Jhpuiiniw) hpuwljwinmpjut hwdwljupgh
qupquguut hhdbwlwt wuyblniubp G Uju hnpduénid wpwowplynud E Unity
owipdhsh hbinwynpmipyjutt hwydupyuwt wignphpdh juduplnid: Fwugh wyn,
nhunwplynud tu Unity pwpdhsh Ynnuhg wmpwdwunpynn wndjujubph wwhywidwu
dUbhuwthquutpp, b npytu tywunwlwhwpdwp wwppipuy, punpdnd £ dugughte
hudwlwpgp: Ppujutugynid £ opijnnh Ynnpphttwntibph wwhwywinudp duygjuyhe
hudwlwupgnid: Unwgyus wpmyniupubpp hhup Bt hwinhuwinid dwubwghinwljut
htwnwgnunipnititiph Jhpnniw) unbinubph uwnbtnddwt hwdwlwupgh dowljdut
hwdwp:

Pubwh punkp hpuiniw) hpuljwintpinit, wjuibph jurwduwpnid, $ugwghi
hudwlwpg, ukiphwjhqughw

https://docs.unity3d.com/ScriptReference/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/serialization/

90 Data Processing and Persistence in Virtual Reality Systems

O6paboTka 1 coxpaHeHUe JaHHBIX B CHCTEMaX BUPTyaIbHOM
PeaTbHOCTH

Apman A. Oranecsan

HarmoHanpHbII TOTUTeXHUYECKHH YHUBEPCUTET APMEHNN
e-mail: aahovhannisyan1@gmail.com

AmnHoramua

OO6paboTka ¥ cOxpaHeHUE [JAHHBIX SBJISIOTCA KJIIOUYEBBIMM aCIIeKTaMHU pa3paboTKu
CHCTeMBI BUPTyaJIbHOI pealbHOCTU. B maHHOI cTaThe mpepsaraeTcs yaydllleHHe aJlrOpuUTMa
pacuera paccrosauil Unity Engine. Kpome Toro, paccmaTpuBaroTca MeXaHM3MBI COXpaHEHUA
IAHHBIX, IpefocTraBasieMmble Unity Engine, u B KauecTBe moAXoZAIero BapuaHTa BbIOMpaeTcs
daitnoBas cucrema. Peanmsyercs xpaHeHMe KOOpPAMHAT 00beKTa B (hailIoBOM CHCTEMe.
PesynpraTsl 06ecrieynBalOT OCHOBY [JI Pa3pabOTKM CHCTEMBI CO3ZAHHUSA BUPTYaJIbHBIX
CTeHZOB I TPo(eCCHOHATBHBIX UCCIeIOBAaHUHN.

KirioueBsle ciroBa: BupTyansHas peasbHOCTB, yIIpaBiIeHUe NaHHBIMHY, daiioBas cHCTeMa,

cepuanu3aIus

mailto:aahovhannisyan1@gmail.com

