Mathematical Problems of Computer Science 58, 67-83, 2022.
doi: 10.51408/1963-0094

UDC 004.725, 004.852

Research of Obfuscated Malware with a Capsule
Neural Network

Timur V. Jamgharyan

National Polytechnic University of Armenia
e-mail: t.jamgharyan@yandex.ru

Abstract

The paper presents the results of a research of using transfer training of the
capsule neural network to detect malware. The research was carried out on the basis of
the source code of malware using the context-triggered piecewise hashing method.
The source codes of malware were obtained from public sources of software.
Verification of the capsule neural network learning results was carried out using a
trained convolutional neural network, and publicly available sources of test to
malware. The research was conducted on six types of malware. Software source code,
part of capsule neural network training datasets, pre-trained capsule neural network,
and full research are publicly available at https://github.com/T-JN
Keywords: Capsule neural network, Context triggered piecewise hashing, Edit
distance, Intrusion detection system, Transfer learning.

Avrticle info: Received 9 June 2022; accepted 24 November 2022.

1. Introduction

Malware injected into Infrastructure through zero-day vulnerabilities in network equipment is a
huge cybersecurity problem. The network infrastructure (NI) protection architecture implies the
construction of a multi-level, complementary security system. Part of the NI security design is an
intrusion detection system (IDS).
In the studies [1]-[5], the types of IDS, the ways of their application and the mechanisms of their
work are considered in detail. «Classic» IDS can be classified as:

¢+ host-based IDS, that is detection of attacks on a specific network node,

%+ network-based IDS, that is, detecting attacks on the network or its segment.
Existing IDS that do not use machine learning (ML) in their functionality (both proprietary and
open source) [6]-[9], have one common drawback: they all respond to the threat that is
embedded in the rule sets. There is also a high probability of various false positives: (true
positive, true negative, false positive, false negative) [10]. Malware is the most common threat

67

https://github.com/T-JN

68 Research of Obfuscated Malware with a Capsule Neural Network

vector in most operating environments [11]. The IDS software ecosystem offers many utilities
and application suites that can help collect signals from all types of network traffic [12].
For IDS operating without the use of ML at different levels of the Open System Interconnection
(OSI) model [13], the task of detecting malware modifications was secondary. Basically, the task
of detecting and neutralizing malware was assigned to antivirus software. But with the
convergence of attacks at different levels of the OSI model and the emergence of software-
defined networks (SDN), new types of threats and possible attacks arise, the neutralization of
which by «standard» methods is difficult [14]-[15]. New systematic approaches are required to
solve these problems. With the increase in the growth of attacks built on the basis of ML and
machine-to-machine (M2M), new threats to the NI also arise. The requirements for security
systems are increasing. The convergence of system, network and cloud services increases both
the «attack surface» [16] and the «attack space power» [17]. Of particular danger are attacks
«designed» using ML [18]-[20]. Researchers are working on the application of ML to create and
build a new type of IDS [21-25]. Unlike «classic» IDS, built on the basis of ML can be further
trained, being in one way or another a malware generator [26]-[28]. At this stage, both
conceptually new solutions in the field of ML application in IDS are being developed, as well as
improvements to existing ones. The papers [29]-[32] consider the issues of using ML to create
one or another type of IDS. Researchers and developers of ML-based IDS are faced with a large
number of tasks that need to be solved, due to the novelty of this area of information security.

e The task of having annotated data for training a neural network (Annotation is the

process of labeling raw data so that it can become training for machine learning [11]). No
algorithm can handle really bad data. There are many different requirements for training
datasets, in particular, representativeness and «noiselessness». [33]. Unlike neural
networks that process images, sound, text, etc., for which there are verified datasets [34]-
[39], datasets for training an IDS must to some extent, consist of malware. Researchers
have access to certain resources that supply research malware [40]-[46], but these
resources make them public with a delay.

e The task of increasing the learning rate of IDS built on the basis of ML. Unlike other
neural networks where the main attention is paid to the quantity and quality of training
data, in intrusion detection systems built on the basis of ML, in many cases, the speed of
learning is also important. As shown in [47], since the emerging malware not included in
any database has a different data distribution compared to the original training samples,
the efficiency of model detection will decrease when it encounters new malware.

e The task of correctly calculating the degree of threat in an attack using ML [48]. When
developing an IDS based on ML, it is necessary to correctly calculate the degree of threat
to the protected NI.

In addition to general tasks, there are also specific tasks: since each group and type of malware
requires its own specific detection methods [49]-[50].

e Detection based on signature analysis, where a database of malware hashes is used as a
signature,

e Detection based on Indicator of Compromise (1oC). It is a set of artifacts based on which
malware can be detected: registry branches, loadable libraries, IP addresses, byte
sequences, software versions, date and time triggers, ports involved [51].

e Research based on context triggered piecewise hashing (CTPH), (context triggered
piecewise hashing is a method of calculating piecewise hashes from input data [52]).
Malware developers use various techniques to change the original malware signature to
make hashes harder to detect: encryption, obfuscation, reordering of files and libraries,
re-distribution and code building in order to fool the detection system, giving malware a

T. Jamgharyan 69

new look and changing the hash values. In this case, malware remains undetected for

some time [53].
Various researchers are considering the use of CTPH techniques for malware detection. In [54],
the issue of applying transfer learning to solve the problem of malware domain bias is
considered, and in [55], the issue of automatic malware family identification and classification
through online clustering is considered. But the main issues of preparing malware datasets and
training IDS based on ML remain open.The issue of increasing the performance of an IDS based
on ML with a small set of training datasets remains relevant. In this paper, a method for applying
transfer learning of a capsule neural network with the calculation of CTPH and editing distance
to increase the learning rate and detection of malware is investigated. The Levenshtein method
[56] (Equation 1) and the method using the ssdeep program [57] were chosen as the
mathematical apparatus for calculating the editorial distance. To assess the quality of binary
learning, the Matthews correlation (Equation 2) [58] was used. The source codes of the malware
for creating a set of annotated datasets were taken from open sources. The following malware
was used: mimikatz, athena, engrat, grum, surtr, dyre.

(0, i=0j=0
i, j=0,i>0
J, i=0,j>0
D(i,j) = { min{ (1)

DG,j—1D+1,j>0,i>0
D(@i—1,j) 4+ 14+ mM[] N[,

\ }

Levenshtein editorial distance calculation equation,
where, D - the editorial distance, M, N- the length of strings obtained as a result of CTPH over
some alphabet (in this case HEX), i - remove step from the first line, j-insert into the first line.

o— TP X TN — FP X FN
J(@TP + FP)(TP + FN)(TN + FP)(TN + FN) '

(2)

where,

¢ - Matthews correlation

TP - true positive,

TN -true negative,

FP -false positive,

FN - false negative.

A capsule neural network was chosen as a transfer learning model. The choice of the capsule
network is due to the following reasons:

e the capsule network does not require a large amount of training data, which is critical for
this research,

e the capsule network explores hierarchical relationships, which allows detecting possibly
probable versions, in the presence of a primary code (a fragment of the main code) of
malware,

e the capsule network allows searching even in obfuscated source code with a minimum
malware representativeness value,

70 Research of Obfuscated Malware with a Capsule Neural Network

e the capsule network is the most easily adaptable to changing the learning algorithm
compared to other neural networks.

2. Diagrams of Neural Networks
(M.N)

(M.N.)

(M.N)

Fig.1. Diagram of a capsule neural network.

@ Different memory cell

o Probablistic capsule idden cell

~ Cutput cell

B

Entry node
The nonlinearity function of the capsule network is determined by (Equation 3) [59].

MG S
V; = , 3)
ST s TTsdl (

where, s;- the result obtained in the previous step, v; - the result obtained after applying the non-
linearity. The left side of the equation performs additional compression, and the right side of the
equation performs unity scaling of the output vector.

The trained convolutional neural network (Fig. 2) was chosen as a test to check the
reliability of the output data. As «weight coefficients» of the convolutional neural network, the
value of CTPH was calculated the used ssdeep software.

fl{fq.‘\r‘})

(M.N)

(M .N))

(M .V @

Fig. 2. Diagram of a convolutional neural network.

T. Jamgharyan 71

Different memory cell
Eernel
Match mput output cell

Conwolution hidden cell

S 0006

Cutput cell

— Tnput cutput node

Verification of the results obtained from both neural networks was carried out using
public malware detection services [60]-[61]. The developed software algorithm is shown in
Fig.3.

Transfer datasets for calcolation of editorial distance

r h 4
o Lavesishbein distance Pa—pr: : p.
'S par i synchronizarion of calcularions sdeep
&
v (D) 07
le
<1 ™

P
»| i

T <

P

Filbering 4 dartaset from
O

Capsule newral network Convolurion neural nerwork

3 ; j]I synchronization of calculadons I[
Tuning datasera M:ﬁdﬁmm

"[Reconfiguration of input datasers ¢=1
h
output)

Fig. 3. Algorithm of the developed software.

72 Research of Obfuscated Malware with a Capsule Neural Network

Algorithm operation:

Operations on the input data of the research.
e The dataset generated from the malware source code was obfuscated using various tools [62]-
[63] and prepared for training a capsule neural network (dataset 1).
e The same non-obfuscated dataset (dataset 2) generated from the malware source code was
prepared to train a convolutional neural network.
A total of 1000 annotated datasets of various sizes (20.40, 80, 128, 256, 512, 1024 bytes) were
prepared for mimikatz, athena, engrat, grum, surtr, dyre software.

Steps 1, 2: input of the initial malware dataset into the trained neural networks and the
conversion module,

Step 3: converting the source dataset to javascript object notation (JSON) format and setting the
CTPH step size,

Step 4: calculation of the edit distance by the Levenshtein method,
Step 5: computation CTPH using ssdeep software,

Step 6: comparison of the values calculated by the Levenshtein method and using the ssdeep
software,

Step 7:filtering the training datasets of neural networks from «noise» (the full implementation of
this part of the algorithm is presented in [33]),

Step 8: training capsular neural network,
Step 9 training convolutional neural network,

Step 10 compute the Matthews correlation and resize the training datasets.

» ¢ = —1 the received output data of both neural networks go beyond the value tolerance

» ¢ =1 the resulting outputs of both neural networks are correct (within the permissible
deviation value)

» ¢ = 0 the resulting output of both neural networks is random

Steps 11, 12: reconfiguring the training datasets and resizinge the CTPH.

Table 1 presents the results of calculating the value of CTPH and the editorial distance between
the hashes of the obfuscated source code of mimikatz software using capsular, convolutional
neural networks, as well as ssdeep software.

Table 2 shows the results of calculating the value of the context-piecewise hash of the
obfuscated compiled source code and the editorial distance between the hashes of the mimikatz
software using capsular, convolutional neural networks, and also the ssdeep software.

In the research, datasets used a comparison between files 20-40, 20-80, 20-128, 20-256, 20-
512, 20-1024 bytes, as well as combinations of 40-512, 40-1024, 128-512, 128 -1024 bytes for
mimikatz, athena, engrat, grum, surtr, dyre malware.

T. Jamgharyan 73

3. Results

Table 1.The results of computing the value of CTPH and the editorial distance between the hashes of the
obfuscated source code of mimikatz software

a Percentage of Percentage of
B = malware malware
& £3 | |
g o | 58 samples samples
b 2 | o g| computed using computed
= Z | £2 convolutional using
= | mimikatz file hash values | mimikatz file hash values | = | £ 3 neural capsule
é (20 byte) (512 byte) S| %53 networks neural network
= -LIEJ %‘—8“ Training epoch | Training epoch
o 55
i I R TTN EA O T
b9be58087140f922969¢ | ef73afe0b3862206e112
1| 90523682902436¢34400 | 400dc97a6920c1240ca2 | 0| 10 | 4 | 2| 9 | 8 | 1939
e1077e747c9486dcelbf 081cdfaf631a003a5a5d
2. | 4a820c078fe300a901fb | fa678b52af5c0eb2chd3 | 0| 13 | 6 | 8| 7 | 16)27)42
d86c9ca3861e333dc337 | 72840526d3cechba084e
3. | 6fc5565943551389edd6 | efolaed9cs2cd94sssds | o2 | 20 | 18| 9| 9 | 24)52)78
bd72fdal8edc004d5181 | 783¢9520a25facadf8is
4| b57e48a757ac2ed94444 | 20fc092d7d67e359¢c56 | o0 | 28 |21 |22 24| 8 110112
8ab1d3267a46f953¢73b | ad5233216582956d7b51
5 | 4154p1a261a802493d8 | e9f4bc3763d9305231dc | O | 1 | 3 | 7| 3 | 34 |54 82
dc990c540fc50debfOcd f2ba969ed8f8ecc7ce57
6. c178101ab107acaefofe c54¢39de5333cf0d6a8e 36 23 11 |16 21 16 | 28 | 65
b1370f302083c226f985 | f7fd9ed34bcbead485hd
| c0494a9cef753034ac6d | 5e7clp9fofi3f3ofddba | o | 13 | 10| 9| 12 | 16) 27) 46
9efa06fa6567be9554db f7fd9ed34bc6ead485hbd
8. | 5351d239c0c084306e0 | 5e7c1pb9fofl3f30fddba | oo | 21 | 1o | 15| 17 | 31)46)79
4f5ec65628d2bde662a4 f5cd09h85a44df103b21
9| 08854a41caead8c0f44f | eadcado2cs64fcbiorol | o2 | 64 | 32 30| 42 | 38)37) 48
5329h04a348368967844 | 37ab6e3adachef542099
10| $421453563001ad4ab89 | 4c0d7864125e53f5aaa3 | 0 | 22 | 8 11| 16 | 27)48) 6l
95a56dfdfd7c8550afh8 37a56e3adachbef542099
11| 2b2474916bb63e58bb15 | 4c0d7864125¢53f5aaa3 | oo | 16 | 12 | 13| 15} 27) 41) 68
aecech9dccd29fd5dd9 51168e0c2ab45361cf05
12. | c0559ad62afb84af374b2 | 834a721cddabadsoosbe | o4 | 19 | 11|12 18 | 36 | 491 73
14791ec8ec19ca534367 497a16d6dd757f05fb88
13. | 54f008b8439eca80f00 | 4994c71beas80es7ad1s | 2 | 11 | 18 | 29| 25 | 37 | 49) 68
dbfbOb8c0a28ea8bade c6ca0e98e0a66c45838f
14| 6306f0e8589ee1c310a39 | b254aecd74553850ab01 | o4 | 16 | 14 | 21| 29 | 52) 58) 71
c91e176518b7e42450e2 7ad0cc0f4ba8c767fac?
15. 1 28d45bf31a1b3178240 | foadfrecl92b3a60ecoe | 0 | 18 | 16 | 19| 28 | 29) 43) 68
04b66940a08ac7adb0cd 5db88a72cdcfe90ff987
16. | $19382a816900c256c09 | 1eae5bfdd2b617d73b0a | o/ | 26 | 11 |19| 36 | 39) 56) 73
67b4a269236009940776 | fa926a049a1d9d72126b
171 9e4b40220c8059c219h0 | d07flalb87326b5e3550 | o4 | 41 | 27 | 11| 29 | 26 | 58) 61
c2cdacd22e871ecefl2h 817c64fed50532e58dd2
18. | OcheBcaf4559eecfa08d | 1a8812c65fel0azs0bdo | 0 | 16 | 15|16 26 | 31 |46 | 74
4202fc7001301ec50b1f | 38bcl77d79492834356f
19| 64ca525de6031825787d | 1cceafo120599f41e952 | 20 | 18 | 17 |19 21} 28 137 1 49
2005c47533ch97d72f9 | 818b59add29456248836
20 | 1895ealffe27695063e54 | 864d46c146d9d930dgaz | o' | 10 | 8 | 16| 34 | 24 | 37|58

74

Research of Obfuscated Malware with a Capsule Neural Network

In training epochs 1-3, the results of the capsular neural network are better than the results of

the convolutional neural network and ssdeep software, except for file Ne4 in the dataset, which is
included in the statistical error.

Table 2. The results of calculating the value of CTPH and editorial distance between hashes of the

compiled mimikatz source code.

Percentage of

Percentage of

% o 2 | malware samples malware samples

cgs ° ‘_S = computed using computed using

@ % S kS convolutional capsular

S| mimikatz file hash mimikatz file hash B 53¢ neural neural network

- values values = 8”—3 k networks

= (20 byte) (512 byte) c |8 ¢ | Training epoch Training epoch

2 = |85

2 woRE

2 S0 | m | 00| m
d7e4eabedd0949b8bct | 51f028f6b078f51583¢0

1| f30c7abbdad97b182be8 | a048dobc577b6adelzby | S | 2° m 23 |31 41719 23
2c0e906147ab60e18bd4 | 7f966e5a707dd69c13b5

2| 2699659974a3d298a%¢ | de45c9765a0bea37e6a2 | o0 | 16 m 18142218 119
F76606ch6ac082991eb | fb96549631c835eb239¢

3| 271af5ab7629d592ch04 | d614ccbSch7d295121a | o2 | 28 m 27136 1 45| 16 17) 14
14da593832768f0a08e8 | 72ac7a00a3c2a0a825cd

4 | ecd46363936eef096dcc | 016d7100d587c6ecafas | S0 | 23 m 16|22 | 3418 | 20 16
7f01a23afalbcecdfdbb | 35139ef894b28b73beal

S | 25h953c4f15366eaba51 | 22755166a23933c7d9ch | o | m 3 |4 148 2r | 29 23
1cal2a53c82cdd508054 | 918b1c05e576f4b90fce

6 | bdcdbes256ccddadciae | 15a06bc3442d72852a3¢ | o0 | 48 m 44 | 53 | 61) 34| 31) 28
a7f0499bf3eb6180d4da | 475972balba20f493664

7| 748426822404e46dea13 | dbf5e36clalecod7se58 | S0 | 1° m |1’z 8 23
aec2adacch7ca456a57a | 902a2d132f213700b5de

8| ca406e8f51c206a80143 | fhefers67foscage23da | o0 | 1° m 18|26 2916 | 10 13
582d2ceff8f4f493f3a9 b2fd9a1405ba74fc360e

9| 445c71286255946a7d37 | 1784961176h2b88bT5co | o/ | 39 m 28 | 48 | 57 | 25| 28 | 12
225a879300155282¢138 | c47419fdd4d6fL46e430

101 35149ad63cea1994d02d | 64b9ddb859a250404500 | ° | O3 m 471 40 | 57 | 34 29) A
2f7b14912dddcf7clc7a | b521d7652866027a7e5h

111 ohbag9s5chshi0aha2s7 | 43c6269d7c81ffbsagee | S0 | 2 | 30 | 37) 44) 14 | 19 23
fd5fd2f7953cf5630f74 | 9dedbfalfdb6c90637d3

121 :203337804381367ddd | 5492ecl4ee10a3967997 | >° | OO | 49 | 53 | 67 | 42 | 48 | 34
e88dac72cd8ac64360d9 | 1eb796fd1ff7dda036fc

13, 5fb15e8ea92aa8794f8¢c | a37d0f3laabl9dedabla 371 24 | 29 48 52 17 23 15
efa9lcc773ee2c32babl | 99828f68be57c53ff954

141 otfcegdhBa3760bdas64 | 5f79e32bdb36050bf93b | 52 | 19 | 20129) 37| 13 | 18) 28
f9980d6122acf1bf54a6 | 2400b40333821b00b5d0

15| gea0d15507fbc3cerclf | b7R20f5f0e30ebfo2dd | S0 | °° | 44 | o8 | B3 J 37] 3439
c504d95ce32029¢1150a | dfb380d8b0709104c606

16. | 20dofe36b7boc6ea9546 | 978092c7164160f32887 | o' | ° | 27| % |38 pel 1 s
5156507d0b07bd9eaafe | bd951f174a8f0f211c62

17- | 56815e1a04a0caala8e9 | bcl869d6ofs81788ee5d | o | 48 | 27| 44 | 56 25 | 38 14
14fd3fa5756432336¢73 | b9acd4446a9eel133799f

18. | e56c764751aa6/707f0 | a3dsfedsenniceis7ze | o | YO 4 | € | ¥ | 8 | 10 U
f1d8238cO141746246bf | 1513655057 7bf56bC86

19-1 103008h1be6f87h09f8 | 2b1851e66bb683d373c | oo | O || 48 | 96 | 61 | 32 | 27) 46
50effcaad368f00bfc71l | 49a48ed249c7b8295%a

20- | 105a708ff017f9f95d0 | 85b9470938bbccdcasee | S0 | O | 27 | 38 | 46 | 16 | 28 | 31

T. Jamgharyan 75

In epochs 1-3 of training for compiled software, the results of the capsule neural network are
worse worse than the results of the convolutional neural network and ssdeep software.

. ssdecp
Convolutional Neural Network
Capsule Neural Network

. ssdeep
Convolutional Neural Network
Capsule Neural Network

|||||“|||||||||||||||||||||"||||||||||||I|||||||||||||||||||||I“|||||||||I“||||‘|"|||||||||“||IIII tsattinatillinina |||||||||||||.||||||III.|.||I||I|||||I||||||||||||||I||‘|I|||||||||||||IIIII
426283032 38404244 4648505254 5658 60 6264 66 68 70727476 78 8082 84 86 1 42628 64 6668 70 7274 76 T8 80 82 84 86

12468101214161820222 246810121416 182022 2

Fig. 4. CTPH results of the obfuscated mimikatz Fig. 5. CTPH results of obfuscated and compiled
source code. mimikatz source code.

The use of a convolutional neural network is not always justified, since the degree of detection
is comparable to the degree of detection by ssdeep software. The use of a capsule neural network
for malware detection is justified in the presence of the source code (even in an obfuscated state),
since even after the first training epoch, the detection results are not worse (and in most cases
better) than the detection results using ssdeep and a trained convolutional neural network.

Tables 3 and 4 present the results of the studies of the operation of capsule and convolutional

neural networks, based on datasets obtained from the obfuscated mimikatz source code with
three training epochs and a variable block size of CTPH.

Table 3. Number of detected threats.

% — % —~| The number of samples detected and The number of samples detected and

3 g 3 % classified as threats on different classified as a threat at different Number of
“é & “é & sizes (20, 40, 128 bytes) and three sizes (20, 40, 128 bytes) and three detected but
S8 o8 epochs (I, 11, I11) of training by a epochs (1, 11, 1) of training by a mismatched
S = S ~ capsule neural network convolutional neural network malware
2 2 samples *
CTPN size

(byte) 20 40 128 20 40 128

Tg;'(r)‘c'ﬂg Clbo o e fmpe o fmlel o fm e mpefwmef oo
100 | 100 |7 | 7| 9 |11(213|12|12(15|18|3| 3 |4 |4|6 |6 |9|10| 1 |-| - 1
200 | 200 |10| 11|11 (12|14 |16 (17|17|21|5| 4| 6 (6| 8 | 5 |8| 5|6 |-]1 2
300 | 300 (12|12 |14|16|18|23(28(29|22|8| 7 | 8 |8| 9 |11 |13|15|16|1| 1 2
350 | 350 12|13 |15(15|16|18 (21|26 |25 (7| 7 |11 (10|12 |18 |16/18|19|2| 2 3
450 | 450 [14|16(19(19(22|26(29|34|38|10| 9 |11 (12| 16|18 |18/ 21|20 |2 | 1 4
500 | 500 |14|16 |18 (19|21 |27 (29|33 |36 (11| 10|13 (16| 15| 15(17{19|19|2| 2 4
600 | 600 |22|25|29|30|34|35(39(41|44 (14| 15|11 |19{ 24|26 |20{ 25|26 |3 | 3 3
800 | 800 (37|41 |46 (48|52 |55 |57|57|60 (22| 26|27 (29|34 |37|39/44|45|5]| 4 6
950 | 950 (42|42 |46 (47|58 |60 |66| 68|68 (28| 29 | 28 |31] 33|39 (42|46 |49 |4 | 4 4
1000 | 1000 |42]| 43|47 |50|51 |59 161|65|69 (34| 33|35(30{35|39(49/52|55|5]| 6 3

76

Research of Obfuscated Malware with a Capsule Neural Network

*The number of detected but mismatched malware samples separately detected by both neural
networks. These samples were output to a special dataset and verified by publicly available malware
detection resources.

Table 4. Number of detected threats.

(dataset 2)

Number of datasets
(dataset 1)

Number of datasets

The number of samples detected and
classified as threats at different
sizes (256, 512, 1024 bytes) and three
epochs (1, 11, 111) of training by a

capsular neural network

The number of samples detected and
classified as a threat at different
sizes (20, 40, 128 bytes) and three
epochs (1, 11, 1) of training by a
convolutional neural network

CTPN size
(byte)

256

512

1024

256

512

1024

Number of

detected but

mismatched
malware
samples *

Training
epoch

100 | 100

18| 14

16

14

16

19

8

12 | 14

11

14

11

14

8 | 11

200 | 200

18| 12

12

14

18

19

11

13| 10

4

3

8

11

9 |14

300 | 300

17| 19

16

14

17

12

10

21| 23

10

12

9

8 | 13

350 | 350

18| 18

21

18

21

23

23

27 | 27

7
3
9|11
9115

17

18

14

11| 12

450 | 450

22| 26

28

29

29

34

20

23| 25

15

13

16

16

29| 13

500 | 500

23| 24

29

31

33

30

28

21| 32

12

15

22

25

26 | 25

600 | 600

28| 31

30

32

35

39

34

38 | 41

24

21

28

25

34|31

800 | 800

37| 37

39

41

46

39

42

46 | 49

28

34

25

27

32| 34

950 | 950

48| 53

53

52

58

56

64

65 | 56

30

31

38

38

42| 45

QOO |IN[O NN

1000 | 1000

47|52

51

56

61

60

64

66 | 68

40| 42

46

42

44

44

47

49 | 51

8 | 11 | 12

Fig. 6 shows a report from the virustotal service when examining one of the mimikatz malware
samples detected by neural networks. In particular, the virustotal service did not detect either the
file type or whether CTPH (based on ssdeep) belongs to a particular type of malware.

DETECTION

MD5
SHA-1
SHA-256

Basic Properties

DETAILS

mimikatz json

COMMUNITY

1beda9c64089d0fidcas2abed 94b0b31

bYabtfadfb8b8993eadd9155e12eab976161077c

ba487e07e9dff313159522e3857e481c69a2d6665d2ec122cTef222a8d74764

(/) No security vendors and no sandboxes flagged this file as malicious

bad87e07e9dff3131159522e3857e481c69a2d6685d2ec122cTef222a8d74784

|SSDEEP

12:sadlJBwNJgpXveSinfadviWaD+wzwHrWEVkrEIbC1 B\'.'Z:Sd_mnxeTP\«."wLTiP'.‘.z 1

TLSH
Magic
File size

T10FFO0ES2187BCEASC2958A5BBT4D680BB5AT15AB0B08F70T2F36A4A0601E110EBAS2DE

data

512 B (512 bytes)

Fig. 6.Virustotal service report.

T. Jamgharyan

77

Tables 5 and 6 present the results of the studies of the operation of capsule and
convolutional neural networks, based on data sets from the obfuscated compiled code of the
mimikatz software.

Table 5. Number of detected threats.

2 &
:18), —_ :18), —~| The number of samples detected and The number of samples detected and
3 g 3 % classified as threats at different classified as a threat at different Number of
"§ k4 "§ k4 sizes (20, 40, 128 bytes) and three sizes (20, 40, 128 bytes) and three epochs | detected but
23 23 epochs (1, 11, I11) of training by a (1, 11, 11) of training by a convolutional | mismatched
ET| ET capsular neural network neural network malware
z z samples *
CTPN size
(byte) 20 40 128 20 40 128
raining |y e fw o e foepe o bw o weo fowefo|o
epoch
100 | 100 (2| 1|2 (3|2 |3 (3|4 |4 |2|2|3|3|3|4|5]2][3]|-]-1]-
200 200 {32 | 3|34 |2 |23 |3 (1|12 2(3|2|4]3]|4]|-]- -
300 | 300 (3| 4|4 |44 |5|3|5|5|2|3|3|4|3|4|4|4|4)|-]-1]1
3%0 | 350 (3| 3|4 |4|5|5|5|6|6|3|3|3|3|4|5|5|4|4|-]1]1
450 | 450 |4 5| 5|5/ 6| 6|6|8|9|3|4|4|4|5|6|5|7|7|-]1] -
500 | 500 (3| 5|5|5|6 |8 |8|9|11|4|4|5|5|7]9|9|10|{10|-]2]2
600 600 |5/ 6| 6 |6| 8| 9 |11|11(12|5|4 | 7 |7| 9 |11|10j11|10| 1| 1 1
800 | 800 (7| 6|7 |7|8|11|13|14|14|6| 8| 9|8 8|9 |8|11|13|2| 1] 2
950 9%0 |99 |10|11| 9 |11 |12|15(15|8|10| 10 (11|13 |15|14|15|17|2| 2| 3
1000 | 1000 [11| 13| 14 (14|14 | 15|17 19|18 |10| 11|11 |11| 13|16 (18|21 |23 |2 | 4 | 4
Table 6. Number of detected threats
% - % —~| The number of samples detected and The number of samples detected and
3 g 3 % classified as threats at different classified as a threat at different Number of
"§ k4 "§ &| sizes (256,512, 1024 bytes) and three | sizes (256, 512, 1024 bytes) and three detected but
28 &8 epochs (I, 11, I11) of training by a epochs (1, 11, 1) of training by a mismatched
S = S = capsular neural network convolutional neural network malware
z z samples *
CTPN size 256 512 1024 256 512 1024
(byte)
raining by P oo e fw o o fw oo |
epoch
100 100 |9 11|12 |12|14|14|15|16|16|8 | 8 |10 (11|13 |12 |11|11|10| - -
200 | 200 (10| 12|13 |14|13|13|15(15|12(11|10|11|12|11 |13 (12|13 | 14| - 1
300 | 300 (11|12 |12 |15|17 (181918 |18 (10| 12|13 |12|14|14|15|14 | 14| - - -
350 | 350 (111112 (12|12 |16 (15|11 |14 (14|12|13|15|/15|15|18|19 21| - 1 2
450 | 450 |13|12|13|13|15|15|16| 17|18 11|12 |13 (14|16 |16 (15|17 |19 | 2 3 3
500 | 500 |12| 14|14 (14|15|14|15| 1112|1110 |11 |13| 14|12 |15|15|16| - 1 2
600 | 600 |10| 11|12 ({10|12|12|12|14|13|19|10|11|12|10|10|14(15|14| 1 2 2
800 | 800 |12| 14| 1515|1617 (17|18 |18 |16| 14 |15|15|16| 17|18 21|19 | 2 3 3
950 | 950 |12|13|12({14|15|15|16|18|19|12|12|13|14|15|16|12|15|16| 2 3 4
1000 | 1000 |12| 12|13 |13|15|16|16| 17|18 (11|10 | 12 (15|16 | 17|18 19| 20| 2 2 3

78 Research of Obfuscated Malware with a Capsule Neural Network

Given the malware source code (or fragment), the capsule neural network performs better
than the convolutional neural network in detecting obfuscated malware. But when compiled, the
detection performance of the capsular neural network decreases. Also, both neural networks
separately detected a small set of data and software fragments classified as malware. Figures.
[7]-[12] show a visualization of the output data of a capsule neural network with 3 training
epochs and CTPN datasets, 20, 40, 80, 128, 256, 512 bytes.

@ o b oo T .2 e
e o .. o 1® r ° =2 ®e ° °
® ® z .l .o = L] P " = . o A ° ° 2
e ® o 7 o o L) o - =
e ° o=—90-0—xO® o—¢ o= o ~ . ° ©
® e @ P ry ® 9 o °
L ° ® L L4 ¢ o - © ° o e e
o« %) i) =% ey e o
@ ° < ° % °
o= ® P Wele - e °
:,c;u :
o
@ athena @ athe
S —
Fig. 7. Visualization of malware detection results Fig. 8. Visualization of malware detection
by capsule neural network. by capsule neural network.
(I training epoch, CTPH size 20 bytes) (I training epoch, CTPH size 40 bytes)
:venih‘lc'i?duul\(t
@ dyre
[B0
or:
o
Fig. 9. Visualization of malware detection results Fig. 10. Visualization of malware detection
by capsule neural network. by capsule neural network.
(11 training epoch, CTPH size 80 hytes) (11 training epoch, CTPH size 128 bytes)
° 2 & ° : ° L] : ° = ° = 3 o. _ y .o X
L.evcnsh’!lvindlsl l:-(nshl(mﬂ-“.m(t
®d -3
@ g °
@ ahe @
@eng T

Fig. 11. Visualization of malware detection results Fig. 12. Visualization of malware detection results
by capsule neural network. by capsule neural network.
(11 training epoch, CTPH size 256 bytes) (11 training epoch, CTPH size 512 bytes)

T. Jamgharyan 79

With an increase in the size of the CTPH files (interval 256, 512, 1024 bytes) for training the
capsule network, the increase in the detection of the number of malware code fragments is
insignificant (0.3-0.5%, Fig. 7, Fig. 8, Table 6) in contrast to files 20 , 40, 128 bytes (12-14%
increase). But increasing the size of the CTPH file allows increasing the editorial distance
(Figure 9-12) to granularly group malware by type.

4. Conclusion

This paper proposes the use of transfer learning of a capsule neural network to detect obfuscated
malware. Convolutional and capsule neural networks were trained on the same datasets. The
source codes of mimikatz, athena, engrat, grum, surtr, dyre malware were used as datasets.
When building an intrusion detection system using neural networks, their complex application is
necessary. Annotated malware datasets are critical when training neural networks. The use of
transfer learning of a capsule neural network to detect malware is justified if the source code of
the malware or its fragments (preferably the first versions) is available. In this case, the neural
network detects malware, even with its high degree of obfuscation. But in the absence of source
code, the effectiveness drops, yielding to «standard» means of detecting malware. The use of the
CTPH method for generating «weight» coefficients of a neural network is most effective with a
small file size of CTPH.

Increasing the editorial distance increases the selectivity of detecting different types of malware.

References

[1] D. Ashok Kumar and S. R.Venugopalan, “Intrusion Detection Systems: A Review”
International Journal of Advanced Research in Computer Science, vol. 8, no 8, pp.356--
370, 2017.

[2] O. Shelukhin, D. Sakalema and A.Filinov, Detection of intrusions into computer
networks. Hot line-Telecom, 2018.

[3] S. Survey and D. Usha, “A survey of intrusion detection system in IoT devices”,
International Journal of Advanced Research (1JAR), vol 6, pp. 23-31, 2018.

[4] H.Hindy et al., “A taxonomy of network threats and the effect of current datasets on
intrusion detection system”, arXiv preprint arXiv:1806.03517, 2020.

[5] Tuan-Hong Chua and Iftektar Salam, “Evaluation of machine learning algorithms in
network-based intrusion detection system”, arXiv preprint arXiv:2203.05232, 2022.

[6] Snort intrusion detection and prevention system official website. [Online]. Available
https://www.snort.org/

[7] Suricata intrusion detection and prevention system official website. [Online]. Available
https://suricata.io/

[8] Zeek an open source Network Security Monitoring tool system official website.
[Online]. Available https://zeek.org/

[9] Cisco NGIPS system web pages.
[Online]. Available https://www.cisco.com/c/ru_ru/products/security/ngips/index.html

[10] F.Maymi and S.Harrris, CISSP, Exam Guide, Ninth Edition, Mc Graw Hill, New York,
San Prancisco, Singapore, Sydney, Toronto, 2022.

[11] C. Chio and D. Freeman, Machine Learning and Security, O'Reilly® |,
BostoneSebastopole Tokyo, 2020.

https://www.snort.org/
https://suricata.io/
https://zeek.org/
https://www.cisco.com/c/ru_ru/products/security/ngips/index.html

80

[12]
[13]
[14]
[15]
[16]
[17]

[18]

[19]

[20]
[21]
[22]

[23]

[24]

[25]
[26]

[27]

[28]
[29]
[30]
[31]
[32]
[33]
[34]

[35]

Research of Obfuscated Malware with a Capsule Neural Network

M. Collins, Network Security. Through Data Analysis, O'Reilly® (DMK press), 2020.
ISO/IEC 7498-1, Second edition 1994-11-15. Corrected and reprinted, 1996.

MITRE ATT&CK® official website. [Online]. Available
https://attack.mitre.org/matrices/enterprise/

CVE cybersecurity web pages. [Online]. Available

https://cve.mitre.org/index.html

OWASP Cheat Sheet Series. [Online].Available
https://cheatsheetseries.owasp.org/cheatsheets/Attack_Surface_Analysis_Cheat_Sheet.html

A. Cheremushkin, “Cryptographig protocols: Main properties and vulnerabilites”,
PDM , vol.2 appendix, pp.115-150, 2009.

T. V. Jamgharyan and V.H.Ispiryan, “Model of generative network attack”

Proceedings of 13" International Conference on Computer Science and Information
Technologies (CSIT), Yerevan, Armenia, pp. 90-94, 2021.

A. Ul Haq et al, “Addressing tactic volatility in self-adaptive systems using evolved
recurrent neural networks and uncertainty reductions tactics”, arXiv preprint
arXiv:2204.10308v1, 2022.

S. Das, “FGAN: Federated generative adversarial networks for anomaly detection in
network traffic”, arXiv preprint arXiv:2203.11106v1, 2022.

Sk.Tanzir Mehedi, “Dependable intrusion detection system for iot: a deep transfer
learning —based approach”, arXiv preprint arXiv:2204.0483v1,2022.

I. Panagiotis et al, “Securing the Smart Grid: A Comprehensive Compilation of
Intrusion Detection and Prevention Systems”, DOI 10.1109/Access, 2017.

A. S. Dina et al , “Effect of balancing data using synhthetic data on the performance
machine learning classifiers for intrusion detection in computer networks”, arXiv
preprint arXiv:2204.00144v1,2022.

T.Nathuya and G.Suseendram, An Effective Hybrid Intrusion Detection System for Use
in Security Monitoring in the Virtual Network Layer of Cloud Computing Technology,
Springer Nature, Singapore, 2019.

E.Peclofske, “A robust cubersecurity topic classification tool”, International Journal of
Network Security & Its Application (IJNSA), vol.14, Ne 1, pp. 1-25, 2022.

G.Renjith et al, “GANG-MAM: GAN based enGine for modifying android malware”
arXiv preprint arXiv: 2109.13297, 2021.

F.Zhong et al, “MalFox: Camouflaged adversarial malware example generation based
on Conv-GANSs againist black—box detectors”, arXiv preprint arXiv: 2011.01509,
2021.

B.E.Zolbayar et al, “Generating practical adversarial network traffic flows using
NIDSGAN”, arXiv preprint arXiv: 2203.06694v1, 2022.

Md.Ariful Haqua, R.Palit, “ A review on deep neural network for computer network
traffic classification”, arXiv preprint arXiv: 2205.10830v1, 2022.

D. Kus et al, “A false sense of security? Revisting the state of machine learning-based
industrial intrusion system”, arXiv preprint arXiv: 2205.09199v1, 2022.

S.Layeghy and M. Portmann, “On generalisibility of mashnine learning-based network
intrusion detection systems”, arXiv preprint arXiv: 2205.041112v1,2022.

S.Sohail et al, “Explainable and optimally configured artifical neural networks for
attack detections in smart homes”, arXiv preprint arXiv:2205.080443v1,2202.

T. Jamgharyan, “Research of the data preparation algorithm for training generative-
adversarial network”, Bulletin of High Technology, no. 19, pp. 40-50, 2022.

Kaggle datasets base website. [Online]. Available

https://www.kaggle.com/datasets

Registry of Open Data on AWS website. [Online]. Available

https://attack.mitre.org/matrices/enterprise/
https://cve.mitre.org/index.html
https://cheatsheetseries.owasp.org/cheatsheets/Attack_Surface_Analysis_Cheat_Sheet.html
https://www.kaggle.com/datasets

T. Jamgharyan 81

https://registry.opendata.aws/

[36] Public data sets for testing and prototyping. [Online]. Available

[37]

[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]

[48]

[49]
[50]
[51]

[52]

[53]

[54]

[55]
[56]

[57]

[58]

[59]

https://docs.microsoft.com/en-us/azure/azure-sql/public-data-sets?view=azuresq|

Datasets base website. [Online]. Available

http://apolloscape.auto/

Datasets of overhead imagery. [Online]. Available http://xviewdataset.org/#dataset
Google open images dataset. [Online]. Available
https://ai.googleblog.com/2016/09/introducing-open-images-dataset.html
MalwareBazaar Database. [Online]. Available https://bazaar.abuse.ch/browse/

Malware database. [Online]. Available http://vxvault.net/ViriList.php

A free malware repository for researches. [Online]. Available https://malshare.com/
Malware repository. [Online]. Available https://avcaesar.malware.lu/

Malware repository. [Online]. Available https://www.virusign.com/
Viruses repository. [Online]. Available https://virusshare.com/
A live malware repository. [Online]. Available https://github.com/ytisf/theZoo
F.Wang et al, “An efficient unsupervised domain adaptation deep learning model for
unknown malware detection”, International conference on security and privacy in new
computing environments (SPNCE), vol. 423, pp. 64 -76, 2022.

G. Pitolli et al, “MalFamAware: automatic family identification and malware
classification through online clustering”, International Journal of information security
vol. 20, pp. 371-386, 2021.

S. David, R. Anand, V. Jeyakrishnan and M Niranjanamurthy, “Security issues and

privacy concerns in industry 4.0 applications”, Wiley, Beverly, 2021.

I. Priyadarshimi and R.Sharma, “Artifical Intelligency and Cybersecurity”, CRC Press
Taylor&Francis Group, New York, 2022.

Encyclopedia by Kasperky. [Online].Available
https://encyclopedia.kaspersky.ru/glossary/indicator-of-compromise-ioc/

Nettitude labs web site. [Online].Available
https://labs.nettitude.com/blog/context-triggered-piecewise-hashing-to-detect-malware-
similarity/

S.Kumar and Sudhakar, “MCFT-CNN: Malware classification with-tune convolutional
neural networks using traditional and transfer learning in loT”, DOI 10.1016

Future Generation Computer systems, vol.25 pp. 334-351, 2021.

C.Rong et al, “TransNet: Unseen malware variants detection using deep transfer
learning”, International Conference on Security and Privacy in communication systems
(LNICST) vol.336, pp.84-101, 2020.

R.Mortier et al, “Distributed data analysis”, arXiv preprint arXiv:.2203.14088.2021.
D.Pogorelov et al, “Comparative analysis of the Levenstein and Dameray-Levenstein
edit distance algorithms”, Processing of Moscow State University after N.Bauman, vol.
31, pp. 803-811, 2019.

ssdeep software project website. [Online].Available

https://ssdeep-project.github.io/ssdeep/index.html

Professional information and analytical resource dedicated to machine learning, pattern
recognition and data mining. [Online].Available
http://www.machinelearning.ru/wiki/index.php?title=%D0%9A%D0%BE%D1%80%D1%80%D0
%B5%D0%BB%D1%8F%D1%86%D0%B8%D1%8F_%D0%9C%D1%8D%D1%82%D1%8C%D1%SE
%D1%81%D0%B0

Capsule networks paperspace. [Online]. Available

https://blog.paperspace.com/capsule- networks/

https://registry.opendata.aws/
https://docs.microsoft.com/en-us/azure/azure-sql/public-data-sets?view=azuresql
http://apolloscape.auto/
http://xviewdataset.org/#dataset
https://ai.googleblog.com/2016/09/introducing-open-images-dataset.html
https://bazaar.abuse.ch/browse/
http://vxvault.net/ViriList.php
https://malshare.com/
https://avcaesar.malware.lu/
https://www.virusign.com/
https://virusshare.com/
https://github.com/ytisf/theZoo
https://encyclopedia.kaspersky.ru/glossary/indicator-of-compromise-ioc/
https://labs.nettitude.com/blog/context-triggered-piecewise-hashing-to-detect-malware-similarity/
https://labs.nettitude.com/blog/context-triggered-piecewise-hashing-to-detect-malware-similarity/
https://ssdeep-project.github.io/ssdeep/index.html
http://www.machinelearning.ru/wiki/index.php?title=%D0%9A%D0%BE%D1%80%D1%80%D0%B5%D0%BB%D1%8F%D1%86%D0%B8%D1%8F_%D0%9C%D1%8D%D1%82%D1%8C%D1%8E%D1%81%D0%B0
http://www.machinelearning.ru/wiki/index.php?title=%D0%9A%D0%BE%D1%80%D1%80%D0%B5%D0%BB%D1%8F%D1%86%D0%B8%D1%8F_%D0%9C%D1%8D%D1%82%D1%8C%D1%8E%D1%81%D0%B0
http://www.machinelearning.ru/wiki/index.php?title=%D0%9A%D0%BE%D1%80%D1%80%D0%B5%D0%BB%D1%8F%D1%86%D0%B8%D1%8F_%D0%9C%D1%8D%D1%82%D1%8C%D1%8E%D1%81%D0%B0
https://blog.paperspace.com/capsule-%20%20%20networks/

82 Research of Obfuscated Malware with a Capsule Neural Network

[60] Free service that analyzes malware. [Online].Available https://www.virustotal.com/

[61] Malware scanning platform. [Online].Available https://www.herdprotect.com/

[62] “Dotfuscator” software web pages. [Online].Available https://docs.microsoft.com/ru-
ru/visualstudio/ide/dotfuscator/capabilities?view=vs-2022

[63] “Guardsquare” software web site. [Online]. Available
https://www.guardsquare.com/proguard

Guuyunijught ugpnuught gwigny oppniuljuggus Juwuwptn
dSpwgpuyhtt wywhnydwb hknwgnunnid

Fhunip 9. Quunupjui

Zuyuunnwtth wqquyhtt wnjhnbuthjuijuwt hwdwjuwpui
e-mail: t.jamgharyan@yandex.ru

Udthnthnid

Ubkppluniddwt hwjnbwpbpdwt b juwupwpgbjdwt hwdwlwupgbipp guugujht

tupujupniguéph widunwugnipyutt wywhnyuwt wbpwdwubh pununphst b
<Fuuwlui»r tbpniddwt hwyntwpbpdwt b jubjwpgbpdwt hwdwlupgbpp sk
Jupnnutnud hwynbwpbpt] wjiywhuh uwwywpbwihptbp, npnup tjwpugpus sku
huwdwlwnpgh Juunuutpnid: Fugh wyy, twb pug fuughp Ehwudwpynud opbnruljughwjh
tupupyyus Juwuwptp Spugpuhtt mywhnydwb huyntwpkpnidp:
Opwgpuyhtt wwywhnyuwt b gwugujhtt Gupwlwnniguéph wbdunwbqnipniuny
qpunynn htwnwgnuinnubpp, tnpdnwd Eu wpdws puunhpp nsk] dbpktwjuuu
niunigdwt dhongny: Zknnwgnunipniunud thpuyugus tu hnjuwmbtgdwut ntunigdw
Ubpnnny niumguiijwd Juyuniyywyhtt uEpntwhtt gwugh gniguptpué wpmyniupubpp
Juwuwpkp Spugpujhtt wywhnydwt hwynbtwpbptint hwpgnud: ZEnwgnunnipniup
hpuwywtwgyt) E Juuwuwptp spugpuyjhtt wyuwhnydwt tyuytinuwghtt Ynnh hhdw Jpw,
Yhpwntiny hwdwnbpunw-duubtwngws hbpwdnpdwt dbpnnp: duwuwpbp
dpwgpuyhtt wywhnydwt Euljtnnughtt Ynnbkpp unwgdl] Bt hwbpwhwuwubh
wnpnipubphg: Ywyuniywyht ubjpntuwghtt guugh ntunmdbtwuhpnipjutt wpyniupubpp
hudtdwwnyt] Eu twpwwbu niunguitjws thwpnypujhtt thpntuhtt guigh b
Juwuwpkp Spwgpuyhtt | wwwhndwt huwynbwpbpbint hwbpwhwuwubh
hudwguwugujhtt Swowynipjnitiitnh dhongny: UswljJwé spwgpuyhtt wwyywhnddw
Ejujtinughtt Ynnbpp, twpuybu niunigutdws dngblp, nyjjujuiph hwjupwsniutph
Uvh dwup, hnpJuwénmd subpwndwé htwnwgnuinipyutt wpnyniupttpp hwuwubh tu
https://github.com/T-JN Juypniu:

Pwbwh pupkp Guwumjught Gbjpnbughl gubg, whnpny hbowynpnud,
ubppniddwt hwynbwpbpdwt hwdwlwpg, pdpugpujut hbkpwynpnynil, gubguyht
Eupwljunnigusp:

https://www.virustotal.com/
https://www.herdprotect.com/
https://docs.microsoft.com/ru-ru/visualstudio/ide/dotfuscator/capabilities?view=vs-2022
https://docs.microsoft.com/ru-ru/visualstudio/ide/dotfuscator/capabilities?view=vs-2022
https://www.guardsquare.com/proguard
https://github.com/T-JN

T. Jamgharyan 83

HccaenoBanne 00pycHpoBaHHOI0 BPEAOHOCHOI'0 IIPOrPaAMMHOI0
o0ecreYeHus ¢ MOMOLUBIO KAIICYJIbHON HEHPOHHOU CeTH

Tumyp B. [Ixxamrapss

HarmmonanpHbIM MONMUTEXHUUECKUI YHUBEPCUTET ApMEHHN
e-mail: t.jamgharyan@yandex.ru

AHHOTALINA

CucreMbl O6Hap}I)KCHI/I$I H TpCAOTBpAIICHUA BTOp)KeHI/II\/'I SIBJIIIIOTCA HEOTHBEMIIMMbBIM
KOMITOHEHTOM Oe3omnacHocTu ceteBoil MHppacTpykTypsl. Knaccuueckue cucremMbl 0OHapYKEeHUSI
U MPENOTBPALECHHS] BTOPKEHUN HE B COCTOSIHUM OOHApYXHUTh Yrpo3y HE ONMUCaHHYIO B Habope
mpaBmwil. Takke HEpeUIeHHOM TMOJHOCTBIO 3aJayeil sBJseTcsA: 3ajaya OOHapy>KeHus
BPEJAOHOCHOTO MTPOrPaMMHOT0 0OecTieyeH sl MTOBEPrHYTOro 00 yCKaIuHu.

UccnenoBatemn B chepe 0€30MacHOCTH MPOTPAMMHOTO OOECMEYeHUsT U CETEeBOU
NHudpacTpyKTyphl NBITAIOTCS PELIUTH JaHHBIE 33J]a4l C TIOMOILbIO MAITUHHOTO 00YyUEHUSI.

B paGote npencraBieHbl pe3yiabTaThl UCCIEIOBAaHUS HCIOIb30BaHUS TpaHchepHOro oOydeHHs
KarcyJlbHON HEMpPOHHOHN ceTu Al OOHapy>KEHUs BPEIOHOCHOTO MPOTrPaMMHOI0 oOecrieueHusl.
HccnenoBanne NpOBOJMIOCH HA OCHOBE MCXOAHOTO KOJAA BPEJOHOCHOIO IPOrPAMMHOIO
o0ecreyeHns C HCMOJIb30BAaHUEM METO/la KOHTEKCTHO-KYCOUHOro XemwupoBaHus. McxonHsle
KOZBl BPEIOHOCHOTO IPOrpaMMHOTO oOOecreyeHHus ObUIM MOJY4eHbl U3 OOLIENOCTYNHBIX
UCTOYHHUKOB HporpaMMHoro oOecneueHus. IIpoBepka pe3ynbTaToB OOy4deHHs KalCylbHOMN
HEUPOHHOW CETH MPOBOJUIIACH C UCIIOIH30BaHUEM OOYUYEHHOW CBEPTOYHOW HEUPOHHOU CETH M
OOIIEeIOCTYIHBIX HCTOYHHMKOB TECTHPOBAHMSA BPEAOHOCHOTO IPOTPAMMHOIO OOecredeHusl.
HcxonHple Koapl pa3paOOTaHHOTO MPOTrPaMMHOIO 0OECHeuYeHMsl, 4acTb HaOOPOB IAHHBIX MJIS
oOy4yeHus HeilpoceTH, pe3ysbTaThl UCCIEIO0BaHUS HE BHECEHHBIE B CTaThIO IPEJCTABICHBI IO
anpecy https://github.com/T-JN

KiroueBble ciioBa: KarcyiabHas HEHPOHHas CETh, HEUETKOE XJIIMPOBAaHUE, CUCTEMA
oOHapyXeHHs BTOPKEHUH, peJaKLINOHHOE PACcCTOsSHUE, TpaHC(hepHOe 00yUeHHUE.

https://github.com/T-JN

