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Abstract

In this paper we give an algorithm for inverting complex tridiagonal Hermitian
matrices with optimal computational efforts. For matrices of a special form and, in
particular, for Toeplitz matrices, the derived formulas lead to closed-form expressions
for the elements of inverse matrices.
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1. Introduction

Tridiagonal matrices are encountered in many areas of applied mathematics. Such matri-
ces are of great importance in finite difference and finite element methods for differential
equations. The construction of cubic splines is reduced to solving systems with tridiag-
onal matrices. Symmetric matrices are reduced to tridiagonal matrices by the similarity
Householder transformation (see [1, 2, 3], for instance). Other examples can be cited.

There is a well-known fast numerical method for solving systems with tridiagonal matri-
ces. At the same time, the analytical matrix inversion is also of certain interest (see [4, 5, 6],
for instance). For tridiagonal matrices of special types, this leads to closed-form expressions
for the elements of inverse matrices [7, 8, 9, 10]. This is undoubtedly useful in theoreti-
cal considerations. Further, explicit formulas can be a part of more general computational
procedures. There are other reasons as well.

In this article, we focus our attention on complex Hermitian tridiagonal matrices. We
will construct a fairly simple computational procedure, consisting of a sequence of recurrence
relations, leading to the calculation of the elements of the inverse matrix. In special cases, in
particular for Toeplitz tridiagonal Hermitian matrices, the procedure can become the basis
for deriving closed-form expressions for the elements of the inverse matrix.

We note right away that throughout this article zZ stands for the complex conjugate of
the complex number z.
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Let a nonsingular tridiagonal Hermitian matrix

a; b
by ay by 0
A= (1)
0 bn—o apn_1 bp_1
L bn_l an m
be given, where a;, i = 1,2,...,n are real numbers and b; # 0 for i = 1,2,...,n— 1. In

accordance with the accepted notation, A = A*. We assume that n > 3. The requirement
that the subdiagonal (superdiagonal) elements of the matrix be nonzero is not restrictive.
Indeed, if some of these elements are equal to zero, the problem of computing the inverse
matrix is decomposed into several similar problems for tridiagonal matrices of lower order.

2. Preliminary Calculations

Let A™' = [%jj]nxn. This matrix is also Hermitian. In our considerations we will use the
notation
X0 = (21205 70s), j=1,2,...,n

for the columns of the inverse matrix.
The matrix A can be represented as a product

A=DB (2)
of the matrices -
D= dzag [bl, bl, bg, ey bn_g, bn—l] (3)
and i i
p 1
1 fo o 0
1
B- fo o , (4)
O 1 fn—l In—1
I 1 q
where ;
fi: aiagi: Zal:27377n_1ﬂp:@7q: o (5>

bi—1 bi—1 b1 bn-1
Having a nonsingular matrix B defined in (4), let us consider the following system of
linear algebraic equations
D + 2 = @
pi—1+ fiti + gipiy1 =0, 2<i<n-—1 (6)
fin—1 4 qpin = 0,
where we will set the right-hand side « of the first equation a little later. It is easy to verify
that regardless of the choice of «, the recursively defined quantities
pn =1, pn—1=—q,

. (7)
pic1 = —filti — Gitiz1, t=n—1n—2,...2
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satisfy all equations of the system (6), starting with the second one. Then, we choose the
quantity « as follows:

o= pu1 + . (8)

Remark 1 Since, by assumption, the matriz B is nonsingular (it follows from (2)), then
a # 0. Indeed, otherwise we would have obtained that the homogeneous system (6) has a
nontrivial solution. Further,

a 1
a =ty A+ iy = —(aip + biia).
by by

Therefore
aipiy + bipp # 0
as well.
Thus,
a=b't, (9)
where
t= (alul -+ bLU/Q)il. (10)

Let us introduce the vector
r = [y )"
the components of which are specified in (7). As follows from (4), (6) and (9),

Br) =1a0...0]" = ae® = byt e,

where e(!) = [10...0]7. Further, on the basis of factorization (2) of the matrix A, we obtain
the equality
Ar®W = DBrW = b1 71 De® = ¢~1eW; (11)

here we have used the obvious equality De(!) = b1e(V) (see (3)). The equality (11) allows to
compute the first column of the inverse matrix A~!. Indeed, from this equality we find that

A7te® = M),
Since A~'e® = XM then XM = ¢t or
Ti1 :tui, 1= 1,2,...,7’L. (12)

Thus, we have found the first column of the inverse matrix. Similarly, we can calculate
the last column of the matrix A~!. For this purpose, let us consider the linear system

yu%t + 1y = 0
Vi1 + fil/i + giViy1 = 0, 2 S 1 S n—1 (13)
Vn—1 + qVn = /87
where we will set the right-hand side £ of the last equation later. Regardless of the choice
of B, the recursively defined quantities
vy = ]-7 Vo = =D,
1 . (14)
Vir1 = —*(Vifl + fil/i), 1 = 2,3, e, = 1
g;

)
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satisfy the first n — 1 equations of the system (13). Then we choose the quantity 3 as follows:
B = Vn1+qun. (15)

Since the matrix B is nonsingular, then 5 # 0 (see Remark 1). Substituting the expression
of the quantity ¢ given in (5) into (15) yields
an, 1 —
5 =Vp_1+ Vp = (bnflynfl + anyn)-

bnfl bnfl

Thus,

B = bp—1 9717 (16)

where

0 = (bp_1Vp_1 + anvy) ™"

Now let us introduce the vector
rn = vy v)T,

the components of which are specified in (14). From (4), (13) and (16) we find that

Br™ =10,...08]" = ge™ = o 0™

)l

where ¢™ = [0...01]”. Having the factorization (2) of the matrix A, we obtain the equality

Ar™ = DBr™ =5~ 7 971 De™ = g™
From here,
At = g™
Since A~'e(™ = X then X = gr(™ or
Tin =0v;, 1=1,2,...,n. (17)
Let us refine the last expression. From (12), z,; = tu, = t. Further, according to (17),

Z1p = O = 0. Since A™! is a Hermitian matrix, then 1, = Z,;. Consequently, § = £, and
we come to the conclusion that

Tin =1y, 1=1,2,...,n. (18)

So, we have found the first and the last columns of the Hermitian matrix A~!. These
are expressions (12) and (18). Taking into account that v, = 1 and p, = 1, we write these
elements in the form of

Ty = tTT, T = thnY;, 1=1,2,... n. (19)

Moreover, the diagonal elements x1; = tu 77 and x,, = t iV, are real numbers. Therefore,
we can write x,,, = tu,7, as well.
Looking ahead, we say that in the next section we will prove that the quantities

tvg, i=2,3,...,n—1 (20)

are the remaining diagonal elements of the matrix A~!. To do this, here we first establish
that the quantities (20) are real numbers (naturally, without assuming that they are somehow
related to the matrix A1),

Let us introduce into consideration the quantities

R; = b1 (tivi) + b (tpiams), i=2,3,...,n—2. (21)
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Lemma 1. The quantity Ry is a real number.
Proof. Since v; =1 and v5 = —p (see (2.13)), then
Ry = t(by 1o + bypn ) = tby(pa — ppa ).
Further, taking into account the equalities (8) and (9), we get
Ry =ty (v — 2ppuy) = thyar — 2pby (tpy) = 1 — 2aq (tuy).
The quantities a; and tu; are real numbers, so R, is also a real number. O
Lemma 2. The quantities R; from (21) satisfy the relations
Ri=—-Ri 1 —2a; 1 (tpiav—1), i=3,4,...,n—2. (22)

Proof. From (6) we have the equality

pi-2 + ficipi-1 + gi-1pi = 0.

Using formulas (5), let us write this equality in the form of

bi—apti—2 + ai—1pti—1 + bi—1p; = 0.
Multiplying both parts of the last equality by t7;—7, we get that
bi—1 (tpvis1) = —bi—a(tpi—o¥i1) — i1 (tpti1 V1) (23)
Similarly, from (13) we have the equality
Viea + ficvir + gicavi = 0,

which can be written as follows:

bi—oVi—3 + a;—1V;i—1 + b7 = 0.
Multiplying both parts of this equality by tu;_; yields
bi—1(tia7;) = —=bi_o(tpi—1Vi—2) — a;—1(ti—1vi—7). (24)
The relation (22) follows directly from the equalities (23) and (24). O
Lemma 3. The quantities tu,v;, +=2,3,...,n —1 are real numbers.

Proof. Consider first the quantity tusvz. Since puy + pg = « and vy = —p (see (6) and
(14)), then

tpas = t(ppa — )b = (pP)(tp) — tap.
Further, using the equality (9), we obtain that

tpas = (pp)(tpn) — Ii = (pp)(tp1) — bcfbl

Thus, the quantity tus7; is a real number.
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Next, consider the quantity tusvz. As follows from (6) and (13),

_ ay__ bi__

= ——"llg— —l, V3= —=U =7
M3 M2 b2M1 3 by 2 — b2 1-

Proceeding from these equalities, we get that

1
tusvz = boba [GQ(WQVQ) + b1by (tyvr) + CLQR2}

The quantities tu;77 and tusts are real numbers. According to Lemma 1, the quantity Rs
is also a real number. Therefore, tus7s is a real number as well.

Further reasoning will be carried out by the method of mathematical induction on .
Suppose that for some value of i, where 3 < ¢ < n — 2, it is already known that the
quantities tug7g, k < i and Ry, k < i — 1 are real numbers. From (6) and (13) we have

a; bi—1 i bia

i+l = oM — i1, Vil = — =V — — V1.
Hi+1 biu b, Hi—1 +1 b b 1

Q

Then
1

L1 Vi = b [a?(t,uiﬁi) + bi_1bi1 (ti—17i1) + aiRz} .

Hence, by virtue of the assumptions made and taking into account the assertion of Lemma
2, we arrive at a conclusion that the quantity tu;, 17,77 is a real number. O

Remark 2 We have established that the quantities tu;7;, © = 1,2,...,n are real numbers.
Therefore, tu;v; =t f;v;.

3. The Elements of the Inverse Matrix

Above we obtained the expressions (19) for the elements of the first and the last columns
of the inverse matrix, as well as some auxiliary statements. Based on these results, here we
derive formulas for the remaining elements of the inverse matrix.

Let 2 < j <n —1. We introduce into consideration the vector

T(j) = [E/le/l s ;f,uijyj—la tﬂjﬁj, tﬂj+17ja e ,tﬂnﬁj]T, (25)

where the quantities y; and v; are Speciﬁed in (7) and (14), respectively. Multiplying the
matrix B defined in (4) and the vector r¥) yields

Bri) — 2(1)7 (26)

where the components of the vector
B e N M R O
are calculated as follows:
o) = EH5(pr + 1),

2z =t (Vic + fivi + giviqr), 2<i<j—1,
0; = tmvia + fi(tpvg) + g;(tijamj),
29 = (i1 + fikti + gipir)75,  j+1<i<n—1,
= t(ftn—1 + )75
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Having equations (6) and (13), we conclude that 29 =0for1<i<j—landj+1<i<n.
Thus, . .
29 =100...00;0...07 =5;e", (27)

where ) = [0...010...0]" (the unit is located on jth place).
It remains to clarify the quantity ¢;. Taking into account Remark 2, we have

0; =t + fi(tmys) + g5t amg)

0 o (28)
= P+ fiv) + 9i(tp 7).
Since vj_1 + f;v; = —g;vj41 (see (13)), then
0 = gi(tj” — tvm), 2<j<n—L (29)
Let us get one more representation of the quantity d,. Since g;pj+1 = —pj—1 — fipt; (see (6)),
then from(28) it follows that
0j = L1 — Vs + [ (E v — L)
From here, according to Remark 2, we obtain
Assuming that 3 < j <n — 1, we can write the expression (30) in the form of
0j = ﬁgjfl(tlujyjfl — 1)
i
Comparing with the record (29), we arrive at the relation
1 — .
5]':7]',1, 3§j§n—1 (31)
gj—1
Based on the relation (31), one can easily show that
bi_q b§, if 7 is odd,
s, = Jtimt o2 g1 (32)
bj 1 b162 s lf] is even.
Finally, let us calculate the quantity d2. According to the representation (30), we have
Oy = thpyy —tuth =t + tud
| (33)
= la+tmp=1t(+pm) =ta=>b,
(see (6) and (9)). Thus, from (32) and (33) we conclude that
§;=b_1 ', j=23,.. . n—L (34)

Summing up the results, from (27) and (34) we come to the equality

=Dy eV, (35)
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Proceeding from the factorization (2) of the matrix A and using the equalities (26) and
(35), we have

bj_l_lDe(j) — o)
). Further,

Art) = DBr) = D20 =
(note that De") = b;_jel), which follows from (3)

ATl — p)

Since A~'eV) = X then XU) = . The components of the vector /) are given in (25).
Thus,

LUZJIEFJI/Z, Z:1,2,,j—1 and ‘TU:T,’U/ZE, Z:j,j—i-l,,n (36)
Combining formulas (36) with those of (12) and (18) yields

T, i=1,2,...,j—1,
xz’j:

t:u’747j7 Z:jaj+177n

for j=1,2,...,n. (37)

Note the following. Since the matrix A™! is also Hermitian, then in reality we only need
to calculate the lower triangular part of this matrix.

Summarizing the considerations of Sections 2 and 3, let us write the following procedure
to calculate the elements of the inverse matrix A~ = [2;;],,xn for nonsingular matrix A given

in (1).
Procedure Inv 3d Hermitian
1. Input elements ay, as, ..., a, and by, by, ..., b, 1 of the matrix A (see (1)).

2. Calculate the quantities f;, g;, p and ¢ (see (5)):

‘ y1=23,....n—1ip=——, =

3. Calculate recursively the quantities y; (see (7)):

Hn = 1a HUn—1 = —4q,

pi = = fix1ftiv1 — Givifive, i =n—2,n—3,..., 1.
4. Calculate recursively the quantities v; (see (14)):

V1:171/2:_p7

(Viez + fimavica), 1= 3,4,...,n.

V; = —
gi—1

5. Calculate the quantity ¢ (see (10) and Remark 1):
t= (alul + bLUQ)_l.
6. Calculate the lower triangular part of the matrix A™! (see (37)):

Iz]:tﬂzﬁjulz.ﬂj—i_lv?n’ j:]_,Q,...,TL.
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7. Set the upper triangular part of the matrix A=! (see (37)):
xl]:Tﬂ7Z:1a27aj_1a j:2,3,...,n.

8. Output the matrix A™' = [2ij]nxn.

End procedure

The procedure Inv 3d Hermitian can be useful for the following purposes. Firstly, it can
be used as a basis of numerical algorithms for inverting nonsingular tridiagonal Hermitian
matrices. In this case, it is easy to make sure that computing the lower triangular part of the
matrix A~! requires 0.5n% + O(n) arithmetical operations with complex numbers. Secondly,
for matrices of special types, the procedure can be used for deriving closed form expressions
for the elements of inverse matrices. The next section is devoted to this issue.

4.  Toeplitz Tridiagonal Hermitian Matrices

Let us consider a matrix

a b
b a b 0
A= (38)
0 b a b
L b a/_

of order n, where a is a real number and b # 0. Additionally, we assume that
|a| > 2[b]. (39)

Condition (39) ensures the nonsingularity of the matrix (38) (see [11], for instance).
For the matrix we are considering, the quantities calculated in Item 2 of the procedure
Inv 3d Hermitian are as follows:

a

Ji==, 9=

a
7.:273%"7 _17 = 75 =
b ' S A

(ol

Further, in Item 3 of the procedure, the quantities u; are calculated. In our case, we have
second-order recurrent relations

bpi + a1 +bitize =0, i=n—2,n—3,...,1,

where p, = 1, p,_1 = —a/b. The solution of this problem is well known (see [2, 6], for
instance). As a result of calculations, we get that

E n+1—1 _ n+1—1i
p= (=1 l(“;f) - (a%r) ] Ci=1,2,....n ifla|>2(b]  (40)

and
pi = (=1)""(n+1—1)

r=/a® — 4|b]?.

zab)_ Ci=1,2,...,n if |a| = 2], (41)

7 N\

where
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In a similar way, we find expressions for the quantities v; determined in Item 4 of the
procedure. These quantities satisfy the following second-order recurrent relations:

BVi_Q—I—aVi_l—l—bVi:O, i:3,4,...,n,

where v; = 1, v, = —a/b. Making calculations, we find that
b /a+r\! a—r\*
i:—lll( )—( ) =1,2,... if 2 42
= o () = (U0 v s )
and .
) a i—1
v = (—1)71i <2b> L i=1,2,....n if |a] = 2|b]. (43)

In Ttem 5 of the procedure, the quantity ¢ is calculated. Using the expressions (40) and
(41), we get

-1

t= (-1l l(“”)nﬂ - (“ _ 7")"“] if Ja| > 2/b| (44)

b 2b 2b
and 1) - )
_ n— a n—
= — [ = if = 2|b|. 4
b= a(2b> if Jaf = 2o (45)

Finally, in Items 6 and 7 of the procedure, the elements x;; of the inverse matrix A~
are calculated. If |a| > 2[b|, then we use the formulas (40), (42) and (44). For the values
7 =1,2,...,n, we obtain that

T o N1 [ B 0

S AR <a+r)"+1 <a—r>”+1 (46)
2b 2b
ift=1,2,...,5—1and
(a—l—r)”“_i_ (a—r)”“‘i ((Z+T>j_ (a—r)j
(=1)7 [\ 2b 2b 2b 2b
- 4
i r (a—ir?")"“_ <a—7’)”+1 (47)
2b 2b
ift=74,7+1,...,n. As an example, consider the matrix
5 2 ]
—2i 95 21 0
A= R -
0 —2i 5 2i
I —2i 5 |

According to the expressions (46) and (47) we find that
(21 _ 2—1’)(2n+1—j _ 2—n—1+j)
3(2n+1 _ 2—n—1)

(2n+17i _ 27n71+i)(2j _ 27]')
3(2n+1 _ 2—n—1)

i =1,2,...,5—1,

xij =

i i=g,0+1,...,n,
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where the symbol i stands for the imaginary unit.

Now consider the case |a| = 2|b|. For the values j = 1,2,... n, using the formulas (41),
(43) and (45), we find that

( Ufﬂn+1—ﬁi2(ayl(“>jl 1,2 1
— — —_ — 17 =
n+1 a 26 2b ) Y Y 7] ) (48>
Iij:
. (n+1—1d)j2 (a)’_l( )J—l .
e e — = 1,...,n.
(=1) n+1 a \2b 2b PS5 L
For the matrix i i
2 i
-i 2 i 0
A: R
0 —-i 2 i
- _1 2_

the expressions (48) take the following form:

n—=—7+1) ., .
@4VOL{:iﬂfﬂ,%:LZ”wj—L
n

(n—i+ 1)
G VAR S A L g 1., ..
(=1) = ,i=74.7+1,...,n,

5.  Conclusion

In this paper, we have constructed the computational procedure Inv 3d Hermitian for inver-
sion of tridiagonal Hermitian matrices. This procedure can be used as a numerical algorithm
with an optimal number of arithmetic operations (see the comment on the procedure at the
end of Section 3). In certain cases, the procedure can also be used to derive closed-form ex-
pressions for the elements of inverse matrices. In this regard, Toeplitz tridiagonal Hermitian
matrices in Section 4 were considered.
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Udthnthnid

nnuond mpynid  bppwGyyniGuqowihlG htpdhwnjwG dwnphgGiph hwjunupddwd
wjqnphpip, nph pywjhlG ppwlwlugniip wwhwomd L owwmhiw) pyny pywpwlwyul
gnponnmpniGGtn:  <wpynnuul wpngtnnipul hptiGhg Gopyujuglind L hwljunupd
dwwphgh wwppbph hwydwlp hwqbglng wlnpunupé wnlmpniGGtph hwonpnu-
Julnpjul: <wwunniy whwyh dwwphgGiph hwdwp L, dwuGuynpuwtiu, wnjnuyhgjw
tntipwlynGuwqowjhl htpihunjwl dwwunphgltph hwdwp, vnwgquwo wnlympniGGbpp
hwGqbglni GG hwlwnwpd dwwnphgh nmwpptiph hwiwp puwgwhwjn pwlwdlbtiph:

Pwlwih pwnbtp’ hwiwnupd Jwwphg, tpipwllymiGuqowihG Jwwphg, htpdhuywl
dwwunhg, wjnyhgjwl dwwnphg:

AnanuTnyeckoe oOpallleHre TpeXAnaroHaAbHBIX
n300paskeHu

IOpui1 P. Akongan u ABeTuk A. MaHyKgH
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AnHoTanuys
B cTaTbe paeTcsi aATOpPUTM OOpalleHNs TpeXAUuaroHaAbHBIX 3PMHUTOBBLIX MaTPWHII,

YWCACHHAsI pPeaAus3anus KOTOPOI'O OCYILECTBASIETCA 3a OIITMMAABHOE YUCAO a-
puMeTUYeCKUX oIepanui. BelUMCAWTEABHAs NIpoleAypa IpPeACTaBAsIeT COOOU
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IIOCAEAOBATEABHOCTh PEKYPPEHTHBIX COOTHOIIEHMM, NPUBOAAIINX K BBIYMCAEHUIO
SAEMEeHTOB OOpaTHOM MaTpuIbl. AAS MaTPUI] CIIEIIUAABHOTO THIIA M, B YaCTHOCTH,
AAST TETIAUTIEBBIX TPEXAMATOHAABHBIX 3 PMUTOBBIX MaTPHUII, IOAYYEHHBIE COOTHOIIIEHUS
IIPUBOAAT K SIBHBIM (DOPMYAAM AAS DAEMEHTOB OOpaTHOM MaTpPUIIHI.

KAroueBEIe CAOBa: oOpaTHas MaTpUlla, TpexAWaroHaAbHass MaTpHUIla, IPMUTOBA
MaTpuIla, TEMANIIeBa MaTpPHUIIa.
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