Mathematical Problems of Computer Science 56, 65-72, 2021.
doi:10.51408/1963-0080

UDC 510.6

On Proof Complexity of Some Type of Tautologies

Vahagn N. Altunyan and Garik V. Petrosyan

Yerevan State University
e-mail: altunyanv@gmail.com, garik.petrosyan.1@gmail.com

Abstract

In this paper, we investigate the proof complexities of a special type of tautologies,
which are described as tautologies consisting of implications and literals. In particular,
we prove that the proof of this kind of tautologies can be polynomially reduced to the
proof of tautologies consisting of formulas that are described by sign-alternating trees.
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1. Introduction

One of the most fundamental problems of the proof complexity theory is to find an efficient
proof system for classical propositional calculus. There is a widespread understanding that
polynomial-time computability is the correct mathematical model of feasible computation.
According to the opinion, a truly effective system should have a polynomial-size p(n) proof
for every tautology of size n. In [I], Cook and Reckhow named such a system a super system.
They showed that NP = coN P iff there exists a super system. It is well known that many
systems are not super. This question about the Frege system, the most natural calculi for
propositional logic, is still open.

In many papers, some specific sets of tautologies are introduced, and it is shown that
the question about polynomially bounded sizes for Frege-proofs of all tautologies is reduced
to an analogous question for a set of specific tautologies. In particular, Lutz Strasburger
introduced in [2] the notion of balanced formulas and showed that if there are polynomially
bounded Frege proofs for the set of balanced tautologies, then the Frege systems are super.
An analogous result for some other class of tautologies is proved in [3].

In this work, we introduce formulas that can be described by sign-alternating trees (sat
formulas) and show that the proofs of tautologies that contain only D and — symbols,
where — is used only in literals, can be polynomially reduced to proofs of specific formulas
constructed from sat formulas.
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2. Main Notions and Notations

We will use the current concepts of a classical tautology, Frege proof systems for classical
propositional logic, proof and proof complexity [I]. Let us recall some of them.

A Frege system F uses a denumerable set of propositional variables, a finite, complete
set of propositional connectives; F has a finite set of inference rules defined by a figure of the
form % (the rules of inference with zero hypotheses are the axioms schemes); F must
be sound and complete, i.e., for each rule of inference % every truth-value assignment,
satisfying A; As...A,, also satisfies B, and F must prove every tautology.

The particular choice of a language for the presented propositional formulas is immaterial
in this consideration. However, for some technical reasons, we assume that the language
contains propositional variables, logical connectives —, A, V, D and parentheses (,). Note
that some parentheses can be omitted in generally accepted cases.

By |¢| we denote the size of a formula ¢, defined as the number of entries of all logical
signs in it. It is obvious that the full size of a formula, which is understood to be the number
of all symbols is bounded by some linear function in |¢|.

In the theory of proof complexity, the two main characteristics of the proof are: t-
complexity (length), defined as the number of proof steps, I-complexity (size), defined as the
sum of sizes for all formulas in the proof (formal definitions are, for example, in [4]).

Let ¢ be a proof system and ¢ be a tautology. We denote by l:ﬁ(tﬁ) the minimal possible
value of [-complexity (¢-complexity) for all ¢-proofs of tautology .

Let M be some set of tautologies.

Definition 1: We call the ¢-proofs of tautologies from a set M Il-polynomially (t-
polynomially) bounded if there is a polynomial p such that 13 < p(|e|) (t2 < p(|el)) for
all p from M.

Definition 2: We call the ¢-proofs of tautologies from a set M I-linearly (t-linearly) bounded
if there is a linear function f such that 13 < f(|ol) (t3 < f(l¢l)) for all ¢ from M.

Now we’ll give the definition of sat formulas and prove some lemmas, which are necessary
for proving the main result.

Definition 3: We'll say that a formula is described by a sign-alternating tree (sat formula)
if it satisfies the following rules.

1. it’s a literal

2. has a formr A (11 V Ty), where r is a literal and Ty, Ty are sat formulas

Lemma 1: For any formulas A, B,C, the following formulas have polynomially bounded
proofs.

1. A= (CDA)N(-C DA

2. AD(BDA)

3. (nAD(BDA)=(-AD-B)
4. ——A=A
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5. AD(BDC)=AANBDC

6. AN-ANBDC

7. ANBDA

8 =(AD>B)=AA-B

9. AD(BANC)=(ADB)AN(ADC(O)
10. AD(BD>C)=BD>(ADC(C)

11. AD(ADB)=ADB

12. ADB)AN(CDB)=(Av(C)DB

The proof is trivial as all the formulas are tautologies and have fixed length proofs, so
the proof complexities may be assumed to be linearly bounded.

Lemma 2: Tautologies of the form
AD(B1D...(By1 D (B, D A)...)
have polynomially bounded proofs.

Proof.  We can prove the tautology above by the following steps.

AFA

AFAD(B,DA) 2nd formula of [Lemma T
AF (B, D A) modus ponens
AF(B,DA) D (By1D(B,DA))

AF (B,-1 D (B, D A)) modus ponens

AF (B1 D ..(By-1 D (B, D A))...)

The number of proof steps is linearly bounded and the size of each formula in proof is also
linearly bounded, so the proof is polynomially bounded. ®

Lemma 3: Tautologies of the form
di DO (do D (... Ddg)...)

where dy,ds, ..., dy are literals, have polynomially bounded proofs.

Proof. After applying the operation of replacement by an equivalent formula (k — 2)
times using the 5th formula of [Lemma 1| we get:

di D (de D (... Ddp)...) =di Nda A ... Ndg—1 D dy,

In this case, if there exist 1 < 4,7, < k — 1 such that d; = —d; then replacing them with
equivalent formulas using the 6th formula of [Lemma 1] we’ll get a polynomially bounded
proof, or if there exist such 1 < i < k — 1 such that d; = d then replacing it with equiv-
alent formulas using the 7th formula of we’ll get a polynomially bounded proof,
otherwise the formula isn’t a tautology. M
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3. Main Result

Definition 4: Any propositional formula A is called sat-constructed if it is in the following
form: A=—=(Ty ATy N ... NT),), where T;(1 < i < n) are sat formulas.

Theorem 1: Let M be the set of all sat-constructed tautologies. If proofs of formulas from
the set M are l-polynomially (t-polynomially) bounded, then proofs of all tautologies contain-
ing only D and — symbols, where — is used only in literals, are l-polynomially (t-polynomially)

bounded.

Proof. We need to prove that any tautology A containing only D and — symbols, where
= is used only in literals, can be reduced to a sat-constructed tautology in polynomially
bounded number of steps and length.

If the number of implications in the formula is bounded by, let’s say, 3, then it can
be reduced to —(p; A —=p1), and the reduction complexity will be constant which is also a
polynomial. We now assume that formula A contains more than 3 implications. A can be
expressed in the following form:

A=(5D..(S-12(05:Dq))...) (1)

where S;(1 < i < ¢) are sub-formulas and ¢; is a literal. We can replace A with an
equivalent formula using the 1st formula of and get (¢1 O A) A (-q1 D A). The

first half has a polynomially bounded proof by [Lemma 2|
For the second half, we can apply the operation of replacement by an equivalent formula

using the 3rd formula of and get:
—q1 O (Sl D) ...(SC,1 D) (SC D) ql))) =g O (Sl D) ...(Sc,1 D) _'Sc>)

So the proof of A has been polynomially reduced to the proof of =¢; D (51 D ...(Se-1 D
=Se)...). If S. is a literal, then we can repeat the same process for the formula we got.
After some repetitions, we’ll end up either with a tautology d; D (dy D (... D dg)...), where

d;(1 < i < k) are literals. This tautology has a polynomially bounded proof by
Or we’ll end up with the following formula:

di D(dy D ... D (dw, D (U1 D ...(Ug D F)..))...) (2)

where d;(1 < i <m) are literals and F' is not a literal.
Suppose F' = F; D F5, applying the replacement by an equivalent formula using the 8th

formula of [Lemma 1], we’ll get:
di D(dyD...D(dy, D (U1 D...(Upy DF)..))...) =
di D(de D ... D (dp D (U1 D ...(U D (FA AN—F))..))...)
Applying the operation of replacement by an equivalent formula multiple times using the
9th formula of [Lemma 1], we’ll get:
di D(dy D ... D (dp D (U1 D ...(Up D (FAANDE)).))...) =

di D(da D ... D (dm D (UL D...(Upg D F1)...)))A
di D(de D ...D(dp D (U1 D...(Uy D F3)...))...)
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So, after polynomially bounded number of steps, we reduced the proof of A to the proof
of two formulas, the first one of which has the form and the second one has the form .
Repeating the same process for these formulas, we’ll get [ tautologies, and the proof of A
will be reduced to the proof of these tautologies:

diD(dyD...D(dy,, D(diD(daD .. D (dy D (Up D oo D 2U)).)))w)
GO (d3D..D(d, D (diD(d2D .. D (dm D (U D ... D =U)))))w)

dy D (dy D ..o (dy, D (D (deD .. D (dy D (U1 D .. D=UR)))))w0)
where df,dj,....d,, (1 < i < ) are literals. There are no repetitions among

di,d,...,d' .dy,....dn, otherwise we can keep a single one of each repetition - replacing

ey
by equivalent formulas using the 10th and 11th formulas of Lemma I} We may also assume
that there are no variable repetitions, because if a variable and it’s negation are present,
then the formula can be polynomially proved. So we can assume that all the literals among
di,dy,....d¢ .dy,...,d, are different and all the variables are also different and so the number

o dy,
of those literals doesn’t exceed |A|. Also note that each time a new formula was generated
an implication from F was removed, so | < |F| < |A|.

Applying the operation of replacement by an equivalent formula using the 10th formula

of we’ll get the following form for our [ formulas:

Ci=d D (d3D ... D (dn D (di D(d} D ... D (dy,, D (U1 D oo D =UR)).)))w)
Co=dy D (d3 D ... D2 (dp D (di D (d} D ... D(d}, D (U1 D ... D =Uy))..)))-.)

Cr=d;>(d3D...D(dp D (dy D (d} D ... D (d, D (U1 D ... D ﬂUk))...)))...).

At this point, we’ve reduced the proof of A to the proof of Cy ACy A ... A C} polynomially.
Applying the operation of replacement by an equivalent formula using the 9th formula

of [Lemma 1] we’ll get:
CiANCoy NN Cl =dy, D (d3 O...D (dm D (Ci VAN Cé VANRVAN Cl/)))

where

Ci=(dD>(d}D>..D(d, DU D..0=U))...))
Cy=(di D (d; D>...D(d2, D (Ui D...D>=U))...))

Cl=(di D (d{ >...2>(d, D (U1 D ... > =Uy))...))

Applying the operation of replacement by an equivalent formula using the 5th formula
of we’ll get the following form for above formulas:

Oi =d; /\d%/\.../\d}n1 D) (Ul D...D _'Uk)
Co=diNdiN\..ANd, D (Ui D ... D =Uy)

Cl=dyNd\N...\Nd,, D (U D ... DUy
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Applying the operation of replacement by an equivalent formula using the 12th formula

of Lemma T|, we'll get:

CIACON .. ANC = (i Ndy Ao Ndy, VA ANdYN AN, V.Y
di ANy A . AdL ) D (U D D =Uy)

Let’s prove that the DNF generated above - (dy Adj A ... Ady, Vdi ANdIA .. AdZ V...V
diy NdU A AdL)) is an sat formula.

As we can see, each of the conjunctions includes d;. Note that we can clearly split the
DNF into two subDNF'’s - one generated from F; and the other generated from F,. For
each of I} and Fy, we repeated the same process and so if the generated DNF's from Fj and
Fy are both sat formulas, then the DNF generated above is also an sat formula. Note that
we can make the assumption above, as after finite repetitions of splitting operation, we’ll
reach a literal, which is an sat formula.

At this point, we have polynomially reduced the proof of tautology A to the proof of the
following tautology:

d2 D (d3 D . D (dn D (i Adi Ao Ay, Vi ANdYA oA VLY

By deduction theorem the proof of the above formula is equivalent to the following proof:

doy ooy, (dy AT A AL, NV Ay N A ALY LY
di ANdy A AL ) (U D D =U).)

Note that all the hypotheses are sat formulas and that we can repeat all the previous
steps on formula (U; D ... D —Uy) even though we have some hypotheses. Repeating this
process, the proof of A will be reduced to the proof of the following formula:

Tl/\Tg/\.../\TnDcl,

where T;(1 < i < n) are sat formulas and ¢; is a literal. Note that new T;-s are generated
only when we consider the last sub-formula of A and then remove it for the next step, so
this guarantees that n < |A|.

Applying the operation of replacement by an equivalent formula using the 1st formula of

Lemma 1} we'll get:
TINTON..ANT, Dl = (61 D) (Tl/\Tz/\.../\Tn:)C1))/\(_|Cl D) (Tl/\Tz/\.../\Tn 361))

The tautology (¢; D (Th ATy A ... AT, D 1)) has a polynomially bounded proof.

We reduced the proof of A to the proof of (=¢; D (TY ATy A ... AT, D ¢1)). Applying the
operation of replacement by an equivalent formula using the 3rd formula of [Lemma I| we’ll
get:

A=-(TO'NToN...NT,)

All the operations have polynomial complexity. The number of steps is also polynomially
bounded, so the total complexity of reduction is polynomially bounded. ®
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4. Conclusion

In this work, we introduced sat formulas and reduced the proofs of tautologies containing
only D and — symbols, where — is used only in literals, to the proofs of sat-constructed
tautologies in polynomially bounded number of steps and length. Investigation of proof
complexities of sat-constructed tautologies is in process.
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O cAoRHOCTH BEIBOAOB HEKOTOPOTI'O THUIIA TaBTOAOTHUM
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AnHoTanuys

B mHacTosmien craTbe BCCACAOBAHEBI CAOSKHOCTH BHIBOAOB TaBTOAOTHH CIEIIMAABHOTO
BHAQ, KOTOpPBIE MOJKHO OIMCATh KaK TAaBTOAOTMU COCTOSIIME U3 UMIIAUKAIIUK U
AUTEPAAOB. B YacTHOCTH, AOKa3aHO, UTO BBIBOABI TABTOAOTHMM TAKOTO BHAA MOJKHO
IIOAMHOMHUAABHO CBECTH K BBIBOAAM TABTOAOTHM, KOTOPBIE SBASIOTCA (POPMYAAMH,
ONUCHIBAEMBIMU 3HAKOIIEPEMEHHBIMU ACPEBbSIMMU.

KaroueBele caoBa: cucrembl Dpere, TaBTOAOTUHU, 3HAKOIIepeMeHHBIE AEPEBbS,
CAO>KHOCTE BBIBOAQ.
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