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Abstract

The problem of ensuring privacy is relevant in connection with the development
of big data technologies. One of the modern and most promising methods of privacy
protection is the differential privacy. In this paper the differential privacy applications
developed by big companies are investigated. The libraries’ capabilities and tools of
Google, IBM, as well as packages in R are analyzed. The differential privacy process
for data collected from users implemented by Apple is studied.
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1. Introduction

Big Data is an actual research topic because it provides new opportunities with data anal-
ysis for businesses and organizations to improve the decision making power. Various large
companies, such as Facebook, Apple, Amazon and Google infiltrate users’ personal lives and
social interactions to accumulate huge databases at any time, which violates people’s privacy.
Along with the growth of data, it is necessary to develop new methods and means that will
allow people to remain confidential.

A number of research articles are devoted to the study of Big data privacy, in the surveys
[1] - [3] one can find detailed information and a full list of publications. In the role of
information theory in the field of big data privacy is surveyed in [4].

There are various methods of confidentiality that allow for large-scale data analysis,
statistical analysis, data (text) excavation, etc., while ensuring the privacy of individual
participants. The most reliable approach is the Differential Privacy (DP).

DP is a modern approach to cyber security, where proponents argue that personal data
is much better protected than traditional methods. DP is a strict mathematical definition
of privacy [5], [6]. In the simplest terms, consider an algorithm that analyzes a dataset and
calculates its statistics. It is said that such an algorithm is differentially private, if looking at
the output, one cannot say whether anyone’s data was included in the original database or
not. In other words, the guarantee of a differential algorithm is that its behavior is unlikely
to change when an individual joins or leaves a database. Anything that an algorithm can
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retrieve in a database that contains some individual information is almost as likely to come
from a database without that individual information.

Most importantly, this guarantee is reserved for any individual and any dataset. There-
fore, no matter how strange someone’s details are, and no matter how much someone’s details
are in the database, the guarantee of differential confidentiality is still maintained. This pro-
vides a formal guarantee that individual-level information about database participants will
not be leaked.

DP protects an individual’s privacy by adding a few random noises to the database when
analyzing the data [7]. Simply put, identifying personal information based on the results of
the analysis by presenting noise will not work. However, after adding noise, the result of the
analysis turns into an approximation, not an accurate result, which would be obtained only if
it were conducted on a real database. In addition, it is possible that if the differential private
analysis is performed several times, it may yield different results each time the randomness
of the noise is presented in the databases.

In this article we discuss the application of DP by big companies such as Apple, Google,
IBM. We study the libraries developed by Google, IBM and a package for R developed by
Benjamin I. P. Rubinstein, called Brubinstein‘s diffpriv package, and analyze the capabilities
and tools in them.

2. Usage of differential privacy

It is worth noting that DP works better on larger databases. The reason is that as the
number of individuals in a database increases, so does the impact of any individual on a
given aggregate statistic. DP can be applied to everything from warranty systems and social
networks to deployment-based services. Example:

• Apple employs DP to accumulate anonymous usage insights from devices like iPhones,
iPads and Mac.

• Amazon uses DP to access user’s personalized shopping preferences while covering
sensitive information regarding their past purchases.

• Facebook uses it to gather behavioral data for target advertising campaigns without
defying any nation’s privacy policy.

• There are various variants of differentially private algorithms employed in machine
learning, game theory and economic mechanism design, statistical estimation, and
many more.

2.1 Apple

Apple has mastered and developed a technique known in academia as local differential privacy
to do something very interesting: gain insight into what many Apple users are doing while
helping to protect the privacy of individual users. It’s a technique that allows Apple to learn
about the community of users without knowing about individuals in the community [8]. DP
transforms the information shared with Apple before it ever leaves the user’s device, so that
Apple can never reproduce the actual data. The DP technology used by Apple is rooted in
the idea that statistical noise, which is a bit biased, can disguise a user’s personal information
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before it is shared with Apple. If many people share the same data, the added noise may on
average exceed a large number of data points, and Apple can see that meaningful information
is emerging. DP is used as the first step in a data analysis system that includes strong privacy
protection at every stage. The system is opt-in and designed to ensure transparency to the
user. The first step is to privatize information using local differential privacy on the user’s
device. The purpose of the privatization is to ensure that Apple’s servers do not receive
clear data. Device specifications are removed from the data and transmitted to Apple via
an encrypted channel. Apple Analytics system ingests differential private contributions,
droping IP addresses and other metadata. The final step is consolidation, where customized
protocols are developed to calculate relevant statistics, and the consolidated statistics are
then shared with Apple’s respective teams. Both ingestion and consolidation phases take
place in a restricted environment, so even privatized data is not widely available to Apple
employees. Apple’s implementation of DP includes the idea of a perdonation privacy budget
(measured by parameter ϵ), and imposes a strict limit on the amount of data transmitted
by a user to maintain their privacy. The fact is that the slightly biased noise used in DP
tends to outperform a large number of investments on average, which theoretically allows
us to determine user activity information over a large number of views per user (although
it is important to note that Apple does not associate any characteristic with information
collected through DP). Apple uses local differential privacy to help protect the privacy of
users’ activities over a period of time, while gaining insight that improves intelligence and
usability of features such as:

• QuickType suggestions,

• Emoji suggestions,

• Lookup Hints,

• Safari Energy Draining Domains,

• Safari Autoplay Intent Detection (macOS High Sierra),

• Safari Crashing Domains (iOS 11),

• Health Type Usage (iOS 10.2).

For each feature, Apple seeks to reduce the privacy budget while collecting enough data
for Apple to improve the features. Apple stores the collected data for a maximum of three
months. The sent data does not include any identifiers and the IP addresses are not stored.
For Lookup Hints, Apple uses a privacy budget with ϵ = 4 and limits the sending of user
data to twice a day. For Emoji, Apple uses a privacy budget with ϵ = 4 and requires a one-
time daily data submission. For QuickType, Apple uses a privacy budget with ϵ = 8 and
collects data to twice a day. For Health Type Usage, Apple uses a privacy budget of ϵ = 2
and limits the sending of user data to once a day. The submitted data does not include the
health information itself, but what types of health data are edited by the users. For Safari,
Apple limits the transfer of user data twice a day. For Safari domains, which are known to
cause high power consumption or crashes, Apple uses a single privacy budget with ϵ = 4.
For Safari Auto-play intentional detection, Apple uses a privacy budget of ϵ = 8.

Apple uses the Count Mean Sketch technique for DP, with which the initial information
that is processed for sharing with Apple is encrypted using a number of hash functions,
making easy the data representation in different sizes of a fixed matrix.
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The data is encrypted using the SHA-256 account variants, followed by the privatization
step, and then written to a chart matrix, the values of which originate from zero.

The noise injection step works as follows: after encoding as a vector function, each
coordinate of the vector is then bent (written as an incorrect value) with a probability of

1/(1 + eϵ/2),

where ϵ is the privacy parameter. This ensures that the analysis of the collected data
cannot distinguish real values from deviated values, helping to ensure the confidentiality of
the shared information. To stay within the privacy budget, the Apple OS does not send the
entire chart matrix to the server, but only a random array of matrices. When the information
encoded in the graphical matrix is sent to Apple, the Apple server presents the responses of
all the devices that share the information and subtracts the average value for each element
of the array. Although each presentation contains a lot of random elements, the average
value of a large number of presentations gives Apple meaningful data.

The Hadamard Count Mean-based Sketch technology uses the noise injection method,
which is similar to the method used in the Count Mean Sketch method, but with one impor-
tant difference. It uses a type of mathematical operation called converting the Hadamard
base to hashed encoding before performing the privatization step. Also, it only sends 1 bit
randomly instead of the whole series, as in the Count Mean Sketch technique. This reduces
communication costs by 1 bit due to some accuracy.

For each feature, Apple seeks to make the privacy budget small while still collecting
enough data to enable Apple to improve the features. Apple retains the collected data for
a maximum of three months. The donations do not include any identifier, and IP addresses
are not stored.

2.2 Google

Google DP repository contains libraries to generate ϵ- and (ϵ, δ)-differentially private statis-
tics over datasets. It contains the following tools.

• Privacy on Beam is an end-to-end DP framework built on top of Apache Beam. It is
intended to be easy to use, even by non-experts.

• Three ”DP building block” libraries in C++, Go, and Java implement basic noise
addition primitives and differentially private aggregations. Privacy on Beam is imple-
mented using these libraries.

• A stochastic tester is used to help catch regressions that could make the DP property
no longer hold.

• A DP accounting library is used for tracking privacy budget.

• Google DP repository includes a command line interface for running differentially pri-
vate SQL queries with ZetaSQL. You can use the Privacy on Beam laboratory to
generate differential private data [9].

Currently, the DP building block libraries support the following algorithms:
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Table 1: Google DP library algorithms [9].

Algorithm C++ Go Java
Laplace mechanism Supported Supported Supported
Gaussian mechanism Supported Supported Supported

Count Supported Supported Supported
Sum Supported Supported Supported
Mean Supported Supported Supported

Variance Supported Supported Planned
Standard deviation Supported Supported Planned

Quantiles Supported Supported Supported
Automatic bounds approximation Supported Planned Planned
Truncated geometric thresholding Supported Supported Supported

Laplace thresholding Supported Supported Supported
Gaussian thresholding Planned Supported Supported

Implementations of the Laplace and Gaussian mechanism use secure noise generation.
These mechanisms can be used to perform computations that aren’t covered by the algo-
rithms implemented in our libraries. The DP building block libraries are suitable for research,
experimental or production use cases, while the other tools are currently experimental and
subject to change [10].

2.3 IBM DP library

IBM differential-privacy-library is comprised of four major components:

1. Mechanisms. These are the building blocks of DP, and are used in all models that
implement DP. Mechanisms have little or no default settings, and are intended for use
by experts implementing their own models. They can, however, be used outside of
models for separate investigations, etc.

2. Models. This module includes machine learning models with DP. Diffprivlib currently
has models for clustering, classification, regression, dimensionality reduction and pre-
processing.

3. Tools. Diffprivlib comes with a number of generic tools for differentially private data
analysis. This includes differentially private histograms, following the same format as
Numpy’s histogram function.

4. Accountant. The BudgetAccountant class can be used to track the privacy budget and
calculate the total privacy loss using advanced composition techniques [11].

2.4 Brubinstein‘s diffpriv package in R (library)

Brubinstein‘s diffpriv R package implements generic mechanisms for DP, along with sensi-
tivity sampler that replaces exact sensitivity bounds with empirical estimates. As a result,
diffpriv privatizes a wide range of procedures under random DP, automatically, without
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mathematical analysis and in many cases achieving high utility. Diffpriv is available from
[12] under an open-source license. Brubinstein‘s diffpriv package makes privacy-aware data
science in R easy. It implements the formal framework of DP: differentially-private mecha-
nisms can safely release computed statistics, models fit, or arbitrary structures derived on
privacy-sensitive data to untrusted third parties. Due to the worst-case nature of the frame-
work, mechanism development typically requires involved theoretical analysis. diffpriv offers
a turn-key approach to DP by automating this process with sensitivity sampling in place of
theoretical sensitivity analysis [13].

Fig. 1. Privately releasing a simple target function of privacy-sensitive input data X.

3. Conclusion

We investigated the implementation of DP by Apple, Google, IBM, as well as a package
developed by Benjamin I. P. Rubinstein for R. As a result we can mention that Apple actively
uses differential privacy in its systems, but does not provide open source libraries. The Google
library is convenient for use with scripts written in C ++, Go, Java programming languages
and allows the implementation of a number of algorithms, such as Laplace mechanism,
Gaussian mechanism, Variance, Standard deviation, etc. IBM differential privacy library
is written in python language and is more convenient to use in a python environment.
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Brubinstein‘s diffpriv allows the implementation of the differential privacy process in R,
which is open for various environments and algorithms. This research is useful for developing
new DP applications and libraries.
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Àííîòàöèÿ

Ïðîáëåìà îáåñïå÷åíèÿ êîíôèäåíöèàëüíîñòè àêòóàëüíà â ñâÿçè ñ ðàçâèòèåì
òåõíîëîãèé áîëüøèõ äàííûõ. Îäíèì èç ñîâðåìåííûõ è íàèáîëåå ïåðñïåêòèâíûõ
ìåòîäîâ çàùèòû êîíôèäåíöèàëüíîñòè ÿâëÿåòñÿ äèôôåðåíöèàëüíàÿ êîíôèäåí-
öèàëüíîñòü. Â ýòîé ñòàòüå èññëåäóþòñÿ ïðèëîæåíèÿ äèôôåðåíöèàëüíîé
êîíôèäåíöèàëüíîñòè, ðàçðàáîòàííûå êðóïíûìè êîìïàíèÿìè. Àíàëèçèðóþòñÿ
âîçìîæíîñòè áèáëèîòåê è èíñòðóìåíòîâ Google, IBM, à òàêæå ïàêåòîâ â R.
Èçó÷àåòñÿ ïðîöåññ äèôôåðåíöèàëüíîé êîíôèäåíöèàëüíîñòè, ðåàëèçîâàííûé
Apple, äëÿ äàííûõ, ñîáðàííûõ îò ïîëüçîâàòåëåé. Ýòî èññëåäîâàíèå
ïîëåçíî äëÿ ðàçðàáîòêè íîâûõ ïðèëîæåíèé è áèáëèîòåê äèôôåðåíöèàëüíîé
êîíôèäåíöèàëüíîñòè.

Êëþ÷åâûå ñëîâà: Áîëüøèå äàííûå, äèôôåðåíöèàëüíàÿ êîíôèäåíöèàëüíîñòü,
ñðåäà R.

¶³ÕïÝÇáõÃÛ³Ý ³å³ÑáíÙ³Ý ËÝ¹ÇñÝ ³ñ¹Ç³Ï³Ý ¿ Ù»Í ïíÛ³ÉÝ»ñÇ ï»ËÝáÉá·Ç³Ý»ñÇ
½³ñ·³óÙ³Ý Ñ»ï Ï³åí³Í: ¶³ÕïÝÇáõÃÛ³Ý å³ßïå³ÝáõÃÛ³Ý Å³Ù³Ý³Ï³ÏÇó ¨
³Ù»Ý³ËáëïáõÙÝ³ÉÇó Ù»Ãá¹Ý»ñÇó Ù»ÏÁ ¹Çý»ñ»ÝóÇ³É ·³ÕïÝÇáõÃÛáõÝÝ ¿: ²Ûë
Ñá¹í³ÍáõÙ áõëáõÙÝ³ëÇñíáõÙ »Ý Ëáßáñ ÁÝÏ»ñáõÃÛáõÝÝ»ñÇ ÏáÕÙÇó Ùß³Ïí³Í ·³ÕïÝÇáõÃÛ³Ý
Çñ³Ï³Ý³óÙ³Ý ï³ñµ»ñ Ñ³í»Éí³ÍÝ»ñ: ì»ñÉáõÍíáõÙ »Ý Google-Ç, IBM-Ç ·ñ³¹³ñ³ÝÝ»ñÇ
¨ ·áñÍÇùÝ»ñÇ ÑÝ³ñ³íáñáõÃÛáõÝÝ»ñÁ, ÇÝãå»ë Ý³¨` ¹Çý»ñ»ÝóÇ³É ·³ÕïÝÇáõÃÛáõÝÁ R
÷³Ã»ÃáõÙ: àõëáõÙÝ³ëÇñíáõÙ ¿ û·ï³ï»ñ»ñÇó Ñ³í³ù³·ñí³Í ïíÛ³ÉÝ»ñÇ ¹Çý»ñ»ÝóÇ³É
·³ÕïÝÇáõÃÛ³Ý ·áñÍÁÝÃ³óÁ` Ý»ñ¹ñí³Í Apple-Ç ÏáÕÙÇó: ²Ûë Ñ»ï³½áïáõÃÛáõÝÁ
û·ï³Ï³ñ ¿ ·³ÕïÝÇáõÃÛ³Ý ³å³ÑáíÙ³Ý Ýáñ Ñ³í»Éí³ÍÝ»ñ ¨ ·ñ³¹³ñ³ÝÝ»ñ Ùß³Ï»Éáõ
Ñ³Ù³ñ:

´³Ý³ÉÇ µ³é»ñ` Ø»Í ïíÛ³ÉÝ»ñ, ¹Çý»ñ»ÝóÇ³É R ÙÇç³í³Ûñ:


	04_Mastoyan_56__FINAL
	04
	karen




