On Locally-Balanced 2-Partitions of Complete Multipartite Graphs

Aram H. Gharibyan[†] and Petros A. Petrosyan^{†‡}

†Department of Informatics and Applied Mathematics, YSU, ‡Institute for Informatics and Automation Problems of NAS RA e-mail: aramgharibyan@gmail.com, petros_petrosyan@ysu.am, pet_petros@ipia.sci.am

Abstract

A 2-partition of a graph G is a function $f:V(G)\to \{\mathbf{White},\mathbf{Black}\}$. A 2-partition f of a graph G is locally-balanced with an open neighborhood if for every $v\in V(G)$,

$$||\{u \in N_G(v): f(u) = \mathbf{White}\}| - |\{u \in N_G(v): f(u) = \mathbf{Black}\}|| \le 1,$$

where $N_G(v) = \{u \in V(G): uv \in E(G)\}$. A 2-partition f' of a graph G is locally-balanced with a closed neighborhood if for every $v \in V(G)$,

$$||\{u \in N_G[v]: f'(u) = \mathbf{White}\}| - |\{u \in N_G[v]: f'(u) = \mathbf{Black}\}|| \le 1,$$

where $N_G[v] = N_G(v) \cup \{v\}$. In this paper we give necessary and sufficient conditions for the existence of locally-balanced 2-partitions of complete multipartite graphs.

Keywords: 2-partition, Locally-balanced 2-partition, Equitable coloring, Complete multipartite graph.

1. Introduction

All graphs considered in this work are finite, undirected, and have no loops or multiple edges. Let V(G) and E(G) denote the sets of vertices and edges of a graph G, respectively. The set of neighbors of a vertex v in G is denoted by $N_G(v)$. Let $N_G[v] = N_G(v) \cup \{v\}$. A graph G is called a complete n-partite $(n \geq 2)$ graph if its vertices can be partitioned into n nonempty independent sets X_1, \ldots, X_n such that each vertex in X_i is adjacent to all the other vertices in X_j for $1 \leq i < j \leq n$. Let $K_{r_1, r_2, \ldots, r_n}$ denote a complete n-partite graph with independent sets X_1, X_2, \ldots, X_n of sizes r_1, r_2, \ldots, r_n . The terms and concepts that we do not define can be found in [8, 15].

A 2-partition of a graph G is a function $f: V(G) \to \{White, Black\}$. A 2-partition f of a graph G is locally-balanced with an open neighborhood if for every $v \in V(G)$,

$$||\{u \in N_G(v): f(u) = \mathbf{White}\}| - |\{u \in N_G(v): f(u) = \mathbf{Black}\}|| \le 1.$$

A 2-partition f' of a graph G is locally-balanced with a closed neighborhood if for every $v \in V(G)$,

$$||\{u \in N_G[v]: f'(u) = \mathbf{White}\}| - |\{u \in N_G[v]: f'(u) = \mathbf{Black}\}|| \le 1.$$

The concept of locally-balanced 2-partition of graphs was introduced by Balikyan and Kamalian [12] in 2005, and it can be considered as a special case of equitable colorings of hypergraphs [1]. In [1], Berge obtained some sufficient conditions for the existence of equitable colorings of hypergraphs. In [7, 9, 10, 14], the authors considered the problems of the existence and construction of proper vertex-coloring of a graph for which the number of vertices in any two color classes differ by at most one. In [11], 2-vertex-colorings of graphs were considered for which each vertex is adjacent to the same number of vertices of every color. In particular, in [11], it was proved that the problem of the existence of such a coloring is NP-complete even for the (2p, 2q)-biregular $(p, q \ge 2)$ bipartite graphs. In [12], Balikyan and Kamalian proved that the problem of existence of locally-balanced 2-partition with an open neighborhood of bipartite graphs with maximum degree 3 is NP-complete. Later, they also proved [13] the similar result for locally-balanced 2-partitions with a closed neighborhood. In [2, 3, 4], the necessary and sufficient conditions for the existence of locallybalanced 2-partitions of trees were obtained. In [6], the authors obtained some necessary conditions for the existence of locally-balanced 2-partitions of Eulerian graphs. In particular, they proved some results on the existence of locally-balanced 2-partitions of rook's graphs and cycle powers.

In the present paper we give necessary and sufficient conditions for the existence of locally-balanced 2-partitions of complete multipartite graphs. A preliminary version of this paper was presented at the 6th Polish Combinatorial Conference, Bedlewo, Poland, 2016 [5].

2. Main Results

Before we formulate and prove our results, we introduce some terminology and notation. For any 2-partition φ of a graph G, we define $\overline{\varphi}$ as follows: for any $v \in V(G)$, let

$$\overline{\varphi}(v) = \left\{ \begin{array}{ll} \mathbf{Black}, & \text{if } \varphi(v) = \mathbf{White}, \\ \mathbf{White}, & \text{if } \varphi(v) = \mathbf{Black}. \end{array} \right.$$

If φ is a 2-partition of a graph G and $v \in V(G)$, then define #(v) and #[v] as follows:

$$\#(v) = |\{u \in N_G(v): \varphi(u) = \mathbf{White}\}| - |\{u \in N_G(v): \varphi(u) = \mathbf{Black}\}|, \\ \#[v] = |\{u \in N_G[v]: \varphi(u) = \mathbf{White}\}| - |\{u \in N_G[v]: \varphi(u) = \mathbf{Black}\}|.$$

Clearly, φ is a locally-balanced 2-partition with an open neighborhood (with a closed neighborhood) if for every $v \in V(G)$, $|\#(v)| \leq 1$ ($|\#[v]| \leq 1$).

If G is a complete n-partite graph and X is a part of G, then X is called an odd (even) part if |X| is odd (|X| is even). If G is a complete n-partite graph, then by m_1 , m_2 , and $m_{\geq 3}$ we denote the number of parts of G with one vertex, two vertices and at least three vertices, respectively. If φ is a 2-partition of a complete n-partite graph G and X is a part of G, then by W_X (G_X) we denote the number of **White** (**Black**) vertices of the part X. If φ is a 2-partition of a complete n-partite graph G, then by G0 we denote the number of **White** (**Black**) vertices in G1.

We begin with the following simple lemma.

Lemma 1. If φ is a locally-balanced 2-partition of G, then $\overline{\varphi}$ is also a locally-balanced 2-partition of G.

Lemma 2. If $K_{r_1,r_2...,r_n}$ has a locally-balanced 2-partition with an open neighborhood, then for any part X, $|W_X - B_X| \le 1$.

Proof. Let φ be a locally-balanced 2-partition with an open neighborhood of $K_{r_1,r_2...,r_n}$. Suppose, to the contrary, that there exists a part X' such that either $W_{X'} - B_{X'} \geq 2$ or $B_{X'} - W_{X'} \geq 2$. By Lemma 1., we can assume that there exists a part X' such that

$$W_{X'} - B_{X'} \ge 2 \tag{1}$$

It is easy to see that for any $v \in X$,

$$\#(v) = W - B - W_X + B_X.$$

From this and taking into account that for any $v \in V(K_{r_1,r_2...,r_n}), -1 \le \#(v) \le 1$, we obtain that for any part X,

$$-1 \le W - B - W_X + B_X \le 1. \tag{2}$$

By (1) and (2), we have

$$W - B \ge 1. \tag{3}$$

For any part Y $(Y \neq X')$, by (2), we have

$$-1 \le W - B - W_Y + B_Y \le 1.$$

From this and (3), we obtain that for any part Y ($Y \neq X'$),

$$W_Y - B_Y \ge 0. (4)$$

Let us consider any $v \in X$ $(X \neq X')$. Clearly,

$$\#(v) = \sum_{Y,Y \neq X} (W_Y - B_Y) = \sum_{Y,Y \neq X,X'} (W_Y - B_Y) + W_{X'} - B_{X'}.$$

By (1) and (4), we get $\#(v) \geq 2$, which is a contradiction.

Theorem 1. The graph $K_{r_1,r_2...,r_n}$ has a locally-balanced 2-partition with an open neighborhood if and only if the number of odd parts is even or one.

Proof. Assume that $K_{r_1,r_2...,r_n}$ has k even parts and s odd parts. Suppose that $K_{r_1,r_2...,r_n}$ has a locally-balanced 2-partition with an open neighborhood, but contains odd number s $(s \ge 3)$ odd parts. Lemma 2 implies that for any part X of $K_{r_1,r_2...,r_n}$, $|W_X - B_X| \le 1$. We decompose all the vertices of the graph into three groups as follows:

- 1. all even parts X_i (here, we have $W_{X_i} B_{X_i} = 0$, by Lemma 2);
- 2. all odd parts X'_i with $W_{X'_i} > B_{X'_i}$ (here, we have $W_{X'_i} B_{X'_i} = 1$, by Lemma 2);
- 3. all odd parts X_i'' with $W_{X_i''} < B_{X_i''}$ (here, we have $W_{X_i''} B_{X_i''} = -1$, by Lemma 2.).

Let X_1, X_2, \ldots, X_k be parts of the first group; X'_1, X'_2, \ldots, X'_m be parts of the second group; $X''_1, X''_2, \ldots, X''_t$ be parts of the third group. Without loss of generality, we may assume that m > t. Consider two cases.

Case 1: t = 0.

Clearly, $m \geq 3$. Let us consider a vertex $v \in X'_1$. By 1 and 2, we have

$$\#(v) = \sum_{Y,Y \neq X_1'} (W_Y - B_Y) = \sum_{i=1}^k (W_{X_i} - B_{X_i}) + \sum_{i=2}^m (W_{X_i'} - B_{X_i'}) = m - 1 \ge 2,$$

which is a contradiction.

Case 2: t > 0.

Let us consider a vertex $v \in X_1''$. By 1, 2 and 3, we have

$$\#(v) = \sum_{Y,Y \neq X_1''} (W_Y - B_Y) = \sum_{i=1}^k (W_{X_i} - B_{X_i}) + \sum_{i=1}^m (W_{X_i'} - B_{X_i'}) + \sum_{$$

$$\sum_{i=2}^{t} (W_{X_i''} - B_{X_i''}) = m - (t-1) = (m-t) + 1 \ge 2,$$

which is a contradiction.

Now we show that if the number of odd parts is even or one, then $K_{r_1,r_2...,r_n}$ has a locally-balanced 2-partition with an open neighborhood.

First we color even parts uniformly.

Next we consider two cases.

Case A) The number of odd parts is 2l. First l odd parts we color as follows: if X is such a part with 2p + 1 ($p \ge 0$) vertices, then any p vertices get the color **Black** and the rest vertices get the color **White**. Next l odd parts we color similarly by taking the color **White** instead of **Black**, and vice versa.

Case B) X is the only odd part with 2p+1 $(p \ge 0)$ vertices.

In this case we color any p vertices of X with the color **Black** and the rest vertices with the color **White**.

It is easy to see that the above-mentioned 2-partition is a locally-balanced 2-partition of $K_{r_1,r_2...,r_n}$ with an open neighborhood.

Theorem 2. If $m_1 = 0$, then the graph $K_{r_1,r_2...,r_n}$ has a locally-balanced 2-partition with a closed neighborhood if and only if it has no odd part.

Proof. Let φ be a locally-balanced 2-partition with a closed neighborhood of $K_{r_1,r_2...,r_n}$. Suppose, to the contrary, that there exists an odd part X. Since $m_1 = 0$, we have $|X| \geq 3$. Without loss of generality, we may assume that $W_X > B_X$. We consider two cases.

Case 1: $B_X = 0$.

Consider a vertex $v \in X$. Clearly, $\varphi(v) = \mathbf{White}$. This implies that

$$\#[v] = W - B - W_X + B_X + 1.$$

Since φ is a locally-balanced 2-partition with a closed neighborhood of K_{r_1,r_2,\ldots,r_n} , we have

$$-1 \le W - B - W_X + B_X + 1 \le 1$$
.

This implies that

$$W - B > W_X - 2 > 0$$
.

Case 2: $B_X > 0$.

Consider a vertex $v \in X$ with $\varphi(v) =$ Black. This implies that

$$\#[v] = W - B - W_X + B_X - 1.$$

Since φ is a locally-balanced 2-partition with a closed neighborhood of K_{r_1,r_2,\dots,r_n} , we have

$$-1 \le W - B - W_X + B_X - 1 \le 1.$$

This implies that $W - B \ge W_X - B_X > 0$.

In any case we obtain

$$W - B > 0. (5)$$

First we consider the case when for any part Y, $W_Y \ge B_Y$. Let us consider a vertex $v \in X'$ $(X' \ne X)$ with $\varphi(v) = \mathbf{White}$. This implies that

$$\#[v] = \sum_{Y,Y \neq X'} (W_Y - B_Y) + 1 =$$

$$W_X - B_X + \sum_{Y,Y \neq X,X'} (W_Y - B_Y) + 1 \ge 2,$$

which is a contradiction.

So, we may assume that there exists a part X' such that $W_{X'} < B_{X'}$.

If $W_{X'} = 0$, then we consider a vertex $v \in X'$. Clearly, $\varphi(v) = \mathbf{Black}$. From this and taking into account that φ is a locally-balanced 2-partition with a closed neighborhood of $K_{r_1,r_2...,r_n}$, we have

$$-1 \le W - B - W_{X'} + B_{X'} - 1 \le 1.$$

Hence, $W - B \le 2 - B_{X'} \le 0$, which contradicts (5).

If $W_{X'} > 0$, then we consider a vertex $v \in X'$ with $\varphi(v) = \mathbf{White}$. From this and taking into account that φ is a locally-balanced 2-partition with a closed neighborhood of $K_{r_1,r_2...,r_n}$, we have

$$-1 \le W - B - W_{X'} + B_{X'} + 1 \le 1.$$

Hence, $W - B \le W_{X'} - B_{X'} < 0$, which contradicts (5).

Let $K_{r_1,r_2...,r_n}$ be a complete *n*-partite graph without an odd part. In this case we color each part uniformly.

Lemma 3. If $m_1 > 0$ and $K_{r_1,r_2...,r_n}$ has a locally-balanced 2-partition with a closed neighborhood, then $|W - B| \le 1$.

Proof. Let φ be a locally-balanced 2-partition with a closed neighborhood of $K_{r_1,r_2,...,r_n}$. Consider a vertex v of the part X with |X| = 1. Since φ is a locally-balanced 2-partition with a closed neighborhood of $K_{r_1,r_2,...,r_n}$, we have #[v] = W - B, and hence

$$-1 \le W - B \le 1.$$

Remark 1. Clearly, Lemma 3. implies that if $|V(K_{r_1,r_2...,r_n})|$ is even, then W = B, and if $|V(K_{r_1,r_2...,r_n})|$ is odd, then $|W - B| = \pm 1$ (in fact, by Lemma 1., we may assume that W - B = 1).

Theorem 3. If $m_1 > 0$ and $|V(K_{r_1,r_2...,r_n})|$ is even, then $K_{r_1,r_2...,r_n}$ has a locally-balanced 2-partition with a closed neighborhood if and only if it has no odd part X with at least three vertices.

Proof. Let φ be a locally-balanced 2-partition with a closed neighborhood of $K_{r_1,r_2...,r_n}$. Suppose that there exists an odd part X with at least three vertices. We may assume that $W_X > B_X$. We consider two cases.

Case 1: $B_X = 0$.

Consider a vertex $v \in X$. Clearly, $\varphi(v) = \mathbf{White}$. This implies that

$$\#[v] = W - B - W_X + B_X + 1.$$

By Remark 1, we get $\#[v] = 1 - W_X \le -2$, which is a contradiction.

Case 2: $B_X > 0$.

Consider a vertex $v \in X$ with $\varphi(v) =$ Black. This implies that

$$\#[v] = W - B - W_X + B_X - 1.$$

By Remark 1 and taking into account that $W_X > B_X$, we obtain

$$\#[v] = B_X - W_X - 1 \le 2,$$

which is a contradiction.

Now let $K_{r_1,r_2...,r_n}$ be a complete *n*-partite graph with $m_1 > 0$ odd parts. Clearly, m_1 is even.

Each even part we color uniformly. Then we color $\frac{m_1}{2}$ odd parts with the color **Black** and the other $\frac{m_1}{2}$ odd parts with the color **White**.

It is easy to see that this 2-partition is a locally-balanced 2-partition with a closed neighborhood of $K_{r_1,r_2,...,r_n}$.

Theorem 4. If the graph $K_{r_1,r_2...,r_n}$ has an odd number of vertices, $m_1 > 0$ and there exists a part X such that |X| = 2 + 2k ($k \in \mathbb{N}$), then $K_{r_1,r_2...,r_n}$ has no locally-balanced 2-partition with a closed neighborhood.

Proof. Suppose that φ is a locally-balanced 2-partition with a closed neighborhood of $K_{r_1,r_2,...,r_n}$. By Remark 1 and Lemma 1, we get

$$W - B = 1$$
.

Let us consider four cases.

Case 1: $B_X = 0$.

Let us consider a vertex $v \in X$. Since φ is a locally-balanced 2-partition with a closed neighborhood of $K_{r_1,r_2,...,r_n}$, we have

$$\#[v] = W - B - W_X + B_X + 1 = 2 - W_X \le -2,$$

which is a contradiction.

Case 2: $W_X = 0$.

Let us consider a vertex $v \in X$. Since φ is a locally-balanced 2-partition with a closed neighborhood of $K_{r_1,r_2,...,r_n}$, we have

$$\#[v] = W - B - W_X + B_X - 1 = B_X \ge 4,$$

which is a contradiction.

Case 3: $W_X > B_X > 0$.

Let us consider a vertex $v \in X$ with $\varphi(v) = \mathbf{Black}$. Since φ is a locally-balanced 2-partition with a closed neighborhood of $K_{r_1,r_2...,r_n}$, we have

$$\#[v] = W - B - W_X + B_X - 1 = B_X - W_X \le -2,$$

which is a contradiction.

Case 4: $0 < W_X \le B_X$.

Let us consider a vertex $v \in X$ with $\varphi(v) = \mathbf{White}$. Since φ is a locally-balanced 2-partition with a closed neighborhood of $K_{r_1,r_2...,r_n}$, we have

$$\#[v] = W - B - W_X + B_X + 1 = 2 + B_X - W_X \ge 2,$$

which is a contradiction.

Theorem 5. If the graph $K_{r_1,r_2...,r_n}$ has an odd number of vertices, $m_1 > 0$ and each part X of the graph has either two vertices or an odd number of vertices, then $K_{r_1,r_2...,r_n}$ has a locally-balanced 2-partition with a closed neighborhood if and only if $m_1 \geq 2m_2 + m_{\geq 3} - 1$.

Proof. Suppose that φ is a locally-balanced 2-partition with a closed neighborhood of K_{r_1,r_2,\dots,r_n} . By Remark 1 and Lemma 1, we have

$$W - B = 1. (6)$$

Let us consider a part X with only two vertices u and v.

If $\varphi(v) = \mathbf{White}$ and $\varphi(u) = \mathbf{Black}$, then since φ is a locally-balanced 2-partition with a closed neighborhood of $K_{r_1,r_2,...,r_n}$, we have

$$\#[v] = W - B - W_X + B_X + 1 = 2,$$

a contradiction.

Similarly, if $\varphi(v) = \mathbf{Black}$ and $\varphi(u) = \mathbf{White}$, then we consider the vertex u.

If $\varphi(v) = \varphi(u) = \mathbf{Black}$, then since φ is a locally-balanced 2-partition with a closed neighborhood of K_{r_1,r_2,\ldots,r_n} , we have

$$\#[v] = W - B - W_X + B_X - 1 = 2,$$

a contradiction.

This implies that $\varphi(v) = \varphi(u) = \mathbf{White}$.

Let X be an odd part with at least three vertices.

If $W_X = 0$, then by considering a vertex $v \in X$ and taking into account that φ is a locally-balanced 2-partition with a closed neighborhood of $K_{r_1,r_2...,r_n}$, we obtain

$$\#[v] = W - B - W_X + B_X - 1 = B_X > 3,$$

a contradiction.

If $0 < W_X < B_X$, then by considering a vertex $v \in X$ with $\varphi(v) = \mathbf{White}$ and taking into account that φ is a locally-balanced 2-partition with a closed neighborhood of $K_{r_1,r_2...,r_n}$, we obtain

$$\#[v] = W - B - W_X + B_X + 1 = 2 + B_X - W_X \ge 3,$$

a contradiction. This shows that

$$W_X > B_X. (7)$$

Let us consider two cases.

Case 1: |X| = 3.

By (7), we have that there are two possible cases: all vertices of X are **White** or two of them are **White** and the last one is **Black**.

If $W_X = 3$ and $B_X = 0$, then for any $v \in X$, we have

$$\#[v] = W - B - W_X + B_X + 1 = -1.$$

This implies that for any $v \in X$, $-1 \le \#[v] \le 1$.

If $W_X = 2$ and $B_X = 1$, then for any $v \in X$, we have either $\#[v] = W - B - W_X + B_X + 1 = 1$ (if $\varphi(v) = \mathbf{White}$) or $\#[v] = W - B - W_X + B_X - 1 = -1$ (if $\varphi(v) = \mathbf{Black}$). This implies that for any $v \in X$, $-1 \le \#[v] \le 1$.

Case 2: $|X| \ge 5$.

By (7), we have $W_X - B_X \ge 1$.

Let us show that $W_X - B_X = 1$.

Suppose, to the contrary, that $W_X - B_X \ge 3$.

If $B_X = 0$, then for any $v \in X$, we have

$$\#[v] = W - B - W_X + B_X + 1 < -3,$$

which is a contradiction.

If $W_X > B_X > 0$. For any $v \in X$ with $\varphi(v) = \mathbf{Black}$, we have

$$\#[v] = W - B - W_X + B_X - 1 \le -3,$$

which is a contradiction.

This shows that $W_X - B_X = 1$.

So, we obtain that if X is a part with at least two vertices, then we have the following three possible cases:

a) If X is an odd part with three vertices, then

either
$$W_X - B_X = 1$$
 or $W_X - B_X = 3$; (8)

b) If X is an odd part with at least five vertices, then

$$W_X - B_X = 1; (9)$$

c) If X has two vertices, then

$$W_X - B_X = 2. (10)$$

By (6), (8), (9), (10), we get

$$m_1 = \sum_{X,|X|=1} (B_X + W_X) \ge \sum_{X,|X|=1} (B_X - W_X) = B - W + \sum_{X,|X|=2} (W_X - B_X) + \sum_{X,|X|=1} (W_X - W_X) = B - W + E - W$$

$$\sum_{X,W_X-B_X=1} (W_X-B_X) + \sum_{X,W_X-B_X=3} (W_X-B_X) = B - W + 2|\{X: X \text{ is a part with } |X|=2\}| + W_X - W_X$$

 $|\{X: X \text{ is a part with } W_X - B_X = 1\}| + 3|\{X: X \text{ is a part with } W_X - B_X = 3\}| \ge 1$

$$B-W+2|\{X\colon X \text{ is a part with } |X|=2\}|+|\{X\colon X \text{ is a part with } W_X-B_X=1\}|+|\{X\colon X \text{ is a part with } |X|=2\}|+|\{X\colon X \text{ is a part with } |X|=2\}|+|\{X\colon$$

 $|\{X: X \text{ is a part with } W_X - B_X = 3\}| = B - W + 2|\{X: X \text{ is a part with } |X| = 2\}|$

 $|\{X: X \text{ is an odd part with at least three vertices}\}| = -1 + 2m_2 + m_{\geq 3}.$

Now let $m_1 \ge 2m_2 + m_{\ge 3} - 1$. We construct a 2-partition of K_{r_1, r_2, \dots, r_n} as follows:

- 1) Each vertex $v \in X$ (|X| = 2), we color with the color White;
- 2) For any odd part X with |X| = 2p + 1 ($p \in \mathbb{N}$) vertices, we color p + 1 vertices of X with the color **White**, and the rest p vertices we color with the color **Black**;
- 3) We take any $(2m_2 + m_{\geq 3} 1)$ parts with only one vertex of the graph and we color each vertex in these parts with the color **Black**. Since $|V(K_{r_1,r_2...,r_n})|$ is odd and $m_1 \geq 2m_2 + m_{\geq 3} 1$, we have that $m_1 (2m_2 + m_{\geq 3} 1)$ is even and non-negative. The vertices of the remaining $m_1 (2m_2 + m_{\geq 3} 1)$ parts we color uniformly.

It is not difficult to see that this 2-partition is a locally-balanced 2-partition with a closed neighborhood of $K_{r_1,r_2...,r_n}$.

References

- [1] C. Berge, Graphs and Hypergraphs, Elsevier Science Ltd, 1985.
- [2] S.V. Balikyan, "On existence of certain locally-balanced 2-partition of a tree", Mathematical Problems of Computer Science, Vol. 30, pp. 25-30, 2008.
- [3] S.V. Balikyan and R. R. Kamalian, "On existence of 2-partition of a tree, which obeys the given priority", *Mathematical Problems of Computer Science*, Vol. 30, pp. 31-35, 2008.
- [4] S.V. Balikyan and R. R. Kamalian, "Necessary and sufficient condition for existence of locally-balanced 2-partition of a tree under the extended definition of a neighbourhood of a vertex", *Mathematical Problems of Computer Science*, vol. 31, pp. 116-121, 2008.
- [5] A. H. Gharibyan and P.A. Petrosyan, "Locally-balanced 2-partitions of complete multipartite graphs", 6th Polish Combinatorial Conference, Bedlewo, Poland, p. 19, 2016.
- [6] A.H. Gharibyan and P.A. Petrosyan, "On locally-balanced 2-partitions of some graphs", *Proceedings of the CSIT Conference*, Yerevan, pp. 196-197, 2017.
- [7] A. Hajnal and E. Szemeredi, "Proof of a conjecture of P. Erdős", Combinatorial theory and its applications, II (Proc. Colloq., Balatonfred, 1969), North-Holland, pp. 601-623, 1970.
- [8] G. Chartrand and P. Zhang, *Chromatic Graph Theory*, Discrete Mathematics and Its Applications, CRC Press, 2009.
- [9] W. Meyer, "Equitable coloring", American Mathematical Monthly, vol. 80, no. 8, pp. 920-922, 1973.
- [10] A.V. Kostochka, "Equitable colorings of outerplanar graphs", *Discrete Mathematics* vol. 258, pp. 373-377, 2002.
- [11] J. Kratochvil, "Complexity of hypergraph coloring and Seidel's switching", Graph Theoretic Concepts in Computer Science, 29th International Workshop, WG 2003, Elspeet, The Netherlands, Revised Papers, vol. 2880, pp. 297-308, June 19-21, 2003.
- [12] S. V. Balikyan and R. R. Kamalian, "On NP-completeness of the problem of existence of locally-balanced 2-partition for bipartite graphs G with $\Delta(G) = 3$ ", $Doklady\ NAN\ RA$, vol. 105, no. 1, pp. 21-27, 2005.
- [13] S.V. Balikyan and R.R. Kamalian, "On NP-completeness of the problem of existence of locally-balanced 2-partition for bipartite graphs G with $\Delta(G)=4$ under the extended definition of the neighbourhood of a vertex", $Doklady\ NAN\ RA$, vol. 106, no. 3, pp. 218-226, 2006.
- [14] D. de Werra, "On good and equitable colorings", In Cahiers du C.E.R.O., vol. 17, pp. 417-426, 1975.
- [15] D.B. West, Introduction to Graph Theory, Prentice-Hall, New Jersey, 2001.

Լրիվ բազմակողմանի գրաֆների լոկալ-հավասարակշռված 2-տրոհումների մասին

Ա. Ղարիբյան և Պ. Պետրոսյան

Ամփոփում

 $f:V(G) \to \{ {f White,Black} \}$ ֆունկցիան կոչվում է G գրաֆի 2-արոհում։ G գրաֆի f 2-արոհումը կոչվում է լոկալ-հավասարակշոված 2-արոհում բաց շրջակայքով, եթե կամայական $v \in V(G)$ գագաթի համար տեղի ունի

$$||\{u \in N_G(v): f(u) = \mathbf{White}\}| - |\{u \in N_G(v): f(u) = \mathbf{Black}\}|| \le 1,$$

որտեղ $N_G(v)=\{u\in V(G)\colon uv\in E(G)\}\colon$ G գրաֆի f' 2-տրոհումը կոչվում է լոկալ-հավասարակշոված տրոհում փակ շրջակայքով, եթե կամայական $v\in V(G)$ գագաթի համար տեղի ունի

$$||\{u \in N_G[v]: f'(u) = \mathbf{White}\}| - |\{u \in N_G[v]: f'(u) = \mathbf{Black}\}|| \le 1,$$

որտեղ $N_G[v] = N_G(v) \cup \{v\}$ ։ Այս աշխատանքում տրվում են լրիվ բազմակողմանի գրաֆների լոկալ-հավասարակշռված տրոհումների գոյության անհրաժեշտ և բավարար պայմաններ։

О локально-сбалансированных 2-разбиениях полных многодольных графов

А. Гарибян и П. Петросян

Аннотация

2-разбиением графа G называется функция $f:V(G) \to \{ \mathbf{White}, \mathbf{Black} \}.$ 2-разбиение f графа G называется локально-сбалансированным с открытой окрестностью, если для любой вершины $v \in V(G)$

$$||\{u \in N_G(v): f(u) = \mathbf{White}\}| - |\{u \in N_G(v): f(u) = \mathbf{Black}\}|| \le 1,$$

где $N_G(v) = \{u \in V(G): uv \in E(G)\}$. 2-разбиение f' графа G называется локальносбалансированным с закрытой окрестностью, если для любой вершины $v \in V(G)$

$$||\{u \in N_G[v]: f'(u) = \mathbf{White}\}| - |\{u \in N_G[v]: f'(u) = \mathbf{Black}\}|| \le 1,$$

где $N_G[v] = N_G(v) \cup \{v\}$. В настоящей работе даются необходимые и достаточные условия существования локально-сбалансированных 2-разбиений полных многодольных графов.