Mathematical Problems of Computer Science 50, 88--95, 2018.

Secure Storage Implementation for Large Files in iOS
Environment

Levon M. Hovsepyan and Aren K. Mayilyan

National Polytechnic University of Armenia
e-mail: lehovsepyan@gmail.com, mayilyan96@mail.ru

Abstract

Mobile device storage services are not secure by nature as all
databases and files are stored on the client side. We cannot ignore that
because nowadays mobile devices are made of hardware, which is
capable for building and running applications, which cover almost every
functionality that computers have. There is an inherent risk of data
exposure (confidentiality) and data tampering (integrity). To avoid the
risks mentioned above, software engineers use some approaches, which
are provided by the iOS SDK for securely storing sensitive data.
However, those approaches currently work only for small amount of data
(key-value pairs) and the issue still remains for large files.

In this paper, we introduced an approach of securely storing large
files in iOS environment.

Keywords: iOS, Secure storage, Data protection, Encryption

1. Introduction

Nowadays people use smartphones more often than computers in daily life. Researches show
that in 2016, an estimated 62.9 percent of the population worldwide already owned mobile
phones [1], and in 2019 the number of mobile phone users is forecast to reach 4.68 billion. The
tendency towards mobile devices leads to technological progress and hardware technologies
already reached a level that giant manufacturers like Apple, Samsung, Xiaomi produce
smartphones with technical characteristics capable to compete with computers by their
performance and run heavy CPU/GPU intensive applications like different games and Al
powered apps.

This mobile revolution brought almost every sphere to a digital platform, which raised data
protection and privacy risks. For example, a lot of personal information, photos, videos and

88

mailto:lehovsepyan@gmail.com
https://www.statista.com/statistics/274774/forecast-of-mobile-phone-users-worldwide/

L. Hovsepyan and A. Mayilyan 89

other files are now being published on social platforms, and it’s an urgent task for the software
company to protect that data and make it accessible only for specified people. Another example
is that people store their passwords inside one software for remembering them easily, and the
result of data leak here can be irreversible. Those two examples mentioned above highlight the
importance of data protection.

In enterprise solutions, data protection is relatively easy than in mobile ones. In enterprise
systems, data is being stored on server side, inside the specially designed databases or even
data centers. This approach is more secure in contrast to mobile solutions for the following
reasons:

= Server side hardware has more computational power and memory storage, and in
addition to it, both of these parameters can be increased any time.

= The access to server side storage is happening through network, and many
penetration attempts can be blocked at network layer.

= Server side data storage can be isolated from network at any time to reduce the
access

In mobile platform, data is stored in embedded memory of mobile device, which gives full control
to an intruder over it. Even though iOS has a secure file system divided into sandboxes [2],_as
shown in Figure 1, it becomes accessible after device jailbreak. This means that the data can be
observed as it is from the file directories. The only data protection method that can work here is
to store everything in encrypted form, which will prevent data from being leaked even if it is
accessible.

y AN MyApp.app

Documents

Library
MyApp
Temp

iCloud Container

Fig.1. AniOS app operating within its own sandbox directory.

As a solution, 10S platform gives Keychain [3] to developers, which is a shared key-value
secure storage. It works fine for small data like passwords, cryptographic keys, certificates and
notes, but when it comes to larger files, keychain becomes problematic to use. As it is shared

https://developer.apple.com/library/archive/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/FileSystemOverview/FileSystemOverview.html
https://developer.apple.com/documentation/security/keychain_services

90 Secure Storage Implementation for Large Files in iOS Environment

storage between devices, which are connected to the same Apple Id, it syncs the stored files to
iICloud storage. For large files it will work slow and can cost a lot of money for network traffic.

In this paper, we introduce an approach for securely storing large files in local memory. As
the mobile devices have limitations in memory, the approach supports incremental usage as well.
The security will be based on AES-256 encryption algorithm, and the encryption key will be
securely stored in keychain storage.

2. Related Work

As data protection is an actively studied subject, there are many suggested solutions in regard to
how to securely store the data. Particularly for iOS platform, the most common solutions for
storing data are Core Data and Keychain.

Core Data is Apple’s persistence framework with an underlying SQLite database. This
means that developers interact with Core Data methods, not the database directly. An important
observation is that SQLite is not encrypted by default, when the device is unlocked.
Nevertheless, Apple has a feature called “Data Protection” [4], which encrypts the sandbox
while the device is locked with passcode. However, we cannot rely on the end user to passcode-
protect his/her device. The device can be jailbroken and passcodes can be easy to crack. Thus,
we see that this solution has vulnerabilities and contains risks for storing sensitive data.

The second secure option that iI0S SDK gives is Keychain. Keychain API’s solve secure
storage problems by giving the app a mechanism to store small bits of user data in an encrypted
database.

The keychain is not limited to passwords, as shown in Figure 2. You can store other secrets
that the user explicitly cares about, such as credit card information or even short notes. It is also
agood place for storing items that the user needs, but may not be aware of, e.g., the cryptographic
keys and certificates.

Keychain services API

i Keychain
Crome J
Cryptographic
keys
Certs & identities
&

Fig. 2. Securing the user's secrets in a keychain.

Keychain items are encrypted using two different AES-256-GCM keys: a table key (metadata)
and per-row key (secret key). As a metadata, “created” and “last updated” timestamps are being
generated, when storing data. Keychain metadata is encrypted with the metadata key to speed-
search, while searching secret value is encrypted with the secret-key.

The Keychain is implemented as a SQL.ite database stored in the file system. There is only
one database, and the *“securityld” daemon determines which Keychain items each process or
app can access. Keychain items can only be shared between apps from the same developer. This
is managed by requiring third-party apps to use access groups with a prefix allocated to them

https://developer.apple.com/documentation/uikit/core_app/protecting_the_user_s_privacy

L. Hovsepyan and A. Mayilyan 91

through the Apple Developer Program through application groups. The prefix requirement and
application group uniqueness are enforced through code signing [5], provisioning profiles and
Apple Developer Program.

Even though Keychain is a securely designed and easy-to-use solution: its disadvantage is the
incapability to store large files.

3. Overview of Our Approach

As we saw in the previous section, native approaches have some disadvantages, and it is
reasonable to come up with a solution, which will cover them. Firstly, we need to choose the
correct encryption algorithm. The most important characteristic to keep in mind when choosing
an encryption algorithm is that you should select one that is widely used and accepted by the
security community. The security of any encryption algorithm should never depend upon the
secrecy of the algorithm itself. Instead, the algorithm should be publicly disclosed and open to
the cryptographic community for analysis. The true security of the algorithm always lies in the
security of the keys used to decrypt message. After some researches and experiments AES-256
with CBC mode was chosen as the encryption algorithm. AES is Advanced Encryption
Standard, symmetric block encryption mechanism. 256 in AES-256 is a key size in bits.

It is based on a design principle known as a substitution-permutation network, and is efficient
in both software and hardware. AES-256 is a variant of Rijndael, which has a fixed block size
of 128 bits, and a key size of 256 bits. This cypher is considered among the tops and is widely
used in SSL/TLS over the Internet. The only weakness of this algorithm is the key that we
choose. As long as we choose a strong key for it, AES-256 will keep our files safe.

As we are developing an approach for mobile side encryption, we consider that there is no
way to retrieve encryption key from outside the phone. Hence, the method of storing the key
itself becomes a vulnerable point. If we hardcode the encryption key inside our source code, it
can be easily hacked after jailbreak using reverse engineering [6] techniques. To avoid that issue,
we suggest to generate an encryption key based on the advertising identifier (IDFA), which is a
unique ID for each iOS device’s application that mobile ad networks typically use to serve
targeted ads. This unique id will not be visible in the source code even when you reverse engineer
the app, therefore it will prevent the secret key exposure. For key generation, we use PBKDF2,
which is a key derivation function [7], which derives a secret key from IDFA using a
pseudorandom function [8]. After successful generation, we store the generated secret key in the
keychain where we can be sure it is safe.

Now when the secret key is generated, we are ready to encrypt any file and store it inside
the “Documents” directory of the application. There are various open-source cryptographic
algorithm implementations available to use in iOS, which are mostly based on Apple’s
Corecrypto library. For our approach we chose RNCryptor [9], because it supports incremental
use [10]. Incremental use of encryption is useful for cases where the data will no comfortably fit
in memory, which is a common situation for mobile devices, or when the data is received via
Internet with chunks. Receiving and encrypting data chunks asynchronously saves time. The
overall process of file encryption is presented in Figure 3.

https://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-21/code-signing.html
https://www.researchgate.net/publication/261199437_Reverse_Engineering_iOS_Mobile_Applications
https://www.researchgate.net/publication/220905226_On_The_Security_of_Key_Derivation_Functions
https://dl.acm.org/citation.cfm?id=312213
https://github.com/RNCryptor/RNCryptor
https://www.researchgate.net/lite.publication.PublicationDownloadCitationModal.downloadCitation.html?file-type-radio=RIS&citation-radio=citation&publicationUid=316263841

92 Secure Storage Implementation for Large Files in iOS Environment

L 4

LT Keychain

[IDFA]:}[PBKDF2]:D
Keg,f
[E |::> AE5256 .
Clphered T

Input

File Flle

IMemary

Fig. 3. Overall process of file encryption.

As the approach is designed for large files, it is important to have acceptable
performance. Performance measurements have been done on iPhone 7, which has an average
computing power. Encryption experiments for relatively large files showed acceptable
performance, as you can see in Figure 4.

The overall performance of data storage is presented in Figure 5, which shows a
comparison of data storing with and without encryption. The results can vary on different
devices based on CPU power, but in average they are acceptable.

6,000
5,110
5,000
4,000
—
W
E
‘o 3,000 -
£
|_
2,000
1,000
18 36
0 _* T
1Mb 5Mb 10Mb 20Mb 50Mb 100Mb 200Mb 500Mb 1Gb
—@— AFS-256

Fig. 4. File size/Encryption time measurements.

L. Hovsepyan and A. Mayilyan 93

8,000 -
7,000
5,000
5,000

4,000

Time{ms)

3,000

2,000

1,000

0 T T T — T T T T T T

1Mb SMb 10Mb 20Mb 50Mb 100Mb 200Mb 5000Mb 1Gb

e Wi ith Encryption Without Encryption

Fig. 5. File storage performance with/without encryption.

4. Conclusion

In this paper, we have shown an approach for securely storing large files in local memory of an
i10S device using cryptographic algorithms. We have shown how to generate the encryption key
to protect it in case the application is reverse-engineered. This approach differs from the existing
ones, because it still protects your data, even when the device is jailbroken and the access to
applications file system is open to anyone. Moreover, this approach increases the performance
of data storage with the help of incremental encryption.

References

[1] [Online]. Awvailable: https://www.statista.com/statistics/274774/forecast-of-mobile-
phone-users-worldwide/

[2] [Online]. Available: https://cocoacasts.com/what-is-application-sandboxing

[3] Apple’siOS Security Guide, pp 20-22, 2018

[4] https://developer.apple.com/documentation/uikit/core_app/protecting_the_user_s_privac

[5] Code Signing - The Internet Protocol Journal, Volume 5, Number 1 by Eric Fleischman

[6] E. Monaand M. Ali, “Reverse Engineering iOS Mobile Applications”, Proceedings-
Working Conference on Reverse Engineering, WCRE, 10.1109/WCRE.2012.27, pp. 177-
186, 2012.

[7] C. Adams, G. Kramer, S. Mister and R. Zuccherato, “On the security of key derivation
functions”, 7™ Internation Conference on Information Security, Lecture Notes in
Computer Science, vol. 3225, pp. 134-145, 2004.

https://www.statista.com/statistics/274774/forecast-of-mobile-phone-users-worldwide/
https://www.statista.com/statistics/274774/forecast-of-mobile-phone-users-worldwide/
https://cocoacasts.com/what-is-application-sandboxing
https://developer.apple.com/documentation/uikit/core_app/protecting_the_user_s_privac

94 Secure Storage Implementation for Large Files in iOS Environment

[8] J.Hastad, R. Impagliazzo, L. Levin and M. Luby, “A pseudorandom generator from any
one-way function”, SIAM Journal on Computing. 28. 10.1137/S0097539793244708,
vol.-28, no. 4, pp. 1364-1396, 1999.

[9] [Online]. Available: https://github.com/RNCryptor/RNCryptor

[10] I. Mironov, O. Pandey, O. Reingold, and G. Segev, “Incremental Deterministic Public-
Key Encryption”, Journal of Cryptology. 31. 10.1007/s00145-017-9252, vol.31, no. 1,
pp. 134-161, 2017.

Submitted 05.06.2018, accepted 22.11.2018.

10S Uhowduypnid utks duwyjtph myuwhnyg yuwhywidwt dkpnnh
hpwljwbwugniu

L. znJubthyut b U. Uuyhpjub

Udthnthnid

Pooujhtt vwppuynpnidubpmid wfjujubph ywwhywidwbh Swnwnipniutbpt
wwwhny skt hpkug punypny, pwuh np ponp wdjwibkph hkupkpp U pwybpp
wuwhywiynid kb oquuwgnpénnh Ynnunid: Ukltp skup YJwpnn wju Eplnyphg
huntuwthky, npnyhbnb Ubp opbipnud poowjhtt vwppwynpnidubpp yuwwpwunynud b
wjuyhuh wwwpwwnwhtt vwppwynpnidubphg, npnup h qonpnt kbt Jupnigh) b
wpluwwnbkgub] hwybwsttp, npntp swsnid Lt hwdwljwpgsht punpny gptiptk pnjnp
dniuljghntim) httwpwynpnipjnibiubpp, b owwn dké Yhpwpnipnit nitku: Uwwhny
sihubnig pjunid Bt njuyutiph puguhwyndwt (qununthnipinily) b pupgupontpejudp
upwig dbke dhowdwndwb (wdpnnowljwunipjuit) nhuljp: dkpnuoju nhulbphg
huntuwthtint hwdwp, dpugpuyhtt Lwpnupugbnubptt ogrnugnpénid tu iI0S SDK-h
ynnuhg mpudwnpynny dnnkgnidukp, bywbwlwh jupbnpnipyut duyiiph wyuhnyg
wuwhywidwt hwdwp: Ujuimwdbbwyuhy, wn dnnbgnudubpp tbkpju wwhhu
Yphpwntih ko dhuy thnpp sSwjwih ndjujubph (pubwgh-updtp) ghuypnud, b jeinhpp
ntnliu wnlw k ks uwy tiph nhypnid:

Uju hnpJusnid dkip wnwewnpynid Lup dnwintignid, i0S dhpwjuypnid ks wy kph
wywhny ywwhywitdwb hwdwp:

https://github.com/RNCryptor/RNCryptor

L. Hovsepyan and A. Mayilyan 95

Peanm3anus 0e30macHOro cnocoda xpaHeHust 00JIbIINX
¢daisio B iOS cpene

JI. OBcenan u A. Mawnnsa

AHHOTALUSA

CepBUCHI XpaHEHUS JAHHBIX JIJII MOOMIIBHBIX YCTPOMCTB MO HATYPE HE 3AIHIIEHBI, TAK
KaK Bce 0a3bl JaHHBIX U (aiiJIbl XpaHITCS B CTOPOHE MOJIb30BaTeNs. MBI HE MOKeM 000UTH
9TO, TIOTOMY YTO B HaIllle BpeMsi MOOWJIbHBIC YCTPOWMCTBA M3TOTOBIEHBI U3 alapaTHBIX
CPENCTB, KOTOPHIE CIIOCOOHBI CTPOUTH U MPUBECTH B pabOTY MPUIIOKEHUE, KOTOPHIE B ceOe
coJiepkaT Bech (DYHKIIMOHAJ, YTO UMEET KOMITBIOTEP, H UMEIOT MacCOBOE MPUMEMEHHE.
OT 3TOro CymecTByeT HEOTHhEMJIEMBIH PHUCK SKCHO3UIMU (KOH(HUICHIIUMATBLHOCTE) H
danbcudukanuu TaHHBIX (IIEIOCTHOCTH). UTOOBI N30€KaTh YIIOMSHYTBIX BBIIIE PUCKOB,
pa3pabOTYMKH HCIOIB3YIOT moaxoasl npenoctaBmsiembie 1I0S SDK mis Ge3omacHoro
XpaHeHUsl KOH(UIEHITNABHBIX TaHHBIX. TeM He MeHee, 3TH MOAXO0/IbI B HACOSIIee BPeMs
paboTaroT TOJBKO MJIsi HEOOJBIIOr0 KOJWYECTBA JaHHBIX (Taphl KIIOY-3HAYEHUE), U
npo0JieMa octaeTcs s O0NbIIUX (ailyioB.

B »T0i1 cTaThe MBI MpeICTaBUIN TOIX0]T 0€30MacHOT0 XpaHeHus 0obmuX (aitioB
B cpexe i0S.

	1. Introduction
	2. Related Work
	3. Overview of Our Approach
	4. Conclusion
	iOS Միջավայրում մեծ ֆայլերի ապահով պահպանման մեթոդի իրականացում
	Լ. Հովսեփյան և Ա․ Մայիլյան
	Ամփոփում
	Аннотация

