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Abstract

In this paper the canonical notions of §-reduction for typed A-terms are considered.
Typed A-terms use variables of any order and constants of order < 1, where constants
of order 1 are strongly computable, monotonic functions with indeterminate values of
arguments. The canonical notions of 4-reduction are the notions of -reduction that are
used in the implementations of functional programming languages. It is shown that for
the main canonical notion of d-reduction the notion of fd-reduction has the Church-
Rosser property. It is also shown that there exists a canonical notion of §-reduction
such that the notion of Fd-reduction does not have Church-Rosser property.

Keywords: Canonical notion of §-reduction, Church-Rosser property, Gd-reduction.

1. Typed A-Terms, Canonical Notion of J-Reduction

The definitions of this section can be found in [1]-[4]. Let M be a partially ordered set, which
has a least element L, which corresponds to the indeterminate value, and each element of
M is comparable only with L and itself. Let us define the set of types (denoted by Types).

1. M € Types,

2. If B,aq,...,ax € Types (k > 0), then the set of all monotonic mappings from a; X ... X ay
into § (denoted by [ay X ... X ap — []) belongs to Types.

Let a € T'ypes, then the order of type « (denoted by ord(«)) will be a natural number,
which is defined in the following way: if « = M then ord(a) =0, if @ = [a; X ... X ap — ],
where (3, v, ..., aq € Types, k > 0, then ord(a) = 1 + maz(ord(ay), ..., ord(ay),ord(3)). If
x is a variable of type a and constant ¢ € a, then ord(z) = ord(c) = ord(«).

Let a € Types and V,, be a countable set of variables of type o, then V = | V, is

acTypes

the set of all variables. The set of all terms, denoted by A= | A,, where A, is the set
acTypes

of terms of type «, is defined the in following way:
1. If ¢ € a, @ € Types, then ¢ € A,

2. fx eV, ae Types, then x € A,,
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3. 7 € Ay x..xap—p)s ti € Ao, where 3, o € Types,i = 1,....k, k> 1, then7(t1,....tx) €
Ag (the operation of application),

4. It 7 € Ag,z; € V,,, where B, € T'ypes, @ # j = x; # xj,4,] = 1,...,k,k > 1, then
AT1...2[T] € Aja;x...xap—p) (the operation of abstraction).

The notion of free and bound occurrences of variables as well as free and bound variable
are introduced in the conventional way. The set of all free variables in the term ¢ is denoted
by FV(t). Terms t; and t, are said to be congruent (which is denoted by t; = t5) if one term
can be obtained from the other by renaming bound variables.

Let t € Ay, € Types and FV(t) C {y1, s Yn }, Yo = (Y, .., 42), where y; € Vi, ) €
0Gi, 0; € Types,i = 1,....,n,n > 0. The value of the term t for the values of the variables
Y1, .-Yn equal to 7y = (3, ...,4"), is denoted by Valy,(t) and is defined in the conventional
way, see [2].

Let terms t1,t3 € Ao, € Types, FV (t))UFV (ta) = {y1, ... yn}, ¥i € Vi, Bi € Types,i =
L,....,n,n > 0, then terms t; and ¢, are called equivalent (denoted by t; ~ t5) if for any
To = (), ..., 42), where y € Vj,,i = 1,...,n we have the following: Valg (t1) = Valg, (t2). A
term t € A, a € Types, is called a constant term with value a € a if t ~ a.

Further, we assume that M is a recursive set, and the considered terms use variables of
any order and constants of order < 1, where constants of order 1 are strongly computable,
monotonic functions with indeterminate values of arguments. A function f : M* — M, k >
1, with indeterminate values of arguments, is said to be strongly computable if there exists
an algorithm, which stops with value f(my,...,my) € M for all mq,...,my € M, see [1].

To show mutually different variables of interest x1, ..., xx, k > 1, of a term ¢, the notation
t[z1, ..., k] is used. The notation t[ty, ..., tx] denotes the term obtained by the simultaneous
substitution of the terms t1, ..., ¢, for all free occurrences of the variables x1, ..., x;, respectively,
where z; € V,,,,i1 #j = x; Zx;, t;, € A, € Types,i,j = 1,..,k, k > 1. A substitution is
said to be admissible if all free variables of the term being substituted remain free after the
substitution. We will consider only admissible substitutions.

A term of the form Axj...xy[7[z1, ..., k]| (t1, ..., tg), where x; € Vi # j = x; # 25,7 €
ANt e Ny, 04 € Types,i,j =1,...,k,k > 1, is called a B-redex, its convolution is the term
T[t1,...,tx]. The set of all pairs (7, 71), where 7y is a f-redex and 7 is its convolution, is
called a notion of f-reduction and is denoted by 3. A one-step f-reduction (—gz) and (-
reduction (——p) are defined in the conventional way. A term containing no [-redexes is
called a f-normal form. The set of all f-normal forms is denoted by §-N F.

d-redex has a form f(ty,...,t;), where f € [M* — M|, t; € Apyi = 1,k k > 1, its
convolution is either m € M and in this case f(t1,...,t;) ~ m or a subterm ¢; and in this
case f(ty,....,tx) ~ t;;i = 1,...,k. A fixed set of term pairs (79, 71), where 75 is a d0-redex
and 71 is its convolution, is called a notion of d-reduction and is denoted by 0. A one-step
d-reduction (—s) and d-reduction (——4) are defined in the conventional way.

A one-step fd-reduction (—) and (d-reduction (——) defined in the conventional way.
A term containing no (30-redexes is called a normal form. The set of all normal forms is
denoted by NF.

A notion of d-reduction is called a single-valued notion of §-reduction, if § is a single-
valued relation, i.e., if (19,71) € § and (79,72) € §, then 7 = 75, where 79,71, 75 € Ay A
notion of d-reduction is called an effective notion of d-reduction if there exists an algorithm,
which for any term f(¢i,...,tx), where f € [M* — M], t; € Ayr,i = 1,... .k k > 1, gives its
convolution if f(ty,...,t;) is a d-redex and stops with a negative answer otherwise.
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Definition 1: [2/ An effective, single-valued notion of d-reduction is called a canonical no-
tion of d-reduction if:

1.tef-NF,t~m,me M\ {L} =1t—-—sm,
2.te-NF, FV(t) =0, t~ L =t —>—; L.

Theorem 1: [2/ For every recursive set of strong computable, monotonic functions with
indeterminate values of arguments there exists a canonical notion of d-reduction.

2. Main Canonical Notion of d-Reduction, Church-Rosser Property

Let C' be a recursive set of strongly computable, monotonic functions with indeterminate
values of arguments. Let us fix the following notion of d-reduction, which contains only the
following pairs, where for every f € C, f : M* — M, k > 1 we have:

L. if f(mq,...,mg) = m, where m,my,....,my € M,m # L, then (f(p1,..., ux),m) € 6,
where p; =m; if m; # L, and p; =t;,t; € Ay if my=Li=1,...k k> 1.

2. if f(myq,...,my) = L, where my,...,my € M, then (f(mq,...,my), L) € 0.

From the proof of Theorem 1 it follows that the ¢ is a canonical notion of d-reduction.
The ¢ is called a main canonical notion of d-reduction.

Definition 2: The term t € A is said to be strongly normalizable, if the length of each
Bo-reduction chain from the term t is finite.

Theorem 2: [3/ Every term is strongly normalizable.

Theorem 3: [3] For every term t € A, if t ——p t',t —»—p t" and t',t" € (-NF then
t=t".

Definition 3: Let t € A,,a € Types andt =t — ... — t,,n > 1, where t; € N,,1 =
1,...,n, then the sequence ty,...,t, is called the inference of the term t,, from the term t and
n 1s called the length of that inference.

Definition 4: The inference tree of the term t is an oriented tree with the root t and if a
term T is some node of the tree and T1,..., 7,k > 0 are all B-redezes of T, then 7., ooy Tt
are all descendants of the node T, where 7 is the convolution of 7;,i =1, ..., k.

It is easy to see that each node in the inference tree of the term ¢ has a finite number of
descendants and if 7 is a leaf of that tree, then 7 € NF'. The height of an inference tree of
the term ¢t is the length of the longest path from the root ¢ to a leaf. The set of all terms,
the height of the inference tree of which is equial to n — 1, is denoted by A™, n > 1.

Definition 5: The notion of fd-reduction has the Church-Rosser property (CR-property) if
for every termt € Ay, € Types, if t -— t; and t —— to, t1,ty € A, then there exists a
termt' € A, such that ty —— t' and to —— t.

Theorem 4: For the main canonical notion of d-reduction the notion of Bd-reduction has
the Church-Rosser property.
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Proof. Let t € AW, thent € NFandt =t =t, = t. Now, let us suppose that
CR-property holds for every term 7 € A® k < n—1,n > 2 and show that it holds for
every term t € A™. If t = t,, then t; —— t, and ¢/ = t,. If t = t,, then t, —— ¢, and
t'=t;. If t; £t and to # ¢, then there exist terms t|,t, € A, such that t — t| —— t; and
t — ty —— ta. Therefore, there exist 3d-redexes 71,79 € A such that t =t,, =t,,, t] =ty
and t; = t,;, where terms 77,7, are the convolutions of 7 and 75, accordingly. Let us show
that there exists a term ¢’ such that ¢}, —— ¢’ and t;, ——t'.

If 71 is not a subterm of 7, and 7, is not a subterm of 7, then ¢, ., — ¢,/ ;, — ¢ » and
tr s = by oy = Ly 7. Therefore t' =t .

If 75 is a subterm of 77 or 77 is a subterm of 7, then the following cases are possible:

1) 71 and 75 are both d-redexes. Without loss of generality we suppose that 7» is a
subterm of 7y (11 = 7.,). Let Ty, = flua, oty o i), f € [MF — M)t € Aypyi =
L.,k 1 <j <k Since 7y is a o-redex, then p; ¢ M and since 7 is a d-redex, then from
Definition 2 it follows that there exists m € M, m # L such that (7;,m) € §. Therefore
71 —¢ m. Since p; ¢ M and (11,m) € J, where m # L, then from Definition 2 it follows
that f(p1, ..., fhy .., pie) € 0 for every p € Ay Therefore (f(,ul,...,,ujTé,...,tk),m) € d and

Tir; —¢ m. Therefore, tr,, =5ty =tm and t —s tﬁTé —5 tm, where m € M\{L} and

t' =t,,.

2) 7, and 7, are both [-redexes. From Theorem 2 it follows that there exist terms
1,ty € B — NF such that t —3t; —»—pgt] and t —3 to ——p t;. Therefore from Theorem
3 it follows that t| =t, =t'.

3) 71 is 0-redex and 7y is f-redex or 7y is f-redex and 7 is d-redex. Without lose of
generality we suppose that 7 is d-redex and 7p is f-redex. Let 7o = Azy,...,x,[T[21, ...
) (s s o), T € Ny € Vi, o € Types, i =1, ..., n. The following cases are possible:

3.1) m = m,,. It can be shown that 7 — m and Tigy — M as shown in case 2. Therefore
=6ty =l and &, —p tﬁTé —5 tm, where m € M\{L}. Therefore t' = t,,.

T1 T

t

7'17—2
3.2) 7o = A\xy... &[T [, o, T (1, -y i1n), then it is easy to see, that if 7y [z, ..., 2] —s 7]

then 71 [y, ..., ] —¢ 71 and we have:

O=AT 1T [Try [0, s T ][00 s ) =6 AT T [Tt [0, o T [ (15 s 110 )ZO1 = Trr [0 oo ]

0 = Aoy [Tr [T15 o ) [(H1s oo fin) =8 Ty 1015 o ] = 02 =5 Trr [, oo s

3.3) T2 = Av1..wp [T, o TR ]) (1, ooy i, -y pin). Without loss of generality we suppose
that i = 1.

0 = Ax1..xn[T[T1, ooy ]| (W1 ry s oo fin) =8 A1 [T [201, o T (1715 s i)
=01 —p Ty, o o] = 07

0 —5 Ty, fn] =0y ——5 0';

Therefore ¢ s tgl =1t -3 tg/, t ] t92 =1y ——5 ly and t' = tor.

Since t} —— t;, t, —— ' and t| € A¥) 1 < k; < n—1, then from the induction
hypothesis it follows that there exists a term ¢} such that ¢t;, —— ¢} and ¢ —— t/. Since
th) —— ty, th —— t' and t, € A2 1 < ky < n —1, then from the induction hypothesis
it follows that there exists a term ¢ such that t; —— t) and ¢ —— tJ. Since t’ —— t/,
' —-— th and t' € Ak3) 1 < ks < m—1, then from the induction hypothesis it follows
that there exists a term t” such that t{ —— t” and t; —— t”. Therefore t; —— t" and
t, ——t". M
Theorem 5: There exists a canonical notion of 0-reduction such that 3d-reduction does not
have Church-Rosser property.
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Proof.  Let us fix M = NU{L}, where N = {0,1,2,...} and C' = {min, dec} where
dec € [M — M|, min € [M? — M] and for every m,m1, my € M we have:

mi, if my,mo € N and my < mo
min(my, mo) = mo, if my,ms € N and my > ms
1, otherwise

0, ifm=0
dec(m) = m—1, ifmeNandm#0
1, otherwise

It is easy to see that min and dec are strongly computable, naturally extended functions
with indeterminate values of arguments (a function is said to be naturally extended, if its
value is L whenever the value of at least one of the arguments is L). Let us consider the
main canonical notion of §-reduction ¢ for the set C:

d is: (min(ny,ny),ny) € 6, where ny,ny € N and ny < ny
(min(ny,ng),ny) € 0, where ny,ny € N and ny > ny
(min(n, L), 1) € §, where n € N
(min(L,n), L) € 6, where n € N
(min(L, 1), 1)€d
(dec(0),0) € 6
(dec(ny),n2) € 6, where ny,ng € N and ny > 0,n2 =mn3 — 1
(dec(L), L)€

Let us consider the notion of d-reduction ¢'.

§ is: (min(ny,ns),ny) € §', where ny,ny € N and ny < ng
(min(ny,ng),ny) € 0', where ny,ny € N and ny > ny
(min(t, L), L) € §, where t € A
(min(L,t),L) € ¢, where t € A
(dec(0),0) € o'

(dec(ny),n2) € &', where ny,ne € N and ny > 0,n2 =ny — 1
(dec(L), L) e

(min(dec(z), x), dec(z)) € &', where x € V
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It is easy to see that ¢’ is an effective, single-valued notion of §-reduction. Therefore, to show
that ¢ is a canonical notion of d-reduction it suffices to show that 6 C ¢’, which is obvious.

Let us show that for the ¢’ the notion of 3d-reduction does not have Church-Rosser prop-
erty. For the term t = Az[min(dec(z), z)|(dec(y)) we have:

Azx[min(dec(z), z)](dec(y)) —p min(dec(dec(y)), dec(y)) € NF;
Ax[min(dec(z), z)|(dec(y)) —s Ax[dec(x)](dec(y)) —p dec(dec(y)) € NF;

Let t; = min(dec(dec(y)), dec(y)) and ty = dec(dec(y)). Since t1,ts € NF and t; # to,
then there does not exist a term ¢’ such that t; —— ¢’ and t, —— t’. Therefore, for §’ the
notion of Fd-reduction does not have Church-Rosser property. B
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YulnGhy s-ntnmyghwjh qunuihwph nhiwpnid gs-ntinniljghwjh
qunuwthwnph 2npy-(kFnuutiph hwnynmpjwl dwuhG

. QphgnpywG
Udthnthnid

Wnwwnwlpnid nhnwpyynd £ yulnGhYy d-ntnniyghwjh qunuthwpp wmhyhqugyuo
A-ptiputiph hwdwnp: Shyhqugwo A-ptipdtipp oquugnpomyd GG guGyugwd Jupgh thn-
thnfuwluwGGtp W hwunmwnnGGtp, npnlGg upgp < 1, npubn 1-hG yuwpgh hwumwwmniGGEpp
hwlnhuwlmy G0 nidtin hwpgunpyth, wpgnuibGunGtph winpn) wpdtipGtinpny $mGyghwtn:
QuinGhy é-ntinnijghwjh qunuithwpp wjG o-ntnniyghwjh qunuthwnl k, npl oguugnpoynd
E $nGyghnluwy opwgpuynpiw (kgniGtph hpwjwlwgdwb vty : Uywgnigwo t, np hhiGw-
Jwl YuGnGhy J-ntinniyghwjh qunuthwph nhiypnd Fé-ntinnijghwjh qunuthwpp odnwd
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L Qnpg-Onuubph hwnynipjudp: Uyugnigwo t Gul, np gnympniG niGh JuGnGhYy o-

ntnniyghwjh qunuthwp, nph nhiypmd Bo-ntinnijghwjh qunuithwpp odnywo sk dnpg-
[rnuubiph hwnmympjuip:

O cBoiicTBe Yépua-Poccepa NOHATHUS 35-pPEAYKLUU B CAyUYae
KAQHOHUYECKOM IIOHSTUU §-PEAYKIINU

A,. I'puropsan

AnHoTanus

B pAaHHOM paboTe paccMaTpHUBaeTCs OCHOBHOE KaHOHUYECKOe ITIOHATHE 0-PeAYKITUU
AAS TUIIM3UPOBAHHBIX \-TepMOB. THUNM3WPOBAHHBIE )\ -TEPMBI UCIIOAB3YIOT II€PEMEH-
Hble AIOOBIX IOPSIAKOB M KOHCTAHTEI, IMOPSAOK KOTOPBIX < 1, mpryeM KOHCTAHTHI
Iopsipka 1 9BAIIOTCS CUABHO BBIYMCAMMBIMY, MOHOTOHHBIMU (DYHKITUSIMHU C HEOIIPpeAE-
AEHBIMU 3HQUEHUSIMU apryMeHTOB. KaHOHUYeCcKOoe TOHATHE )-PEAYKIIUN UCIIOAB3YETCS
IIPU pearn3anuu (PyHKIIMOHAABHBIX S3BIKOB IPOIpPaMMHpPOBaHuA. AOKa3aHa, 4TO B
CAy4Yae OCHOBHOT'O KAHOHUUECKOT'O TIOHATHUS )-PEAYKIIUU TOHATHE [30-PEAYKIIMU UMeEeT
cBoMicTBo Yépua-Poccepa. AoKazaHa, 4TO CYIIECTBYeT KaHOHHYECKOe IOHATHUEe O-
peAyKIMH, B CAydae KOTOPOro HOHATHe (0-peAyKIIUM He MMeeT CBOMCTBO Yépua-
Poccepa.



