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Abstract

In this paper, we present a method for grammar-based fuzzing, which improves
its penetration power. It is based on input data generation using a fuzzer feedback.
Several other methods are prone to create an initial set of acceptable test cases before
the actual fuzzing process, and hence are unable to use the runtime information to
increase the generated input’s quality. The proposed method uses the coverage
information gathered for each input sample and guides grammar-based input
generation. This method uses more than 120 BNF (Backus-Naur Form) grammar
rules described in ANTLR (Another Tool for Language Recognition) platform.
Experimental results show that our method - feedback driven random test generation,
has higher code coverage capabilities compared with the existing methods.
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1. Introduction

Correctness of compilers is crucial to most software projects. Random testing, or fuzzing, has
emerged as an important tool for finding bugs in compilers and runtimes. The main idea behind
fuzzing is to feed target application (program under test) with a large amount of mutated test
inputs to trigger unintended program behavior like hangs and crashes.

The existing fuzzing approaches can be classified in three basic categories — blackbox
fuzzing, whitebox fuzzing and graybox fuzzing. Blackbox fuzzers had no knowledge about the
program’s internal structure and, hence, are less effective. Sometimes they can use grammars to
generate inputs with specific characteristics. The second type of fuzzers usually combine fuzzing
with heavy-weighted symbolic execution to improve the effectiveness by applying a symbolic
engine in cases where fuzzer is unable to explore a new execution path (i.e., increase the code
coverage). Graybox fuzzing is something in between. It uses a light-weighted program
instrumentation to extract partial information of the program to generate guided input samples
without sacrificing execution speed.

Unfortunately, when it comes to testing applications with complex structured-inputs, fuzzers
have several limitations. Examples of such applications can be compilers, translators and
interpreters. These applications have a multi-pass design and process input in multiple stages
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(lexer, parser etc.). Because of complicated checks and a huge amount of possible execution
paths at the first stage, fuzzers are mostly unable to generate inputs that could exercise code
beyond the first stage.

Currently there are several methods and instruments [1-6, 8-11] that use whitebox fuzzing
or grammar-based data generation approaches to address the challenge. CSmith [1] has been
successfully used to identify hundreds of bugs in C/C++ compilers, however this and other
similar approaches have significant drawbacks. CSmith couples input generation logic with
target programming language specifications. Producing inputs based on this strategy requires
expert knowledge and a significant engineering effort, which needs to be repeated from scratch
for each new language. For example, to support a new programming language, this method
requires the definition of a corresponding grammar and manual implementation of language
features. Grammar-based whitebox fuzzing [2] enhances the whitebox fuzzing technique by
using the input grammar specification to construct valid test cases. It presents a dynamic test
generation algorithm that uses symbolic execution to directly generate grammar-based
constraints, the satisfiability of which is checked using a custom grammar-based constraint
solver. The two main disadvantages of this method are the long runtime and the small set of
available grammars. Another instrument SynTESK (Syntax Testing Kit) [3] implements
UniTESK [4] technology. Using BNF grammars, SynTESK generates two sets of programs. The
first set contains test cases, which will be accepted by compiler. In the second set instruments
collect invalid programs, which will be rejected by the compiler. GramFuzz [5] can
automatically detect grammar rules based on the provided input samples. After that, those
grammars are used for further data generation. This instrument is mainly used for web browsers
fuzzing. In its first step GramFuzz considers a set of inputs of HTML, CSS and JavaScript. Then
it tries to extract BNF rules and construct corresponding AST (Abstract syntax Tree). During
fuzzing, inputs are generated by replacing the AST nodes with available elements (duplications
are also accepted). The main limitations of this instrument are: not all BNF rules can be extracted
from the provided samples, not all generated inputs are valid programs for parser. Another
instrument Ifuzzer [6] finds bugs in JavaScript interpreters. It uses evolutionary computing
techniques, such as genetic algorithms [7], to guide the fuzzer in generating uncommon input
code fragments that may trigger exceptional behavior in the interpreter. Ifuzzer gets as an input
the context-free grammar of a particular language and a test suite with valid inputs. Based on that
grammar, it generates parse trees and extracts code fragments (fragment pool) from a given test-
suite. The initial population for a genetic algorithm consists of random selection of programs,
from the input test samples. For each new generation, Ifuzzer uses the fitness function on inputs
from the previous generation to determine a set of inputs upon which the new generation should
be constructed. Elements of the next generation are created by selecting random code fragments
of the appropriate input code for replacement. Replacement was performed by choosing a
random member from the fragment pool. Fitness function consists of a fuzzer feedback (whether
the program crashed or not) and input complexity. This method uses only the final state of
program execution as feedback and doesn’t consider information about the program execution
paths (code coverage information), as well as the correlation between program paths. Instrument
Superion [8] proposes a grammar-aware coverage-based grey-box fuzzing. This instrument uses
the grammar of its test inputs to parse each input into an AST. Based on the constructed AST,
Superion performs a trimming operation to reduce the size of the inputs, iteratively removing
each subtree in the AST of a test input and observing coverage differences. It uses also two types
of mutation strategies. The first one is AFL’s [9] standart dictionary mutation. The second one
replaces one subtree in the AST of a test input with the subtree from itself or another test input in
the queue. One of the limitations of Superion is that it needs well-documented grammars, as well
as an initial set of valid test cases. The paper [10] proposes the instrument BlendFuzz that uses
grammars to create syntactically valid test inputs and guide test generation. This approach
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consists of two stages. The first stage requires an initial set of valid inputs and a corresponding
grammar. According to the provided grammar, BlendFuzz breaks test cases into grammatical
fragments, which will be used as basic building blocks in the next stage. In the second one,
generated code fragments are used to mutate the existing test cases. More specifically,
BlendFuzz selects a grammatical fragment of one input and replaces it with another one in the
pool. This procedure is repeated systematically to generate a large set of input samples. Although
BlendFuzz is quite successful in practice, it is based on random testing technique and doesn’t
incorporate results of program execution. The paper [11] describes a learn&fuzz algorithm that
uses sample inputs and neural-network-based statistical machine-learning techniques to
automatically generate input grammars for grammar-based fuzzing. This algorithm can also
generate new inputs based on the probability distribution of the learnt model. Learn&fuzz
algorithm is trained over a corpus of PDF files to generate test inputs for the Microsoft Edge
PDF parser. The results can vary depending on different input formats and training sets.

After studying the variety of methods mentioned above, we came to the conclusion that
these methods have several limitations:

= Input generation strategy requires expert knowledge and a significant engineering effort,
which needs to be repeated from scratch for each new language [1]

= Input generation is based only on the usage of the final state of the program execution
(whether the program crashed or not) and doesn’t consider information about the
program execution paths (code coverage information), as well as correlation between
program paths [6]

= Method needs well-documented grammars and an initial set of valid test cases [8]

= Test generation is based on random testing technique and doesn’t use feedback of
program execution [10].

In this paper, we propose a method for generating input data based on target BNF
grammars. We develop this method on top of our previous paper [12], which increases the
overall effectiveness and percentage of correctly generated input samples that will successfully
pass the parsing stage.

Our work makes the following contributions:

= We use the push down automata representation of BNF rules and fuzzer edge coverage
information to direct the input generation towards increasing coverage.

= Using the coverage information, we add weighted values to edges (transitions) of push
down automata of each input sample. Then we use that information at the input
generation stage to produce inputs with higher chances to explore new paths of program
under test.

The rest of this paper is organized as follows: Section 2 describes our approach to grammar-
based data generation. Section 3 provides a detailed description of the implemented model of
interaction between a fuzzer and an input generation component (Sd-Gen — Structured Data
Generation). Section 4 presents the results of the performed experiments, and comparison with
other methods. Finally, Section 5 presents our conclusion.

2. Feedback-Driven Data Generation
2.1 ANTLR’s Grammar Structure

ANTLR platform provides BNF grammars for more than 120 different languages. As we
discussed in our previous paper [12], each of these grammars has its own set of pushdown
automata representations.
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Fig. 1. Grammar rule representation in ANTLR.

Figure 1 shows an example of a rule from BNF grammar and its corresponding pushdown
automata. The rule is described with its name (rule name), followed by a single alternative,
terminated with a semicolon, or it can also have alternatives. Alternatives are either a list of rule
elements or an empty list. In the picture above, “object” is a rule, which has “pair”, “ *{’ '}’ ” as
its alternatives. In ANTLR platform, each rule should have a pushdown automata representation.
For “object” rule (1) ANTLR would generate pushdown automata (2). We use this representation
to distinguish interesting rules, which were used to build inputs to exercise new paths in target
program during its fuzzing.

2.2 Guided Test Case Generation

It is difficult to generate test cases for compilers, because their inputs are highly structured. Vast
majority of existing compiler fuzzing systems generate a set of inputs before actually starting the
testing process. Hence, they are not able to change their data generation models based on runtime
information. Despite the fact that some instruments use BNF grammars, without instrumentation
feedback from the testing system, the generated samples will cover random parts of the target
program. Our test generation system tries to overcome these problems by creating dependencies
between the generated input structure and information based on the target code coverage.

The method used in our previous version of Sd-Gen (paper [12]) to generate data was based
on the following algorithm. It takes two main parameters as input — depth (D) for each rule (that
is, the maximum number of recursive selection); length (L) of generated input. Additionally, we
use two counters cD=0 and cL=0 to store the current depth and length values.

1. Select a random rule from the BNF grammar and mark it as a start rule. Add that rule to
rList. Set the value of cL to the number of nodes in automata of start rule. Go to step 2.

2. Walk through rList and select the first non-terminal symbol (NT node). If there isno NT
node go to step 6, otherwise continue to step 3.
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3. On the corresponding automata of NT, the rule algorithm selects a random path using the
depth first search algorithm (DFS). Then it replaces the NT rule in rList with the
constructed path and updates cL and cD values.

4. 1If cL and cD values reached their limits (cL < L and c¢D < D values), go to step 5, if not,
go to step 2.

5. For each non-terminal node in rList, the algorithm constructs the shortest terminal path
and replaces it in rList.

6. Store the content of rList in output file.

To implement guided input generation, we added weight values to each transition of existing
automata (Figure 2).
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Fig. 2. Automata of BNF rule with weight values.

The above figure shows the automata for “object” rule of some BNF grammar, with weights on
its edges. Due to those weights we are able to make modification in our algorithm:

= Instead of choosing a random path on the corresponding automata of NT rule in step 3,
now we select a path with the highest weight value.

This can be achieved by choosing each transition using its weight as measurement for
probability, i.e., select “25-12" rather than “25->23” because the weight of the second edge is
less than the weight of the first one. To prevent the algorithm from selecting the same transition
on every iteration, we decrease its weight by the appropriate value.

3. Implementing Sd-Gen as Plugin for Fuzzing Tool

The current implementation of Sd-Gen as a fuzzer mutation plugin supports the configuration
file that can be used to manually specify the number of testcases to be generated and its iteration
counts. The BNF data generation plugin is designed to manage the execution of Sd-Gen
instrument based on the assigned parameters. This plugin has the following main responsibilities:

= Run Sd-Gen instrument, which generates a set of BNF-based inputs using information
about the transition weights received from the fuzzer. If such information does not yet
exist, a set of completely random inputs is generated

= For every constructed input, the plugin sends its rule transition information (including
weights, if they exist) to the fuzzer engine.

On the other hand, after detecting an interesting input, the fuzzer retrieves its rule transition

information and updates it based on the target execution coverage results. Each time when Sd-
Gen is called, it checks whether there is information about transitions weights or not. If the
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required information is available, it will choose the rules and transitions of that rule based on the
exited data. Doing this iteratively, improves the generated data accuracy and makes it possible to
change the test case generation strategies in runtime, hence significantly increasing the impact of
the constructed inputs on the target code coverage.

The BNF data generation plugin is called in two different phases. First, it acts as a mutation
plugin to continuously generate new inputs, and second, it is activated whenever fuzzing detects
an interesting input (increases coverage or finds some crashes/hangs) sample to update the
corresponding weight values.

4. Results

This section provides comparison results of the proposed method with our previous method and
also with the existing methods. For analysis purpose we use several well-known compilers and
interpreters. One of the main parameters of measurement is the application code coverage, as
well as the number of generated inputs to gain that coverage. As shown in Table 1, almost in all
cases, our method was able to achieve more code coverage with less inputs. In case of gcc/g++,
CSmith gets more coverage results due to its way of generating inputs sample, which, starting
from the initial sample, are all valid program instances.

Application Our previous | Feedback driven grammar- | Execution count | Coverage info.
name method based fuzzing (our current (%)
method)

Gee-7.1 24959 26107 ~9800 +4.6
G++-7.1 26154 30103 ~8400 +15.1
Python-2.7 7561 7962 ~41000 +5.3
Php-v7.1.7 2036 2107 ~325000 +3.5
Luac-5.3.4 13395 16274 ~9700 +21.5
Gfortran-7.1 24060 24950 ~5300 +3.7

Table. 1. Experimental results for testing of the proposed method

5. Conclusion

Fuzzing is a powerful technique for testing an application by randomly mutating its input values.
However, for the certain type of application (compiler, interpreters) it is hard to generate test
cases that will not fail at first levels of execution.

Our proposed method implements guided data generation using BNF grammars. We are
able to generate new input testcases based on target application feedback on each input sample.
It allows us to make modifications in our testcase generation strategies while continuing the
fuzzing process. This method results in improvement of target code coverage and increases the
analyses effectiveness.
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dwughugh dtpny' Ynunbkpuinhg mquun pEpuljwmiunipjniutitph
ogqunugnpduwdp. wjjuutph qghubpughw $wqbtph htwn hEnwnupd
Yuuugh Uhgngny

U. Uupjut
Udthnthnid

Utp  opkpmud  dwqhigp hwdwpynid £ wduindwn  phunwynpdub
wdbtwwpynibwgbn b wdkbwhwyjnuh dbpngubphg dblp: Uwluyt gnmipinih
niukgnn dbpnpubpt nibkt vwhdwbwihwl htwpwynpnipinitubp  hbnwgnubnt
wjighuh  dpugpuyhtt hwdwlupgbp (op.” Ynuwhyuwnnnplkp), npnip dowlnd ki
punn junnigwsp niukgnn nydjuyubip:

Znipjudnid ukpuyugus E pwqhtigh dbpnn, nptt oginuugopsnid £ Ynunbkpuinhg
wquu phpuljwimpnibbbkpp dnunpuygh ndjuikph junnigdwt hudwp hhdidbng
dwqhugh pupwugpmd vnwugdws nfjujutph ypu: Enmipinit niibkgnn dnpnnubphg
ownbpp hwlws b Jupnigh] wjujubph wdpnpouljut hwjwpwoéniubp, dhty
dwghugh ulhqpp, nph htnbwupny wuhtwp b gununid oqunwgnpsdt) juwnmwpdwu
pupwugpnid unwugjws hudpnpdughwtt junnigynn wnydjujukph npulp pupdpugubint
hwdwp: Unwownlyny dbpnnh tyywwnwlji k ninnnpnl) ppujuinipjut ypu hhdudws
Uniinpuyhlt ufjupibph upnigmdp oquuugnpstiny hupnpuughw nruntdiwuhpynn
dpwgpuyjhtt hwdwlwpgh Ynnh swsynyph dwuht: Uju dkpnnt ogunuugnpénid k wydtih
pwi 120 phpwlwbnmipniutiph BNF  (Bakus-Naur Form) ubkpluwjwugnidubp,
tjupugpyué ANTLR spwqpuyhtt hwdwlupgnid: @npdbph wpnnibpubpp gnyg b
wnwihu, np ubkpyuyugdus dbpnnh dhgngny Jwnpnigqus wnyjujutph  ounphhy
httwpwynp L unwbw] htunnwgnuyny Spwgpuhtt wywhndwt Ynnh wybkh ks
dwdlynyp, put Uniu hwynuh dkpnnubpp:

Da33uHT ¢ UCMOJIB30BAHNEM I'PAMMATHYECKHUX MPABHJI:
reHepaunusi JAHHBIX HA OCHOBE 00pPaTHOM CBsI3M ¢ (pa33zepom

C. Acpsun
AHHOTANUA

B mamwu pgHU Qas3suHr ABIgeTCS OZHUM U3 Hanboimee S(PGEKTUBHBIX U IIHPOKO
HCIIOIB3yeMBbIX MeTOZOB aBTOMAaTHYeCKOTOo AMHAMUYeCKOro aHamusa. Hecmorpsa Ha 3To,
CyIIeCTByIOIIe METOABl HMMEIOT OrpaHMYeHHS TIIPH TeCTUPOBAaHUU IIPUIOKEHHH
(KOMIMIATOPBI M HHTEpPIpeTaToOphl) oOpabaThIBalolye BXOZHBIE [JaHHBIE, MMeEIOIIUe
CJIOKHYIO CTPYKTYPY.
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B cratee mpezcraBien MmeTon, daz3uHTa Ha OCHOBe I'paMMaTHYecKuX IpaBui. Mertoz
OCHOBAaH Ha TeHepalluM BXOIHBIX [JaHHBIX IIPOTPAaMMEI, HCIIOJNB3ysS OOPaTHYIO CBA3b C
dassepom (MHGOPMAIMIO B pe3ysIbTaTe BRINOMHeHNA (asz3uHra). MHOXeCTBO APyTHUX METO/IOB
CKJIOHHBI CO3/IaBaTh HAYaJbHBIH HAOOp TECTOBBIX IIPHMEPOB [0 Hadasa Irporecca ¢as33uHra,
¥, CJIefoBaTeJIbHO, He MOTYT MCIOAb30BaTh MH(OPMAIUIO, /[JOCTYIHYI0 BO BpeMsd
BBIITOJIHeHUA (pa33MHTa, /[JiA TOBBIIIEHHS KauyecTBa TeHEePHPYeMBIX TEeCTOBBIX IIPHMeEpOB.
ITpepmaraemsIii METO/, MCIIONB3YyeT IIOKPBITHE KOJA IIPOTPAMMBI, COOPAHHBIHM /A KaXAOTO
TECTOBOTO ITPHMepa U HAIIPaBJIgeT IIPOIeCC ITOCTPOeHNA HOBBIX BXOJHBIX JAHHBIX (Ha OCHOBE
rpamMaTuk). Jlauusiii meron ucnoasdyer BHO (Popma Bakyca — Haypa) npexcraBienus
6omee 120 rpammaruk, omucaHHbIX B maar¢popme ANTLR (Another Tool For Language
Recognition). [IpoBeseHHbIe TeCTMPOBAaHUA IOKA3BIBAIOT, YTO METOJ, T€HEPAIUU CIydaifHBIX
TECTOB YYHUTHIBasA OOPaTHYIO CBA3b C (a3z3epoM, IIO3BOJIAET JOCTHUYb OOJIBIIETO ITOKPHITUA
KO7Ia, YeM CyIIeCTBYIOI1ie MeTObI.



