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1 Introduction

In paper [1] the algebras with hyperidentities of the variety of Boolean algebras are charac-
terized. In this paper the algebras with hyperidentities of the variety of De Morgan algebras
are characterized. For these algebras with two binary operations we prove a structure result.
As a consequence, we obtain the new finite base of the hyperidentities of the variety of De
Morgan algebras, having functional and objective ranks not exceeding three.

An algebra Q(+,-,) with two binary and one unary operations is called a De Morgan
algebra if Q(+, ) is a distributive lattice and Q(+, -, ) satisfies the following identities:

/

($+y)/:$'~y,

' =ux,

where 2" = (2')'. The standard fuzzy algebra F' = ((0,1); maz(x,y), min(z,y),1 — x) is an
example of a De Morgan algebra.

De Morgan algebras were considered by J.A.Kalman [2](as i-lattices), G.C.Moisil [3],
H.Rasiowa and A.Bialynicki-Birula [4], Yu.M.Movsisyan [5], J. Berman and W. Blok [6]
and others. They also related to constructive logic with strong negation (A.A.Markov [7],
D.Nelson [8], N.N.Vorobev [9], .D.Zaslavsky [10]). Except in mathematical logic and alge-
bra, De Morgan algebras (and De Morgan bisemilattices) have applications in multi-valued
simulations of digital circuits too ([11, 12]).

The hyperidentities of the variety of De Morgan algebras are characterized in [13].

Definition 1.1 A T-algebra A = (Q, %), where T' = {1, 2}, is called De Morgan quasilattice
iof it satisfies all hyperidentities of the variety of De Morgan algebras.

For example, the superproduct ([14, 15, 16, 17]) of the two De Morgan algebras (De
Morgan quasilattices) is a De Morgan quasilattice.
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2  Main result

Below we define the concept of De Morgan sum analogous to Boolean sum introduced in [1].

Definition 2.1 Let A = (Q,Q2 U {F}) be an algebra with a unary operation F. Let
(Q:i,2), i € I be subalgebras of the algebra A, and A; = (Q;, QU {F;}) be algebras with
a unary operation F;. The algebra A is called De Morgan sum of algebras A;, if the following
conditions hold true:
1) QiNQ; =0 foralli,jel,i#j;
2) Q= Uie[ Qi;
3) Two binary operations +, - and a unary operation ~ can be defined on I such that I(+,-,)
15 a De Morgan algebra;
4) Ifi,j € I and i < j (here” <7 is the order of the lattice I(+,-)), then there exists an
1somorphism

(34, €) + Ai — Ay,

where E(F;) = Fj, €(A) = A for any A € Q. Moreover, ¢;; is the identical mapping of the
set i, and for all 1 < j <k we have ¢;; - Qjr = Pik;
5) For every i € I there exists an isomorphism

such that hz‘_il = Iy, and h;s- o7 = @ig for allk >i+1, ke I;

6) For any ﬁ—ary operation A € Q (n > 2) and for any 1, ...,x, € Q we have:

A(l.la R 7'1.7’&) = A(Soihio(l.l)’ cee ﬂoin,io(l.n))’

where x; € Qi i; €1, j=T1,n, ig =11 + ...+ iy,
7) For any x € QQ we have:
Fa) = h;3(Fi(x)),

where x € Q;.
Theorem 2.1 An algebra A = (Q,{+,-,” }) with two binary operations +,- and one unary

operation ~ is a De Morgan quasilattice iff it is a De Morgan algebra or De Morgan sum of
De Morgan algebras. &

Corollary 2.1 The variety of De Morgan algebras has a finite base of hyperidentities having
functional and objective ranks not exceeding three. 1
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