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We consider everywhere defined constructive functions (c.f.) on the closed unit construc-
tive interval. As is well-known by the famous Zaslavsky-Tseitin Theorem such a c.f. can be
effectively nonuniformly continuous. In this case it can not be extended to a classical contin-
uous function. In reality, in every known counter-example a singularity could be discovered
already on the level of pseudonumbers. Let us recall that a pseudonumber is a recursive se-
quence of rationals that is a Cauchy sequence classically. Pseudonumbers can be considered
as ¢ (Ag)-computable numbers as well. Let D be the set of all constructive real numbers
(Markov’s Continuum in the title), Dy the set of all pseudonumbers. A c.f. f is said to be
1-complete if it can be extended to a computable (and so continuous) function over D;.

Theorem 1 There is a I-complete c.f. that is effectively nonuniformly continuous.

This result is rather precise as a c.f. continuously extendible to ¢”-computable numbers is
uniformly continuous classically.

As is well known every c.f. can be computed on D by a Kleene operator (partial-recursive
operator). The following result together with Theorem 1 shows that there is an essential
difference between Markov’s and Kleene’s Computability over D;.

Theorem 2 A c.f. f is constructively uniformly continuous iff there is a 1-complete Kleene

operator that computes f.
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