Mathematical Problems of Computer Science 38, 66-67, 2012.

On a Property of the *n*-dimensional Cube

Rafayel Kamalian¹, Arpine Khachatryan²

¹ Institute for Informatics and Automation Problems, National Academy of Sciences of the Republic of Armenia, 0014, Armenia, email: rrkamalian@yahoo.com
² Ijevan Branch of Yerevan State University, 4001, Armenia, email: khachatryanarpine@gmail.com

We show that in any subset of vertices of the *n*-dimensional cube which contains at least $2^{n-1}+1$ vertices $(n \ge 4)$, there are four vertices that induce a claw, or there are eight vertices that induce the cycle of length eight.

We consider finite graphs G = (V, E) with vertex set V and edge set E. The graphs contain no multiple edges or loops. The *n*-dimensional cube is denoted by Q_n , and a claw is the complete bipartite graph $K_{1,3}$. Moreover, the vertex of a degree three in a claw is called a claw-center. Non-defined terms and concepts can be found in [1].

The main result of the paper is the following:

Theorem 1. Let $n \ge 4$ and let $V' \subseteq V(Q_n)$. If $|V'| \ge 2^{n-1} + 1$, then at least one of the following two conditions holds:

- (a) there are four vertices in V' that induce a claw;
- (b) there are eight vertices in V' that induce a simple cycle.

Proof. Our proof is by induction on n. Suppose that n = 4. Clearly, without loss of generality, we can assume that |V'| = 9. Consider the following partition of the vertices of Q_4 :

$$V_1 = \{(0, \alpha_2, \alpha_3, \alpha_4) : \alpha_i \in \{0, 1\}, 2 \le i \le 4\}, V_2 = \{(1, \alpha_2, \alpha_3, \alpha_4) : \alpha_i \in \{0, 1\}, 2 \le i \le 4\}.$$

Clearly, the subgraphs of Q_4 induced by V_1 and V_2 are isomorphic to Q_3 . Define:

$$V_1' = V_1 \cap V', V_2' = V_2 \cap V'.$$

We shall assume that $|V'_1| \ge |V'_2|$. We shall complete the proof of the base of induction by considering the following cases:

Case 1: $|V'_1| = 8$ and $|V'_2| = 1$. Clearly, any vertex from V'_1 is a claw-center.

Case 2: $|V'_1| = 7$ and $|V'_2| = 2$. It is not hard to see that V'_1 contains a claw-center.

Case 3: $|V'_1| = 6$ and $|V'_2| = 3$. Again, it is a matter of direct verification that V' contains a claw-center.

Case 4: $|V'_1| = 5$ and $|V'_2| = 4$. Consider the subgraph G_1 of Q_4 induced by V'_1 . Clearly, if G_1 contains a vertex of a degree three, then this vertex is a claw-center. Therefore, without

loss of generality, we can assume that any vertex in G_1 has a degree at most two. It is not hard to see that this implies that G_1 contains no isolated vertex. Moreover, since $|V'_1| = 5$, we can conclude that G_1 is a connected graph, and, consequently, it is the path of length four.

Now, let a_1, a_2, a_3 be the internal vertices of G_1 , and let b_1, b_2 be the end-vertices of G_1 . Clearly, we can assume that neither of a_1, a_2, a_3 has a neighbour in V'_2 . Since $|V_2| = 8$ and $|V'_2| = 4$, we have that there are five possibilities for V'_2 . We invite the reader to check that in four of these cases one can find a claw-center in V'_2 , and in the final case V' has a vertex z such that $V' \setminus \{z\}$ induces a simple cycle.

Now, let us assume that the statement is true for n-1, and a subset V' of the vertices of Q_n satisfies the inequality $|V'| \ge 2^{n-1} + 1$. Consider the following partition of the vertices of Q_n :

$$V_1 = \{(0, \alpha_2, ..., \alpha_n) : \alpha_i \in \{0, 1\}, 2 \le i \le n\}, V_2 = \{(1, \alpha_2, ..., \alpha_n) : \alpha_i \in \{0, 1\}, 2 \le i \le n\}.$$

Clearly, the subgraphs of Q_n induced by V_1 and V_2 are isomorphic to Q_{n-1} . Moreover, it is not hard to see that at least one of the following two inequalities is true: $|V_1 \cap V'| \ge 2^{n-2} + 1$ and $|V_2 \cap V'| \ge 2^{n-2} + 1$. Thus the proof follows from the induction hypothesis.

For the case of n = 3 we have:

Proposition 1. Let $V' \subseteq V(Q_3)$ and let $|V'| \ge 6$. Then at least one of the following two conditions holds:

- there are four vertices in V' that induce a claw;
- there are six vertices in V' that induce a simple cycle.

Acknowledgement. We would like to thank Zhora Nikoghosyan and Vahan Mkrtchyan for their attention to this work.

References

[1] West D.B. Introduction to Graph Theory. Prentice-Hall, New Jersey, 1996.