Pauly Matrix and Transformation Operators for Dirac System

T. N. Harutyunyan, H. H. Azizyan

Yerevan State University, e-mail: hartigr@yahoo.co.uk Armenian State Agrarian University, e-mail: hermineazizyan@mail.ru

Let $\sigma_1 = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$, $\sigma_2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $\sigma_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ are well known Pauly matrix and $E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. It is known that the solution $y = \varphi(x, \lambda, \alpha)$ of Causchy problem

$$\{\sigma_1 \frac{1}{i} \frac{d}{dx} + \sigma_2 p(x) + \sigma_3 q(x)\} y = \lambda y, \quad \lambda \in C$$

$$y(0) = \begin{pmatrix} sin\alpha \\ -cos\alpha \end{pmatrix},$$

can be represented in the form $\left(\varphi_0(x,\lambda,\alpha) = \begin{pmatrix} sin(\lambda x + \alpha) \\ -cos(\lambda x + \alpha) \end{pmatrix}\right)$

$$\varphi(x,\lambda,\alpha) = \varphi_0(x,\lambda,\alpha) + \int_0^x K(x,t)\varphi_0(t,\lambda,\alpha)dt = (E+K)\varphi_0.$$

Operator E + K is called the transformation operator. Under different conditions on scalar functions p and q this operator and his kernel K(x,t) was investigated in different papers (see [1]-[6]).

Theorema. Let $p,q \in L^1_{loc}(0,\infty)$. Then the kernel K(x,t) and the kernel H(x,t) of inverse operator $\varphi_0(x,\lambda) = \varphi(x,\lambda) + \int_0^x H(x,t)\varphi(t,\lambda)dt$ can be represented in the form

$$K(x,t) = a\sigma_1 + b\sigma_2 + c\sigma_3 + d \cdot E$$

$$H(x,t) = \tilde{a}\sigma_1 + \tilde{b}\sigma_2 + \tilde{c}\sigma_3 + \tilde{d} \cdot E,$$

where the functions (of two variables (x,t))) a,b,c,d and $\tilde{a},\tilde{b},\tilde{c},\tilde{d}$ are represented by functions p and q.

References

- [1] Gasymov M. G., Levitan B. M., Determination of a differential equation by two of its spectra, Usp. Mat. Nauk v.19, N 2, 1964, pp.3-63
- [2] Marchenko V. A., Sturm-Liouville operators and their applications, Naukova Dumka, Kiev, 1977.
- [3] Melik-Adamyan F. E., On the canonic differential operators in Hilbert space, Izvest. AN Arm. SSR, Mathematics, v.XII, N 1, pp.10-30.
- [4] Levitan B. M., Sargsyan I. S., Sturm-Liouville and Dirac operators, Nauka, Moscow, 1988.
- [5] Harutyunyan T. N., Transformations operators for canonic Dirac system, Differentialnie uravneniya, v.44, N 8, 2008, pp. 1011-1021.
- [6] Albeverio S., Hriniv R., Mikituk Ya., Inverse spectral problems for Dirac operators with summable potentials, Rus. J. of Math. Phys. v.12, N 4, 2005, pp.406-423.