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Abstract

A pattern recognition scenario, where instead of object classification into the classes
by the learning set, the algorithm aims to allocate all objects to the same, the so-called
"normal” class, is the research objective. Given the learning set L; the class
K, is called “normal”, and the reminder [ classes K;, K5, ..., K; from the environment K
are “deviated”. The classification algorithm is for a recurrent use in a "classification,
action" format. Actions A; are defined for each “deviated” class K;. Applied to an object
X € K;, the action delivers update A;(x) of the object. The goal is in constructing a
classification algorithm 2 that applied repeatedly (small number of times) to the objects
of L, moves the objects (correspondingly, the elements of K) to the “normal” class. In
this way, the static recognition action is transferred to a dynamic domain.

This paper is continuing the discussion on the “normal” class classification problem,
its theoretical postulations, possible use cases, and advantages of using logical-
combinatorial approaches in solving these dynamic recognition problems. Some light
relation to the topics like reinforcement learning, and recurrent neural networks are also
provided.

Keywords: Classification, logical-combinatorial approach, supervised reinforcement
learning.

1. Introduction

Pattern recognition as a cybernetical research direction has been formed since the 50’s of the
previous century [1,2]. Two sides of schools of Soviet recognizers, led by Yu. Zhuravlev [3] and
V. Vapnik [4], have consecutively become the leading force of this research domain worldwide
and the boom of current machine learning and artificial intelligence developments. Now the theory
is classical [5], with new dramatical developments concerned to the so called Deep Neural theory
[6], which is mostly machine-oriented. Whilst traditional theories are oriented in constructing
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tractable and interpretable recognition theories [7-11], the deep theory is mostly computation-
oriented. The core idea of recognition is in weak learning resource, but the deep learning operates
with very large learning collections, so it is possible, theoretically, to derive the necessary
interpretable knowledge but computational cost is becoming higher in these models.

The mainstream of classification technique includes models, such as PAC and logic-
combinatorial, as well as algorithms such as boosting, bugging, SVM, kernel-based, and others.
All deep learning techniques are based on neural networks. Along with the indicated popular and
dominant approaches, both in classical theory and in deep theories, there are separate methods and
algorithms that are aimed at solving individual non-standard problems, as well as problems with
specific restrictions. This work is aimed at analyzing just such situations. Here are some examples.

The problem of classification of one class is considered in [12]. The set of training elements
of this task presents examples of objects satisfying a certain class property, and there are no counter
examples. The solution of the problem involves the step of construction of such a shell that borders
all elements of the training set and does not contain outliers. The solution could be simply a convex
hull or an isoperimetric hull [13]. In Boolean domain, the solution can be the reduced disjunctive
normal form [14] and its extension [15]. A different scheme with one class classification is the
algebraic, spectral algorithm for row and column weights in object characterization tables [16].

In contrast to one class case, there is a large number of publications devoted to the problem
of classification with a very large number of classes, hundreds and thousands [17-19]. The solution
is logic-combinatorial, through constructing a binary code table, the columns of which represent
dichotomies of classes, with rows representing a clustering of all classes.

As a third example of non-standard pattern recognition, the High Dimensional Low Sample
Size (HDLSS) data analysis paradigm may be mentioned. Learning table is very long, gigabytes
for problems from genomics. There may even be a few classes, , but there are so many elementary
classifiers, that without additional constructions or additional knowledge it is impossible to
differentiate them. A logic-combinatorial approach to this problem is presented in [20].

Occasionally, the logic-combinatorial approach appears in all our non-standard examples.
This method was initiated by early papers: [14] in terms of disjunctive normal forms, [21] in terms
of tests and binary matrices, [22] in terms of Boolean expression, and [23] in terms of voting and
similarity calculation. Later it turned out that all these schemes are cross interpretable [24].

This paper will introduce and analyze one more specific postulation/problem in pattern
recognition [25]. The problem is a process of recurrent application of classification algorithms
intending to move all objects to the one of the classes called “normal”. For a given algorithm it is
to find a way to estimate its work on classification to normal. And when an appropriate learning
set is available, the problem is in constructing a well-optimized algorithm to solve the defined
problem. We will start with the necessary definitions. After that we consider interpretations in
terms of Markov Decision Processes and Reinforcement Learning. After this, a novel approach
with logical-combinatorial algorithms is presented and discussed.

2. Problem Definition

Classification-action recursion (CAR). The standard definition of a pattern recognition problem
considers n features, disjoint classes K;,K,,...,K; of objects from some environment K
characterized by these features, and an m object learning set L = {xq,x5,..., X;,}, where L N
K;, i = 1,2, ..., is the share of the i-th class in the learning set. The goal is to create a classification
algorithm 2 based on the learning set, which classifies objects in the environment K as accurate
as possible. Additional information about the classes and classification is a benefit of the model.
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We consider a principally different version of this pattern recognition problem. Here it is
assumed that one of the given classes is “normal”, let it be denoted by K|, and all the other classes
are the so called “deviated” classes. Also, we are given a finite set A of actions/functions a, that
being applied to the objects x € K, deliver their functional updates a(x), keeping them in the same
environment K. In the simplest case, we assume that a certain action a; € A is attached to every
“deviated” class K; (the i-th class action); and being applied to an arbitrary object x € K;, delivers
its update a;(x). a; (x) may be allocated to anyone of the classes and it is not necessary that this is
the same initial class K;, or some unique class for all objects of K;. The goal is in constructing a
classification algorithm 2, that applied repeatedly (small number of times) to the objects of L
(correspondingly, to the elements of K) moves these objects to the “normal” class.

Thus, the process is as follows: Algorithm 2 is applied repeatedly to the elements of learning
set L (in the first step algorithm U is applied to the elements of L, and in the next steps - to their
updates by the set of class actions). If after a current k-th repetition/application of the algorithm
there still remains an object x € L, or an object appeared during the process, which is classified to
a class other than K, (say, to some deviated class K;), then at the next (k + 1)-th repetition of 2,
the action a;, attached to the class K; is applied on x, updating the learning set labels in this way.

Use-case of treatment regime (TR). Consider a generative application scenario of the described
framework from the medical domain — consider the Dynamic correction approach of the patient’s
treatment regime [26]. Here, “classification operation” means that the current diagnose is obtained
by the medical doctor for any object of classes 1 + k. There is no reason to apply classification to
the elements of “normal” class because its elements represent healthy cases. Recall that each of
the classes K; is 1 — 1 related to their actions a;, and in this case, a; is the treatment action for
class K;. It is evident that the overall goal is to bring the patients, after several treatment stages, to
the “normal” class. Two different subcases of this use case will be considered. At first we suppose
that the records and observations of only one particular doctor are available. In this case, we aim
at estimating the effectiveness of the diagnostic approaches applied by the doctor. In the second
scenario, we suppose that we are given larger information of a set of doctors and we try to
determine the optimal way of diagnoses to achieve the best allocation result to the “normal” class.
From an algorithmic point of view, this is a kind of inversere cognition problem. Ordinary
recognition aims at mimics of the one-step classification actions. Here, for an algorithm that we
apply recurrently, we need to guess all ancestors that will be mapped onto the predefined class.
Moreover, it is necessary to generate an algorithm with the set of ancestors larger than the learning
set.

As we mentioned, two main classification scenarios and corresponding problems will be
considered:

Scenario 1. The basic information/knowledge available of this scenario is defined in the special
form of the learning set L of the classification problem. Although the class actions are
automatically applied to the elements of the deviated classes, and each reapplication of the
algorithm may work with the updated objects, however, we are given neither the details of this
information, nor the updates themselves. We only suppose that it is empirically accepted/supposed
that the set L is obtained/recorded in practice by a witness in the form of an object-class-label
triple, and the objects of K tend to be classified to the class K, in a few repeated applications of
the algorithm 2 is a supposition, but this needs to be verified.

In its complete form, the learning set L is a data flow. The considered objects x have their
identifiers I, which is a many-to-one mapping in a time interval, many classes, one identifier.
Object x, after operated by the algorithm 2, changes its time stamp. Initial time stamp is the time
to of the first appearance of the object in the algorithm 2. After classification and action is applied
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to x, x accepts the modified value x(*) and the new time stamp t; with t, < t;. In this way, objects
travel through the classes forming the so called traces, tg, tq, ..., £ and x = x©, x®  x(® The
basic objective is to insure that the end points of traces belong to the class “normal”. In this
Scenario 1, we have a bystander, witness, who cannot see the timestamp and identifiers. In this
limited information, the problem formed will try to verify whether the strategy of algorithm U is
supportive to classification to the class “normal”. Consider two particular issues here:

Problem 1.1. Assess the compliance and validate the empirical classification algorithm U “to the
class normal” based on the deterministic learning set L.

In terms of 7R, an individual doctor, after a particular diagnosis with classification to the
deviated class K;, applies its unique action for that case. So, the class-to-class transition process is
deterministic. The model relation over the classes is a partially ordering relation — if action a of a
class x is applied, then the deterministic transition is to class y, and we code this by y < x. The
partially ordered set (poset) of classes may have several minimal elements. Our goal is to check,
if the model has a minimum, so that it is the “normal class”. The brute force combinatorial
approach may do this work. If at systematic or logical level, then it is to check several facts: L is
a poset, L is connected, L has a unique minimal element. Poset relations are the reflexivity aRa,
anti-symmetry aRb & bRa < a = b, and transitivity aRb & bRc = aRc. Complexity of these
checks is quadratic by number of classes. The check for a minimum may use the following: if in a
poset L there is a unique minimal element, and, for every subset L' € L there is an element m such
that there isno s’ € L with s’ < m and there exists an element s’ € L such that m < s’, then S has
a minimum element. And the combinatorial check might be by construction of the Hasse diagram
of L by the following steps. We put the class “normal” at the bottom of the page/diagram. At a
level above the “normal”, we put all those classes (their labels) that have direct transition/link to
the lower level vertices (at the first step this vertex of class “normal”). These links can follow
immediately the lower level, but not the further levels. This procedure is continued until its
expiration, and we denote the final tree by Z. The only condition that there are no classes outside
the diagram, is satisfactory to say that the check of Problem 1.1 is tested positively.

Problem 1.2. Assess the compliance and validate the empirical classification algorithm U “to the
class normal” based on the stochastic learning set L.

The TR interpretation of Problem 1.2 is also possible. This is when information is collected
from a set of doctors. Each doctor j, faced with a case of a deviated class K;, applies his action a;;
transitioning to some class Kj;. Two types of branching are possible here. The first one is when it
is possible to use different actions at the same state, and the second one is when, after exposure,
the object can fall into different classes. We will restrict ourselves to considering the second case.
The existing theoretical model of such a behaviour is the model of Markov decision processes
(MDP). MDP is a model with 4-tuple (S, 4, P;, R,), where S is the set of States (diagnoses in TR),
A is the set of Actions (prescriptions, a set of actions may be different around the different states),
P, (s,s"), the probability that a defined action a in state s applied at discrete time t leading to the
state s’ at next time stamp t + 1 (or one action is applied but the next states may be different), and
R, (s,s") is the so called Reward from this transition (achieved or approached to the normal class).
R,(s,s") can be associated to the distance of a state vertex on the tree E to the root vertex that
corresponds to “normal”. R, (s,s") forms the so called value function of MDP, which is an object
to be optimized. We do not need to enter this theory, which is well known but some notes are
necessary. The MDP objective is to achieve an optimal decision/policy (s) at the state s. (s) is
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based on the analysis of the learning set. Main optimization ideas include the Bellman equations
and value function analysis. The fundamental classes of methods for solving finite Markov
decision problems are dynamic programming, Monte Carlo methods, and temporal-difference
learning. Each of them delivers a policy m(s) based on (S, 4, P,, R,). On the contrary, within the
framework of Problem 1.2, m(s) is observable. Being interested in testing/evaluating this policy
m(s), it is to generate the optimal policy by MDP and compare it with the observed one.

Scenario 2. The learning set L is updated after each reapplication of the classification algorithm
A, according to the class actions results/updates. This scenario, as we see, collects the complete
information from environment, recording current characteristics of objects, their classification
with one of several actions linked to this class, time stamps, identifiers. Using time stamps and
identifiers, it is easy to construct the chain of passage by classes. At the horizontal, time free level,
there is still additional information over Scenario 1 in the form of identifiers that allows us to
separate the information about the individual object. In fact, Scenario 2 may have many subcases
to be carefully defined and studied.

Problem 2.1. Deterministic optimized classification algorithm 2 including additional information
on the objects and updates.

In Scenario 2, the learning set L is updated/extended after each reapplication of the
classification algorithm. In this case, the object ID is recorded in all steps, and this provides a
follow up mechanism through the recurrent classification processes. Let x € L, x € K;, and let
some empirical treatment of x be applied. That is, x is classified to the class K;; after that, the
action a; (the i-th class action) is applied, and as a result x is modified into the y: a;(x) = y € K;.
In this way, chains are appearing in the course of repeated classifications, and some of these chains
lead to the class K.

In a formal description, the learning set L is represented by a linkage graph G with the vertex
set IV corresponding to the learning set elements, the set IV and the graph itself extended during the
process, and its directed edges compose the set E, labeled by actions, and connecting the pairs of
learning set elements. An edge may or may not have a weight. In this manner, the graph G provides
valuable information for checking the model validity, obtaining realistic information about the
applied problems. The graph-theoretical problems that appear here helping to check the system,
are well known and investigated theoretically. And nowadays research tendencies provide
innovative applied approaches and analytics to the graph connectivity, expansion characterization,
effective distances and other topics, in terms of sparse symmetric diagonally dominant matrix
computational theory [27] that gives an acceptable implementation to the Linkage graph model
algorithms and the corresponding software platforms.

Problem 2.2. Optimized classification algorithm 2 including additional information on the objects
and updates.

This form of the problem 7R, in its general form, refers to one of the novel conceptual
directions of the machine learning known as Reinforcement Learning (RL). The goal of RL is an
interaction model of an agent with the environment by obtaining and analyzing the so called
rewards of environment to these actions. The goal is to create an optimal acting agent (a doctor in
our use case TR) for successful interacting with the environment (with the set of patients).

Action in our representation is learned to classify all objects to the unique “normal’ class. So,
when the class label is different from “normal”, the action gets a penalty that depends on the
distance between the detected class and the “normal” class. This approach can also be presented
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in a form of recurrent neural network model [31]. A weaker relation is with the known inverse
classification model [28, 29], which is an analysis of the space of features, and the groups of
features, providing a better one-class classification. No other systematically studied and related
areas are known. The mentioned technique is tightly related to the backpropagation approach.
Backpropagation has a very broad scope, and the “normal” class classification discipline appears
as an inverse recognition problem. One step back gives the area that will/may be mapped to the
class “normal”. It is to differ the objects that necessarily will be classified to “normal” (V), the
objects that have never been mapped to “normal” (@), and others that are classified to classes
according to some probabilistic distributions, and the class “normal” is among these classes (3).
Next step back accepts a similar picture of classification. Our goal is to determine all objects
always classified to “normal”, and those will be allocated to “normal” at least one time. And, of
course, we are interested to know the frequencies of these allocations. In RL the way is through
the MDP, dynamic programming, Bellman equations, and policy optimization. Our technique to
achieve this information is the LCPR model and algorithms.

3. Proposed Methods and Solutions

In this section, in a compact form, we start with basic definitions from the logic-combinatorial
pattern recognition theory. This theory will be used in solving Problems 1-2 and other similar
problems. Consider a typical case recognition problem with n features, [ disjoint classes
K1, K5, ..., K; from an environment K and an m object learning set L = {xq,X5,..., X }. L =L N
K;, i = 1,2, ...,1 denotes the share of the i-th class of the general learning set, that we suppose, is
not empty. Objects are coded and are identical to their descriptions in the form of a vector of
feature values: x = (x4, X5, ..., X,,). For simplicity, we assume thatx; € R, i = 1,2,+-,n.

Let us define the following set of elementary predicates, parametrically dependent on support
sets wy, wy S {1,2, ...,n}, |w;1| = kq, |w| = k, and vectors ¢; € R¥ and c, € R¥2. Below we use
the notation (x < a) = {1,x =a, ..

- 0, otherwise
Definition 1: ([15]) The predicate P®v¥1.92k2 (x) = Njew,(€1,j < Xj) Njew,(Xj < €3 j) is called
a logical dependency (LD, geometrically based on a parallelotope) of the class K;, if

1. 3x; € L;: p@vk1wa ke (xe) =1,
2. Vx; & Lis POvki@zka(x) = 0,
3. POrkLo2ke(x) = extr(F(POrK1.92/2 (x))),

where F is the predicate quality criterion.

It is clear that the defined predicate geometrically presents a parallelotope; and then the
function F requires finding the local maximization of LDs in the domain. We will denote the set
of all LDs of the i-th class of the given problem by Py, and the set of all LDs of all classes by P .
The predicate, satisfying only the first two constraints, is called admissible. We also accept the
approximate predicates with a limited level of violation of the condition 2.

LD is the base element of the logic-combinatorial pattern recognition (LCPR) theory. The
initial idea with LD appeared in [21]. Multi-parametric voting algorithms over the LD were
introduced in [23,14] and obtained a complete analytics for LD with binary features. Here the
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predicates are maximal intervals/subcubes of the partially defined Boolean function, and the set of
predicates is given by the reduced disjunctive normal forms of these functions.
Principle of indeterminedness areas. Let L; and L, be disjoint collections of classes, and let P;
and P, be the LDs of these classes, correspondingly. P; and P, cover areas that may intersect,
giving the indeterminedness area of LCPR.

- Areas dominated by P; and P, might be allocated to L; and L, correspondingly.

- Besides the two dominating and one intersection, there is no more areas because this will

violate the condition 2. of Definition 1.

- Enlargement of L; is decreasing the indeterminedness domain.
Search for LDs. The transparent way is through the pricking the space by the finitely many class
elements. This is exactly the scheme of constructing the reduced disjunctive normal form of
Boolean function by consecutive application of zero assignments. Another way is the reduction to
an IL program.

Definition 2: ([3]) LCPR similarity measure of an object of recognition x to the class K; is:
1
[; (x) = ﬁzpwl”ﬁ,wz,kz er, Pw1K1,wz,k; (X)

In short description, the LCPR stands out by:
- effective measure of similarity,
- proven separation of classes,
- multi-parametric optimization over large sets of recognition algorithms,
- correction of sets of algorithms providing correct recognition for all objects recognized by
at least one individual recognizer, and other properties.
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Left picture presents maximal LD, defined by 2 classes, “normal” and deviated in our case. Right
side picture presents LDs for “normal” area with the LDs of counter-class areas.

Advantages of using the LCPR in solving dynamic recognition problems

In a general recognition algorithm U by the learning set L there is no visible idea on how to
follow with repeated classifications, with the chains of classifications. However, the situation is
different with the LCPR, because here it is possible to apply a backward reconstruction procedure
of logical dependencies. At first, the set of LDs for the class K|, is constructed by L. To do this, it
is to form the counter-class that in a simple case can be the union of all deviated classes. A more
adequate decision might be the selection by the rooted tree Z that we constructed in Section 3. If



L. Aslanyan, V. Krasnoproshin, V. Ryazanov and H. Sahakyan 103

the tree height is h, then, for example, taking h/2 we may compose the counter-class by all classes
in a distance threshold h/2 and higher from the “normal”. As it was mentioned, this is a set of
parallelotopes in R™. We suppose that all elements covered by these LDs create a new artificial
class K,, and one may now construct LDs defined by this class and by L. The Cartesian
multiplication of the previous stage LDs is the way of creating new LDs. Continuing the process
of LDs growing, in parallel we compare the covered volume of the object space with the size of L.
Why is this possible technically?

Having only information of Scenario 1, we construct the partially ordered set Z of classes as
follows. The lower level, as we have mentioned, consists of one class K. At level 1, we place all
those classes that have a direct link to the class K. Denote these classes by S; (Kj) and S; (51 (Kp)).
The S;(51(Ky)) together with S;(K,) compose the second neighborhood S,(K,) of K,. An
additional element of this model can be the threshold of links between the classes. To be a member
of the neighborhood of S;(Kj), it is necessary that share of the links between the class and the set
S1(Kp) is not less than the threshold. By these descriptions we see that LCPR might be applied to
the set of classes of levels from O to some m; versus the classes of some level m, > m, and higher.

Implementation of this technique is not straightforward, it needs the knowledge gained on
LCPR, as well as development of new approximate parallelotope-set type coverage approaches
keeping the appearing complexities tractable.

It is worth mentioning that LCPR with LD provide the partial geometrical data structure, that
helps not only with complexity controls, but also provides interpretability of results; and this is the
known comparative benefit of all LCPR approaches.

The LCPR domain has been introduced and investigated for decades, resulting in hundreds of
publications and scientific theses. Most investigated is the binary case. Here the reduced
disjunctive normal form (RDNF) of partially defined Boolean functions is the analytical basis that
helps to describe these classes of objects. In the simpler case of two classes, two RDNF of ordinary
Boolean functions are considered. The first one is for the positive Boolean function that is true on
the elements of “normal” class learning elements and the second one is for negation, for counter-
class of this function. [3] shows that intersection of these two RDNF by LCPR will correspond to
(3), while the positive intervals/subcubes will denote the (V) parts of the learning set. The (V) of
positive (“normal” learning set) Boolean function represents the backpropagation of the “normal”
class.

Next step to back from “normal”, by the tree, is similar to the first step. Here new
intervals/subcubes will be formed, and the core essence of procedure is the fact that all elements
of the first step intervals/subcubes will be enlarged similarly, which draws to the Cartesian degrees
of the intervals/subcubes. This is probably not easy computationally, but is a visible and
interpretable analytics to inverse recognition procedures.

Multiclass extension is not difficult. It is to consider one-to-many classifications for all
classes. This brings to a scheme consisting of [ + 1 RDNFs. The rest of the process is similar to
the two-class example. Of course, this is an initial interpretation of the inverse recognition model
by the use of LCPR. The studies will be continued and implemented in practice. We evaluate this
initial step taken over the new pattern recognition problem as important, because the applied model
is ultimately practical, although being not yet formed and studied in its complete form.

4. Conclusion

More than 70 years of development of pattern recognition, which is now referred to by the term
machine learning, has made it possible to formulate a solid set of models and technologies of both
statistical and logical combinatorial nature. The variety is huge, both in the form of models and
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scenarios, as well as technologies and algorithms. The emergence of new tasks that have not yet
been formed and not studied is not exclusion. One of such tasks - the procedure of assigning all
objects to one fixed class by several consecutive steps of recognition is our objective. An applied
use case problem of this type may be optimization of the course of treatment in medicine. This
paper considers algorithms of pattern recognition of logical regularities in the context of solving
the problem of assignment of objects to one fixed class. Only the initial analysis and research on
this problem is characterized, its connection to the concepts of reinforcement learning and
recurrent neural networks is indicated. Subsequent investigations of the problem will prove
usefulness of the model in a number of applied problems. And especially, the related graph-
theoretical and sparse linear algebra algorithms will be incorporated into the solutions.
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“Yhunwplynud E tnp b hkwmwppphp pupwugwlupg Yepyupubph Jipdwtdw
wnhpnypnwd,  npubkn wowpluwiubkph Logphn puwuwlupgwt  (punn nrumgdwb
puquUnipjull) thnpowpkt npynud £ wypuinpuipught tyuwnwly” nuwuwlwpgl) pojnp
wnwpluibkpp dhtiinyt, wjuybu  Ynsdws, «unpdwp nuuht: Spdws b niunigdwt L
hwjupwédnt, b nuubph dbe Yw Ukl tnpuuy quu' Ko, U 1 “obnud” quubp’ Ky, Ky, -, K,
- npbt K dhow]uyphg: Nuumgiwi wpnghup phtudhly b «auuuwlupgnid,
gnpénnnipjnily dbwswthnud hbnlywy duny. K;, “otnquwd” nuwubphg jnipupwbsnipht
Ygjws L A; gnpdnnnipni/dniuljghw, npp Jhpwnkny judwjulwb x € K; wnwplugh
Ypuw, wpmniipmud unugynid b wyn wowplugh pupdugndp’ 4;(x), npp Yphht K
Uhgwjuyphg b Upnynitpnud, 4;(x)-p fupnn b puuwupgyty juud “2tnjws” quutphg
nplk UEhht (bbpurjw) tnyt K; quup), jud «unpdw)p» Ky puuht: Lywnwyp hbnlyu)
E. Jupmgh) nuuwlupquui A wignphped, npp Ypiunqupwp (hopp pyny whquidbtp)
Yhpwnybtiny L-h wnwpluwubkph ypw, h yipen wpwplutpp (hwdwyuwinwuppwbwpunp,
K — h wupptpp) nwiunud b «unpdwp guuh: Ujuyhuny, unnwnhl Swbwsnnnipjui
gnpénnnipjntup nknuthnpynd £ nhtwdhy mhpnype:

Usjwtnwiipp, punhwtinip wndwdp, hptthg ukpjujugunid E putwpynidutp toqus
Juinph onmipe nhuwlwh wnunnunibp, hwpudnp Jhpupnipnibitp b phtudhl
Swhwsdwl fuunhputph nusdwitt gnpénd mpudwpwbwlut-Yndphttwwnnp dkpnnubkph
oqunugnpddwt wnwybjnipnitutph puguhwynnud:
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AHHOTALUSA

PaccmaTpuBaeTcs HOBasg BakHas mIpolenypa B 00JacTH paclio3HaBaHUS 00pazoB, rae
BMECTO TOYHOH KJIacCH(UKAIMK 0OBEKTOB MO 00yJaroneMy Habopy, CTaBUTCS aJlbTepHATHBHAS
[eJIb OTHECEHHS BCEX OOBEKTOB K OJHOMY M TOMY €, K TaK Ha3bIBAEMOMY, «HOPMAJIbHOMY»
KJjaccy. 3aznaH oOyuvarouiuii Habop L; cpeu KJIacCoB €CTh OJMH «HOPMallbHbIN» Kiacc Kg, u [
«OTKJIOHEHHBIX» KiaccoB Ki, K,,:+,K; B HekoTtopoii cpene K. Ilponecc oOydeHus sBiseTcs
JUHAMHUUYECKUM B (hopMmaTe «kiaccuduKanus, JecTBUEe» CIEAYIOIUM 00pa3oM: ONpesieieHHOe
neiictBue/pyHKIUS A; TPHUKpPEIUIIETCS K KaKIOMY M3 «OTKIOHEHHBIX» KiaccoB K;, Tak 4To
IpUMeHAs AeicTBue A; K IPOU3BOIBHOMY 00BEKTY X € K;, ero o6HoBineHue A;(x) ocraercs B
cpene K. B pesynbrare, A;(x) MoxeT ObITh OTHECEH JTUOO K OHOMY U3 OTKJIOHCHHBIX KJIacCOB
(Bximroyasi TOT ke kiace K;), mmbo kK «HOpManmbHOMY» Kiaccy K. 3amada 3akimodaercs B
MOCTPOCHUH TaKOTrO anropurma kiaccupukammu A, KOTOPBIA, MHOTOKpAaTHO (HEOOIbIIOE
KOJIMYECTBO pa3) NPUMEHSBIIMICA K OOBEKTaM L, TepeBOJUT OOBEKTHI (COOTBETCTBEHHO,
aneMeHThl K) B «HOpMasbHbIM» Kkiacc. TakuMm o00pa3oM, CTaTHUECKOE paclo3HaBaHUE
MEPEHOCUTCST B OOJIACTh JAMHAMHYECKOTO pacrio3HaBaHus. CTaTbs MPENCTaBISET OOCYXKICHHE
Mpo0JIeMbl, €€ TEOPETHUYECKUX MOCTYJAaTOB, BO3MOXHbBIC NMPUMEHEHUS HAa TPAKTHUKE, a TaKXKe
BBISIBJICHHE IPEUMYILECTB HCIOIb30BAHUSA JIOTMKO-KOMOMHATOPHBIX MOAXOAOB NPU PEIICHUU
3THX 33/a4 JUHAMHYECKOTO PACIO3HABAHWS. YUHUTHIBACTCS OTHOLICHHWE K TaKUM TeMaM, Kak
o0y4eHHE C TOAKPEIUICHHEM, JIOTHUKO-KOMOMHATOPHOE pAcIO3HaBaHWE M PEKypPEHTHHIE
HEWPOHHBIE CETH.

KawueBble cjoBa: Ki1acCUpUKAIMA, JIOTUKO-KOMOWHATOPHBIA TOJXOX, OOYYEeHHE C
YUHUTEJIEM C [TOAKPEIICHUEM.



