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We shall assume that the reader is familiar with the standard terminology on directed
graphs (digraphs) and use Bang-Jensen and Gutin [1] as reference for undefined terms. In
this paper we consider finite digraphs without loops and multiple arcs. The subdigraph of
D induced by a subset A of V(D) is denoted by (A). We will denote the complete bipartite
digraph with partite sets of cardinalities p, ¢ by K .

Meyniel [11] proved the following theorem: If D is a strong digraph on n > 2 vertices
and d(z) + d(y) > 2n — 1 for all pairs of non-adjacent vertices in D, then D is hamiltonian
(see also [1], [5] and [12]).

Thomassen [14] (for n = 2k +1) and Darbinyan [7] (for n = 2k) proved: If D is a digraph
on n > 5 vertices with minimum degree at least n — 1 and with minimum semi-degree at
least n/2 — 1, then D is hamiltonian (unless some extremal cases).

In each above mentioned theorems ( as well as, in well know theorems Ghouila-Houri
[10], Woodall [15]) imposes a degree condition on all pairs of non-adjacent vertices (on all
vertices). Bang-Jensen, Gutin, Li, Guo and Yeo [2, 3] obtained sufficient conditions for
hamiltonisity of digraphs in which degree conditions requiring only for some pairs of non-
adjacent vertices. Namely, they proved the following theorems (in all three theorems D is a
strong digraph on n > 2 vertices).

Theorem A [2]. If min{d(x),d(y)} > n— 1 and d(z) + d(y) > 2n — 1 for every pair of
non-adjacent vertices z, y with a common in-neighbour, then D is hamiltonian.

Theorem B [2]. If min{d"(x) +d (y),d” (z) + d"(y)} > n for every pair of non-adjacent
vertices x, y with a common out-neighbour or a common in-neighbour, then D is hamiltonian.
Theorem C [3]. If min{d*(z) +d (y),d (z)+d*(y)} > n—1and d(z) +d(y) >2n —1
for every pair of non-adjacent vertices z, y with a common out-neighbour or a common
in-neighbour, then D is hamiltonian.

Note that Theorem C generalizes Theorem B. In [9, 13, 6, 8] it was shown that if the
strong digraph D satisfies the condition of the theorem of Ghouila-Houri [10] (Woodall [15],
Meyniel [11], Thomassen and Darbinyan [14, 7]), then D is pancyclic (unless some extremal
cases, which are characterized). It is not difficult to check that the digraphs K Jo.n/2 and
K o 0o —{€}, where n is even and e is an arc of K7, , , », satisfy the conditions of Theorem A

(B, C) and has no cycle of odd length. Moreover, if in Theorems A (B, C) the digraph D has
no pair of non-adjacent vertices with a common in-neighbour and a common out-neighbour,
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then D is a locally semicomplete digraph, and in [4], Bang-Jensen, Gutin and Volkmann
characterize those strong locally semicomplete digraphs which are not pancyclic.

It is natural to set the following problem:

Problem. Characterize those digraphs which satisfy the conditions of Theorem A (B, C),
but are not pancyclic.

To investigate that a given digraph D is pancyclic, in [9, 13, 6, 8] it was proved the
existence of cycles of length |V(D)| — 1 and |V (D)| — 2, and then using the constructions of
these cycles it was proved that D is pancyclic with some exceptions.

We prove three results which provide some support for the above Problem.

Theorem 1. Let D be a strong digraph on n vertices with minimum semi-degree at least
two. If D satisfies the conditions of Theorem A, then either D contains a cycle of length n—1
or n is even and D is isomorphic to complete bipartite digraph Ky, » or K7, 5, » — {e},
where e is an arc of K} 5, /s.

Theorem 2. Let D be a strong digraph on n > 4 vertices, which is not directed cycle of
length n. If D satisfies the conditions of Theorem B, then either D contains a cycle of length
n — 1 or n is even and D isomorphic to complete bipartite digraph K> 2.m)2"

Note that Theorem 1 is sharp, in the sense that for all n > 6 there is a strong digraph D
on n vertices which has minimum semi-degree one and satisfies the condition of Theorem 1,
but contain no cycle of length n — 1. To see this, it is sufficient to consider the digraph D,, ,,
which was defined in [13] (see also [1].p.300). When m = n — 1, then D, ,,, has minimum
semi-degree one and satisfies the conditions of Theorem 1 but has no cycle of length n — 1.

We believe Theorem 2 can be generalized to the following
Conjecture. Let D be a strong digraph on n > 4 vertices. If D satisfies the conditions of
Theorem C, then D contains a cycle of length n — 1 maybe except some digraphs which has
a "simple” characterization.

Support for the conjecture we prove the following.
Theorem 3. Let D be a strong digraph with n > 2 vertices, which is not directed cycle. If
D satisfies the conditions of Theorem C, then D contains a cycle of length n — 2 or n — 1.
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