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Abstract

It is proved that if G is a t-tough graph of order n and minimum degree ¢ with
t > 1, then either G has a cycle of length at least min{n, 20 + 4} or G is the Petersen
graph.
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1. Introduction

Only finite undirected graphs without loops or multiple edges are considered. We reserve n,
d, Kk, ¢ and T to denote the number of vertices (order), the minimum degree, connectivity,
circumference and the toughness of a graph, respectively. A good reference for any undefined
terms is [1].

The earliest lower bound for the circumference was developed in 1952 due to Dirac [2].

Theorem A: [2]. In every 2-connected graph, ¢ > min{n, 26}.

In 1986, Bauer and Schmeichel [3] proved that the bound 20 in Theorem A can be en-
larged to 26 + 2 by replacing the 2-connectivity condition with 1-toughness.

Theorem B: [3]. In every 1-tough graph, ¢ > min{n, 26 + 2}.

In this paper we prove that in Theorem B the bound 26 + 2 itself can be enlarged up to
20 +4 if 7 > 1 and G is not the Petersen graph.

Theorem 1: Let G be a graph with T > 1. Then either ¢ > min{n, 26 + 4} or G is the
Petersen graph.

To prove Theorem 1, we need the following result due to Voss [4].
Theorem C: [4]. Let G be a Hamiltonian graph, {vi,vs,...,v:} C V(G) and d(v;) >t

(1=1,2,...,t). Then each pair x,y of vertices of G is connected in G by a path of length at
least t.
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2. Notations and Preliminaries

The set of vertices of a graph G is denoted by V(G), and the set of edges by E(G). For S
a subset of V(G), we denote by G\S the maximum subgraph of G with vertex set V(G)\S.
We write G[S] for the subgraph of G induced by S. For a subgraph H of G we use G\ H
short for G\V(H). The neighborhood of a vertex x € V(G) will be denoted by N(z).
Furthermore, for a subgraph H of G and z € V(G), we define Ny(xz) = N(z) NV (H) and
dy(xz) = |Ng(z)|. Let s(G) denote the number of components of a graph G. A graph G is
t-tough if |S| > ts(G\S) for every subset S of the vertex set V(G) with s(G\S) > 1. The
toughness of G, denoted 7(G), is the maximum value of ¢ for which G is t-tough (taking
7(K,) = oo for all n > 1).

A simple cycle (or just a cycle) C of length ¢ is a sequence vyvs...v,01 of distinct vertices
V1, ..., vy With vu € E(G) for each i € {1,...,t}, where v;1; = v;. When ¢t = 2, the cycle
C' = v1v9v1 on two vertices vy, v9 coincides with the edge vivy, and when ¢ = 1, the cycle
C = v; coincides with the vertex v;. So, all vertices and edges in a graph can be considered
as cycles of lengths 1 and 2, respectively. A graph G is Hamiltonian if G' contains a Hamilton
cycle, i.e., a cycle of length n. A cycle C in G is dominating if G\C' is edgeless.

Paths and cycles in a graph G are considered as subgraphs of G. If () is a path or a
Cycle then the length of @), denoted by |Q| is |[E(Q)]. We write () with a given orientation

by Q For z,y € V(Q), we denote by z Qy the subpath of () in the chosen direction from

x to y. For x € V(C), we denote the h-th successor and the h-th predecessor of x on c by
2t and 27", respectively. We abbreviate 1! and ! by T and 27, respectively. For each
X c V(0), we define X" = {z*h|z € X} and X" = {z7"|z € X}.

Special definitions: Let G be a graph, C' a longest cycle in G and P = x?y a longest
path in G\C of length B > 0. Let &,&, ..., & be the elements of No(x) U Ne(y) occuring on
C in a consecutive order. Set

— . e )
Ii:ficfi-i-la Iz :gz C£i+1 (7’: 172a"'75)7

where o1 = 1.
(1) The segments Iy, I, ..., I5 are called elementary segments on C created by No(x) U
Ne(y

)
(2) We call a path L = 2 Lw an intermediate path between two distinct elementary
segments 1, and I if

ze VI, weV(), V(L)NV(CUP) ={z,w}.

(3) Define Y (I, I, ..., I;,) to be the set of all intermediate paths between elementary
segments 1, Iy, ..., I;, .

Lemma 1: Let G be a graph, C a longest cycle in G and P = x?y a longest path in G\C
of length p > 1. If |[No(z)| > 2, |No(y)| > 2 and Ne(x) # Ne(y), then

] > 30 + max{oy,02} —1>35 if p=1,
— | max{2p + 8,40 — 2p} if p>2,

where 01 = |[Ne(x)\Ne(y)| and o2 = |No(y)\Ne(x)].
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Lemma 2: Let G be a graph, C' a longest cycle in G and P = m?y a longest path in G\C
of length > 0. If No(z) = Ne(y) and |Ne(x)| > 2, then for each elementary segments I,
and I, induced by Nc(x) U Ne(y),

(al) if L is an intermediate path between I, and I, then
\I.| + |Ip] > 2p+ 2|L| + 4,
(a2) if Y (1o, Iy) € E(G) and |Y (14, Ip)| =i for some i € {1,2,3}, then
| La| + 1| = 2p +i + 5,
(a3) if Y(1o, Iy) C E(G) and Y (I,, I) contains two independent intermediate edges, then

|1.| + |Iy] > 2p + 8.

Lemma 3: Let G be a graph and C' a longest cycle in G. Then either |C| > k(6 + 1) or
ﬁ
there is a longest path P = x1 P xo in G\C with |N¢(z;)| > 2 (i = 1, 2).

3. Proofs

Proof of Lemma 1. Put
Ay = Ne(z)\Ne(y), A2 = Ne(y)\Ne(z), M = Nc(x) N Ne(y).
By the hypothesis, No(z) # Ne(y), implying that
max{|A4;|,|A4z|} > 1.

Let &1, &, ..., & be the elements of N¢o(z) U Ne(y) occuring on C' in a consecutive order. Put
I, = fiﬁfiﬂ (1 =1,2,...,s), where &1 = &. Clearly, s = |A;| + |A2| + |M]. Since C is
extreme, |I;| > 2 (i = 1,2,...,s). Next, if {&,&1} N M # () for some ¢ € {1,2,..., s}, then
|I;| > p+2. Further, if either & € Ay, &1 € Ay or & € Ag, &1 € Ay, then again |I;| > p+2.

Case 1. p=1.

Case 1.1. |A;| > 1 (i=1,2).

It follows that among Iy, I, ..., I there are |M| + 2 segments of length at least p + 2.
Observing also that each of the remaining s — (| M|+ 2) segments has a length at least 2, we
have

O] = (p+ (M| +2) +2(s — [M] - 2)
=3(IM| +2) + 2(|A1| + |Az| — 2)
= 2|Ay| + 2|As| + 3| M| + 2.

Since |A;| = d(z) — |M| -1 and |As| =d(y) — | M| -1,

C] > 2d(x) + 2d(y) — |M| — 2 > 36 + d(z) — | M] — 2.



42 Long Cycles in t-Tough Graphs with ¢ > 1

Recalling that d(x) = |M| + |A;| + 1, we get

|IC] > 304 |A1| —1=30+07 — 1.
Analogously, |C| > 30 + 02 — 1. So,

|C| > 30 + max{oy, 002} — 1 > 30.

Case 1.2. Either |A1| Z 1, |A2| =0or |A1| = 0, |A2| Z 1.

Assume w.l.o.g. that |A;] > 1 and |As| =0, i.e., |[Ne(y)| = |M| > 2 and s = |Ay| + |M].
Hence, among I, I, ..., I there are |M| 4+ 1 segments of length at least p + 2 = 3. Taking
into account that each of the remaining s — (|M| 4 1) segments has a length at least 2 and
M|+ 1=d(y), we get

|IC] > 3(|M|+1)+2(s — |M| —1) =3d(y) + 2(|A1| — 1)

> 30+ |Ai| — 1 =30 + max{oy,00} — 1 > 30.

Case 2. p > 2.
We first prove that |C| > 2p + 8. Since |N¢(z)| > 2 and |Ne(y)| > 2, there are at least
two segments among [, I, ..., I of length at least p + 2. If |[M| = 0, then clearly s > 4 and

IC|>2(p+2)+2(s—2) >2p+38.

Otherwise, since max{|A;|, |As|} > 1, there are at least three elementary segments of length
at least p+ 2, that is

IC1>3(p+2) >2p+8.
So, in any case, |C| > 2p + 8.

To prove that |C| > 46 — 2p, we distinguish two main cases.

Case 2.1. |4;| > 1 (1 =1,2).
It follows that among Iy, Is, ..., I there are |M| + 2 segments of length at least p + 2.
Further, since each of the remaining s — (|M| + 2) segments has a length at least 2, we get

C] = (p+2)(|M]+2) +2(s — [M]| - 2)
= (0 —2)[M|+ 20+ 4[M| +4) + 2(|A| + [A2] = 2)
Observing also that
| Al + [M[+p >d(z), [As]+[M]+D>d(y),
we have
2|A1| + 2|As| + 4| M|+ 2p

> 2d(x) + 2d(y) — 2p = 46 — 2p,
implying that |C| > 46 — 2p.
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Case 2.2. Either |A;| > 1,]|As| =0 or |A;] =0, |As] > 1.

Assume w.l.o.g. that |A;] > 1 and |As| = 0, i.e., [No(y)| = |[M| > 2and s = |A;|+|M]|. Tt
follows that among Iy, I, ..., I there are | M|+ 1 segments of length at least p+ 2. Observing
also that |M|+p > d(y) > 9, i.e. 2D+ 4|M| > 46 — 2p, we get

ICl= @+2)(IM[+1) = (p - 2)(|M] = 1) + 2p + 4|M]|

>p+4M|>45-2p. m

Proof of Lemma 2. Let £, &y, ..., & be the elements of N¢(z) occurring on C' in a consecu-
— —
tive order. Put [; = § C &4y (1 = 1,2, ..., 8), where {51 = &;. To prove (al), let L = z L w be
an intermediate path between elementary segments I, and [, with z € V(I}) and w € V().
Put — — — —
€. C 2| = di, |2 C&upi] = da, [§Cw|=ds, |wCE&a| = dy,

— = = —
C'=&xPy&CzLwC§,.

Clearly,
|IC'| = |C| —dy — d3 + |L| + | P] + 2.

Since C'is extreme, we have |C| > |C’|, implying that d; +ds > p+ |L| + 2. By a symmetric
argument, dy + dy > p+ |L| + 2. Hence

4
Lo+ || = > di > 2p+2|L| + 4.
i=1

The proof of (al) is complete. To proof (a2) and (a3), let Y(I,,I;) € E(G) and
|Y(I,, )| = i for some i € {1,2,3}.

Case 1. i = 1.
It follows that Y(1,, I,) consists of a unique intermediate edge L = zw. By (al),

|Io| + | 1o > 2p+ 2|L| +4 = 2p + 6.

Case 2. 1 = 2.
It follows that Y(1,, I,) consists of two edges ey, ea. Put e; = zyw; and ey = 29wy, where
{z1,20} CV(IF) and {wy,wy} C V(I}).

Case 2.1. z; # 29 and wy # ws.
Assume w.l.o.g. that z; and z occur in this order on I,.

Case 2.1.1. wy and w; occur in this order on Ij.

Put N N -
|fa02’1| :d17 |Zl CZQ| :dQ, |2206a+1| :d37
— — —
& Cws| = dy, |wy Cwy| =ds, |wy C&pyr] = ds,
, — — — — —
C" =& C 21wy Cwzzg C G Pyéprr Céa.
Clearly,

O] = |C| = d — ds — ds + e }| + [{ea} + [P + 2
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=|Cl —dy—dy —ds + P+ 4

Since C'is extreme, |C| > |C’|, implying that dy+ds+dg > p+4. By a symmetric argument,
dy +ds + ds > p+ 4. Hence
6
L+ 1L =3 d > 2+ 8

i=1

Case 2.1.2. w; and wy occur in this order on ;.
Putting
, — — — — —
C"'=&,C z1wy Cwazg C &z Py&pyr C&,,

we can argue as in Case 2.1.1.

Case 2.2. Either z; = 29, wy # wq Or 21 # 23, W1 = Ws.
Assume w.l.o.g. that z; # 25, w; = w9 and 21, z3 occur in this order on I,. Put

— — —
|§a021| = dj, |Zl C'2'2| = ds, |Z2C§a+1| = ds,

— —
& Cwi| = da, w1 C | = ds,
— = —
C' = &ux Py&, C 2w C&,,
" — — — —
C" =&, C 2w, C§a+1xpy§b+1 Cé&,.
Clearly,
I =1Cl —dy —ds+{er}| + [P +2=|C| —di —ds +D+3,
|IC"| = |C| —ds — ds + [{ex}| + |P| +2=|C| —d3s — d5 + P+ 3.
Since C is extreme, |C| > |C’| and |C| > |C"|, implying that
dy+dy, >P+3, ds+ds >p+3.

Hence,

5
|+ L =Y di>d+ds+di+ds +1>2p+T.
i=1

Case 3. i = 3.

It follows that Y(I,,I,) consists of three edges ey, es,e3. Let e; = zw; (i = 1,2,3),
where {z1, 20,23} C V(I}) and {wy,wy, w3} C V(I). If there are two independent edges
among eq, o, e3, then we can argue as in Case 2.1. Otherwise, we can assume w.l.o.g. that
wy = wy = ws and 2y, 29, 23 occur in this order on I,. Put

— — —
£ C 21| = di, |21 C 22| = da, |22 C 23] = ds,
— — —

\23 Cfa—i—l‘ = dy, ]&,C’w1| = ds, ’wl C§b+1| = ds,
C' = &0 Py&, C ziun C
= §ax Py& C 2ywy C'&,,
P — — —
C" =& C 23w C 812 Py&p1 C &
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Clearly,
'] =1C| = dy —ds + [{e1}| + P+ 2,

C"| = |C| — ds — dg + Hes} + P+ 2.
Since C' is extreme, we have |C| > |C'] and |C| > |C”|, implying that

di+ds>p+3, dy+dg>p+3.

Hence,

6
|+ L =Y di>di+di+ds+ds+2>2p+8 m
=1

Proof of Lemma 3. Choose a longest path P = Puryin G\C so as to maximize | N¢(x1)|.
Let vy, ..., y; be the elements of N (x3) occurring on P in a consecutive order. Put

— — —
P,=x1Py; 2o Py; (i=1,..,t), H=G[V(y; Px).

Since P; is a longest path in G\C for each ¢ € {1,...,t}, we can assume w.l.o.g. that P is
chosen so that |V (H)| is maximum. It follows in particular that Np(y;) C V(H) (i = 1,...,1).

Case 1. |N¢(z1)| =0.

Since |N¢(z1)| is maximum, we have |[No(y;)| = 0 (¢ = 1,...,t), implying that N(y;) C
V(H) and dy(y;) = d(y;) > 6 (i = 1,...,t). Further, since y; = x9, we have dp(xs) > 0,
that is t > 0. By Theorem C, for each distinct u,v € V(H), there is a path in H of length
at least 9, connecting u and v. Since H and C' are connected by at least x vertex disjoint
paths, we have |C| > k(d + 2).

Case 2. |Ng(z)| = 1.
Since | N¢(z1)] is maximum, we have |[Ne(y;)| <1 (i = 1,...,t), implying that |Ng(y;)| >
d—1(i=1,..,t), where t > 6 — 1. By Theorem C, |C| > k(§ + 1).

Case 3. |Ng(x1)| > 2.
If |[Ne(y;)| > 2 for some ¢ € {1,...,t}, then we are done. Otherwise |Nc(y;)| < 1
(i =1,...,t) and, as in Case 2, |C| > k(d + 1). [

Proof of Theorem 1. If x < 2, then 7 < 1, contradicting the hypothesis. Let k > 3. Next,
if ¢ > 20 + 4, then we are done. So, we can assume that

c <26+ 3. (1)

Let C' be a longest cycle in G and P = xlﬁxg a longest path in G\C' of length p. If
|[V(P)| < 0, then C is a Hamilton cycle and we are done. Let |[V(P)| > 1. Put X =
Ne(x1) U No(zo) and let &, ..., & be the elements of X occurring on C' in a consecutive
order. Put

— . L e )
Ii = fiCSH-la I = 52 C£i+1 (Z = 17 "'78)7

7

where 11 = &1
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Claim 1. Let N¢(z1) = Ne(z2) and let &,,&, be two distinct elements of X. If either
— — — —
1£a Cyl +16C 2| <p+2o0r lyCus|+|2C&41| <DP+2 for somey € V(IF) and z € V(I})),
then yz & E(G).
— —
Proof. Assume the contrary, that is yz € E(G). If |, Cy| + |§ C z| <P+ 2, then

a1 Paaty, Cyz C &) = |C) = |6 Cyl — 16 C 2| + 5+ 3 > |C] + 1,

—

a contradiction. By a symmetric argument, we reach a contradiction when |y C &, 1| +
—

2C & <p+2. A

Claim 2. Let No(z1) = Ne(x2) and let &, &, & be distinct elements of X, occurring
— —
on C in a consecutive order. If £, &" € E(G) and |£; C'y| <P+ 1 for some y € V(I}), then

yéa, ¥& & B(G).
Proof. Assume the contrary. If y¢, € E(G), then

— = S — _
|€p21 P oy CEy CEL & C&pl = |C] =6 Cyl+D+2 > |C] + 1,
a contradiction. If y&, € E(G), then
— = et A
(§rm1 Paol, C Gy C &L C&y| > O] +1,

a contradiction. A

Case 1. p=0.

It follows that P = z; and s = d(z;) > 0 > 3. Assume first that s > 0 + 1. If
Y(Iy,...,Is) = 0, then G\{&1, ..., &} has at least s+1 components, contradicting the fact that
7 > 1. Otherwise Y(/,, I) # 0 for some distinct a,b € {1, ..., s}. By Lemma 2, |I,|+|[;| > 6.
Since C' is extreme, we have |[;| > 2 (i = 1, ..., s) and therefore, ¢ > 6 + 2(s — 2) > 26 + 4,
contradicting (1). So, s = §.

The next claim can easily be derived from (1) and Lemma 2.

Claim 3. (1) |[;| + |I;] < 7 for each distinct 7, j € {1, ..., s}.

(2) If |I,| + |I,] = 7 for some distinct a,b € {1,...,s}, then |I;] = 2 for each
ie{l,..,s}\{a,b}.

(3) If |1,] = 5 for some a € {1,..., s}, then |[;| = 2 for each i € {1, ..., s}\{a}.

(4) There are at most three segments of length at least 3.

(5) If |1,] > 3, |I,| > 3, |I;| > 3 for some distinct a,b, f € {1, ..., s}, then |I,| = |I,| =
1y = 3.

Y (14, ..., I) = 0, then G\{&, ..., &} has at least s+1 components, contradicting the fact
that 7 > 1. Otherwise Y(Z;, I;) # 0 for some distinct 7,5 € {1,...,s}. Choose a,b € {1,..., s}
so that Y (I, [,) # 0 and |1,| +|[,| is maximum. By definition, there is an intermediate path
L between [, and [,. If |L| > 2, then by Lemma 2,

[La| + 1] > 2D+ 2|L] +4 > 8,
contradicting Claim 3(1). Otherwise |L| = 1 and therefore,

Y(L, ..., I,) C E(G).
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By Lemma 2, |I,| + |I,| > 2p+ 6 = 6. Combining this with Claim 3(1), we have
6 < |la| + 0| =T
Let L = yz, where y € V() and z € V(I}).

Case 1.1. |I,| + |I;| = 6.
Since ;] > 2 (i = 1,...,s), we can assume w.l.o.g. that either |I,| = 2, || = 4 or
|La| = 1] = 3.

Case 1.1.1. |I,| =2 and |I| = 4.

Put I, = {wi&,11 and [, = uowswyprq. Since |1,| + || is extreme, we have |[;| = 2
for each 7 € {1, ..., s}\{b}. Clearly, y = w;. By Claim 1, z = w3 and Y (I, I,) = {wyws}. If
Y(I4, ..., Is) = {wiws}, then G\{&, ..., &, w3} has at least s + 1 components, contradicting
the fact that 7 > 1. Otherwise Y (I, I,) # 0 for some distinct f,g € {1, ..., s} with {f, g} #
{a,b}. If {f, g} N{a,b} =0, then by Lemma 2, |I¢| + |I,| > 6 and therefore,

c= > L+ > L] > 124 2(s — 4) = 20 + 4,
ie{a,b,f,g} 1€{1,2,...,s}\{a,b,f,9}

contradicting (1). Let {f,g} N{a,b} # 0. If f = a, then clearly g # b and by Lemma 2,
|I.| + |1,] > 6, implying that |I,| > 4. But then |[,| + |I,| > 8, contradicting Claim 3(1).
Now let f # a and g = b. By Lemma 2, |I,| + |If| > 6. Since |I,| + |I,| is extreme, we
have |I,| + |I¢| = 6, which yields |I¢| = 2. Put Iy = {fws&s+1. Let yi21 be an intermediate
edge between Iy and [,. By Claim 1, y; = ws and z; = ws. Recalling that |I;| = 2 for
each i € {1,...,s}\{b}, we conclude that ws belongs to all intermediate edges in Y (11, ..., [5).
Then G\{&, ..., &, w3} has at least s + 1 components, contradicting the fact that 7 > 1.

Case 1.1.2. |I,| = |I,| = 3.

Put I, = auiwa,1 and I, = {uwswi&pyr. Assume w.lo.g. that y = wy. By Claim
1, z = w3 and Y(I,, [,) = {wows}. If T(Iy,..., 1) = {wows}, then G\{&,...,&, we} has
at least s + 1 components, contradicting the fact that 7 > 1. Otherwise Y (I, 1,) # 0 for
some distinct f,g € {1,...,s} with {f, g} # {a,b}. If {f,g} N{a,b} = 0, then by Lemma
2, |Iy] +|I,| > 6 and, as in Case 1.1.1, ¢ > 124 2(s — 4) > 26 + 4, contradicting (1). Let
{f,g}n{a,b} # 0. Assume w.lo.g. that f = a and g # b. By Lemma 2, |I,| + |I,| > 6, that
is |I,| > 3. By Claim 3(5), |I,| = 3. Put I, = {;wsweéy11. Let y121 be an intermediate edge
with y; € V/(I;) and 2, € V/(I}).

H
Case 1.1.2.1. g € V(5,CE,).
If y; = wy, then by Claim 1, z; = wg and

faw1w6?w3w28§bxl€g+16}€a

is longer than C', a contradiction. Let y; = wy. By Claim 1, z; = ws and therefore,
T(Ia,fg) = {w2w5}.

Case 1.1.2.1.1. N(w,) C V(CO).
By Claim 2, wq§, € E(G) and wi&, ¢ E(G). Further, if

N(wr) € {&, . & wa I\ &, &g}
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then |[N(w;)| < s—1=4§—1, a contradiction. Otherwise, w129 € E(G) for some zo € V(I}),
where h & {a,b, g}. By Lemma 2, |I,| + |I,| > 6, implying that |I,| > 3, which contradicts
Claim 3(4).

Case 1.1.2.1.2. N(wy) € V(C).

It follows that wize € E(G) for some x5 € V(G\C). Since p = 0 and C is extreme,
x9 # x1 and N(xg) C V(C'). For the same reason, x2{, ¢ F(G) and zow, ¢ E(G). By Claim
2, wo6y & B(G). If

N(xQ) - {517 ) §57w1}\{€aa€b}7

then |N(zs)| < s—1=20— 1, a contradiction. Otherwise x929 € E(G) for some zo € V(I}),
where h # a. But then I} and I} are connected by wizs2s, contradicting the fact that
Y(Iy,...,1s) C E(G).

Case 1.1.2.2. g € V(é;ﬁrlﬁgb’).

If y; = wy, then by Claim 1, 2; = ws and we can argue as in Case 1.1.2.1. Let z; = w;.
By Claim 1, 2o = wg and wqws ¢ FE(G). Further, by Claim 2, ws€,11 ¢ E(G) and
wséy, ¢ E(G). Using Claim 3(4), we have |[;| = 2 for each i € {1,...,s}\{a,b,9}. By
Lemma 2, N(ws) NV (I}) =0 for each i € {1, ..., s}\{a, b, g}.

Case 1.1.2.2.1. N(w,) C V(C).
It follows that

N(wq) CH{&, - &, wz, w5 P \{&ar1, &}
Since |N(w4)| > § = s, we have waws € E(G).

Case 1.1.2.2.1.1. s > 4.

Since |[;] = 2 for each i € {1,...,s}\{a,b,g}, we can assume w.l.o.g. that |I,_| = 2.
Put I,_1 = 1w, Assume first that N(w;) € V(C), that is wyze € E(G) for some
x9 € V(G\C). Since C is extreme and Y(1y, ..., I5) C E(G), we have z9 # x; and

N<x2) g {61’ "‘7557w7}\{§a—1;§a7 }7

contradicting the fact that [N (z2)| > § = s. Now assume that N(w;) C V(C). By Claim 2,
wréer1 & E(G). Since |I,_1| = 2 and |[;| < 3 for each i € {1, ..., s}, we have by Lemma 2,
N(w7) NV (IF) =0 for each i € {1,...,s}\{a — 1}. So, N(w;) C {1, ..., & }\{&us1}, contra-
dicting the fact that |N(w7)| > 6 = s.

Case 1.1.2.2.1.2. s = 3.

Put C = Suiwebowsws&swswesy. Assume first that N(w;) € V(C) for some i €
{1,2,...,6}, say ¢ = 1. This means that wyzy € FE(G) for some x5 € V(G\C). Since
C' is extreme, xo # x; and x9&;, xowe ¢ FE(G). Further, since Y(Iy, Iy, I3) C E(G),
we have N(xg) C {&,&,wi}. On the other hand, since |N(z2)| > & > 3, we have
N(zg) = {&,&,w1}. By Claim 2, 296 ¢ FE(G), a contradiction. Now assume that
N(w;) CV(C) (i=1,...,6). If V(G\C) # {z1}, then choose zo € V(G\C) so that xy # .
Since N(w;) C V(C) (i = 1,...,6), we have N(x2) = N(z1). But then G\{&1, &, &} has at
least three components, contradicting the fact that 7 > 1. Finally, if V(G\C') = {x;}, then
G is the Petersen graph.
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Case 1.1.2.2.2. N(wy) € V(C).

It follows that ws&s € E(G) for some z, € V(G\C). Since C is extreme and
Y(Ih,....,Is) € E(G), we have xy # 1, w2841 & E(G) and N(z2) NV (I}) = 0 for each
i€ {l,....,s}\{b}. So, N(xz2) C {&,...., &, ws}\{&+1}, implying that x2&, € E(G), which
contradicts Claim 2.

Case 1.2. |I,| + || =T7.
By Claim 3(2), |I;| = 2 for each ¢ € {1,...,s}\{a,b}. By the hypothesis, either |I,| = 2,
|| =5 or |La] =3, || = 4.

Case 1.2.1. |[,| =2, || =5.
Put I, = {aun ey and I, = uowswgwspyq. Clearly, y = wy. By Claim 1, z € {ws, wy}.
Further, if {w ws, wyw,} C E(G), then

— —
£a1&04+1 Cwzwiws C&,

is longer than C, a contradiction. Therefore, we can assume w.l.o.g. that wyw; € E(G) and
Y (I, I) = {wyws}. By Claim 3(3), |I;| = 2 for each ¢ € {1,...,s}\{b}. By Lemma 2, each
intermediate edge has one end in V(I). If Y(Iy,..., 1) = {wyws}, then G\{&, ..., &, w3}
has at least s + 1 components, contradicting the fact that 7 > 1. Otherwise Y(I, I;) # 0
for some g € {1,...,s}\{a,b}. Since |I,| = 2, we can set I, = {we€,+1. As above, either
wews € E(G), wewy & E(G) or wews & E(G), wegwy € E(G). Assume that wgw, € E(G). If
& € V(&1 &), then

gaw1w3<6£a+1x1€g<5w4w66>§a

is longer than C, a contradiction. If £, € V(&4 5)51,_), then
— — —
§a$1§g+1 Cwsw; Cwswy C&,

is longer than C, a contradiction. Now assume that wew, ¢ E(G), implying that
wews € F(G). This means that ws belongs to each intermediate edge in Y (Iy, ..., I5). But
then G\{&1, ..., &, w3} has at least s + 1 components, contradicting the fact that 7 > 1.

Case 1.2.2. |[,| =3, || = 4.
Put I, = {auiwo€, 1 and I, = EuswawsEpr 1. Assume w.l.o.g. that y = wy. By Claim 1,
z € {ws, wy}.

Case 1.2.2.1. wows € E(G).

Assume first that N(wy) € V(C), that is wyzs € E(G) for some 25 € V(G\C). Since C
is extreme, xo # r1 and 22§, € E(G), rows € E(G). By Claim 2, 5§,,11 ¢ E(G). Recalling
that C' is extreme and Y (I, ..., ;) € E(G), we have

N(IQ) - {517 "‘7gsvw1}\{€a7§a+1}7

contradicting the fact that |[N(x2)| > 6 = s. Now assume that N(w;) C V(C). By Claim 1,
w11 € E(G), w1& € E(G) and wyws € E(G). Further, if N(wq)N{ws, ws} # 0, then there
are two independent intermediate edges between I, and [,. By Lemma 2, |I,| + |I,| > 8,
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contradicting Claim 3(1). Hence, N(w;) N {wy, ws} = 0. Finally, since |;|] = 2 for each
i€{1,....,s}\{a,b}, we have N(w;) NV (I}) = for each ¢ € {1, ..., s}\{a}. So,

N(wi) CH{&, - & wa b \{&av1, & )

contradicting the fact that |[N(wq)| > 6 = s when .41 # &. Let £,11 = &. Assume w.l.o.g.
that a = 1 and b = 2. If s = 2, then clearly 7 < 1, contradicting the hypothesis. Let s > 3.
Recalling that |I;| = 2 for each i € {3, ..., s}, we can set I3 = { wr&y. If N(wy) € V(C), that
is wrxe € E(G) for some x5 € V(G\C), then x9 # 7 and

N(:CQ) - {61’ "'>£S’w7}\{€3a§4}a

contradicting the fact that |N(z3)] > 0 = s. Let N(w;) C V(C). By Claim 2, w;& & E(G).
Hence, N(w7) C {&1, ..., &\ {&}, contradicting the fact that |N(w7)| > s.

Case 1.2.2.2. wyw, € E(G).

If wows € E(G), then we can argue as in Case 1.2.2.1. Hence, we can assume that
Y (1, Ip) = {wawy}. If Y(I4,..., ) = {wowy}, then clearly 7 < 1, contradicting the hypoth-
esis. Let Y(Iy,...,1s) # {wows}. Since |I,| = 3 and |[;| = 2 for each i € {1, ..., s}\{a, b}, we
can state by Lemma 2 that each intermediate edge has one end in V' (I}}). Let 121 € E(G)
for some y, € V(I;) and 2, € V(I), where g € {1,...,s}\{a,b}. Since |I;| = 2, we can set
I, = {weégq1. Clearly y1 = wg. By Claim 1, z; = ws. This means that ws belongs to all
intermediate edges. Then clearly 7 < 1, contradicting the hypothesis.

Case 2. p=1.
Since § > k > 3, we have |[Ng(z;))| >d—p=06—-1>2 (1=1,2).

Case 2.1. Ngo(z1) # Neo(z2).
It follows that max{oy, 09} > 1, where

o1 = |No(21)\Ne(z2)|, 02 = |No(w2)\Ne(z1)].

If max{oy,00} > 2, then by Lemma 1, ¢ > 30 + 1 > 20 + 4, contradicting (1). Let
max{oy,09} = 1. This implie s > § and |I;| > 3 (: = 1,...,s). If s > § + 1, then
c>3s>30+3 > 2+ 4, again contradicting (1). Let s = ¢, that is |[;| =3 (i =1, ..., s).
By Lemma 2, T([4, ..., I;) = ), contradicting the fact that 7 > 1.

Case 2.2. N¢(x1) = Ne(z2).

Clearly, s = |[No(z1)| >0 —p=0d—1. If s > §, then ¢ > 3s > 36 and we can argue as in
Case 2.1. Let s =0 — 1.

The following can easily be derived from (1) and Lemma 2.

Claim 4. (1) |[;| + |1;| <9 for each distinct ¢, € {1, ..., s}.

(2) If |L| + |I,] = 9 for some distinct a,b € {1,..,s}, then || = 3 for each
ie{l,...,s}\{a,b}.

(3) If |1,] = 6 for some a € {1,..., s}, then |[;| = 3 for each i € {1, ..., s}\{a}.

(4) There are at most three segments of length at least 4.

(5) If |I,|] > 4, |I,| > 4, |I;] > 4 for some distinct a,b, f € {1,2,...,s}, then
o] = [I] = 1] = 4.
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If Y(I,....,Is) = 0, then clearly, 7 < 1, contradicting the hypothesis. Otherwise
Y(1,,1,) # 0 for some distinct a,b € {1,...,s}. By definition, there is an intermediate
path L between I, and I,,. If |L| > 2, then by Lemma 2,

o] + 1] > 2P + 2| L] + 4 > 10,
contradicting Claim 4(1). Otherwise |L| = 1 and therefore,
Y(I,...,.I;) C E(GQ).
By Lemma 2, |I,| + |I;| > 2p + 6 = 8. Combining this with Claim 4(1), we have
8 < L]+ |I] <09.
Let L = yz, where y € V(I}) and z € V(I}).

Case 2.2.1. |I,| + |I,| = 8.
Since |I;| > 3 (i = 1,...,8), we can assume w.l.o.g. that either |I,| = 3, || = 5 or
La] = || = 4.

Case 2.2.1.1. |I,| =3 and |[;| = 5.

Put I, = {quiwoé, 1 and I, = Euszwswsweéy1. Assume w.l.o.g. that y = wy. By Claim
1, z = wy. For the same reason, N(w;) NV (If) C {ws}. If wyws € E(G), then there exist
two independent intermediate edges between I, and I,, which by Lemma 2 yield |I,| + |I;| >
2p + 8 = 10, contradicting Claim 4(1). So, N(wy) NV (I}) = 0. Further, if Y(I,,I;) # 0
for some f € {1,...,s}\{a,b}, then by Lemma 2, |I,| + |I;| > 2p+ 6 = 8, implying that
|I¢| > 5. But then |[,| + |If| > 10, contradicting Claim 4(1). Hence Y(I,,I;) = 0 for each
ie{l,..,s}\{a,b}. By Claim 2, wi{,1 € E(G). Thus, if N(w,) C V(C), then

N(wl) - {617 "'>€Suw2}\{5a+l}>

contradicting the fact that |[N(w;)] > 6 = s+ 1. Now let N(w,) € V(C) and let Q =

wlaxg be a longest path having only w; in common with C. Clearly, 1 < |Q| < 2 and
V(Q)NV(P) = 0. By Claim 2, z3{,4+1 ¢ E(G). Further, since Y(I4, ..., I;) C E(G), we have
N(z3) NV (IF) =0 for each i € {1, ...,s}\{a}. If |Q| = 1, then

N(l‘g) g {617 "'7£S7w1}\{5a7€a+1}7
contradicting the fact that |N(xz3)| > d = s+ 1. If |Q] = 2, then
N(%g) g {517 "'7557 SU:;, wl}\{£a7£a+1}7

contradicting the fact that |[N(z3)] > d = s+ 1.

Case 2.2.1.2. |I,| = || = 4.
Put 1, = {wiwaws&er1 and [ = Guiwswepi1.

Case 2.2.1.2.1. y € {wy,ws}.
Assume w.l.o.g. that y = w3. By Claim 1, z = wy.
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Claim 5. N(w;)U N(wy) C V(C).

Proof. Assume the contrary and let Q) = wlaxg be a longest path having only w; in
common with C. Clearly, 1 < |Q| < 2 and V(Q) NV (P) = 0. By Claim 2, x3§,+1 ¢ E(G)
and x3&, € F(G). Since Y(I,...,Is) € E(G), we have N(x3) NV (I) = 0 for each i €
{1,...,s}\{a}. If |Q] =1, then

N(IL’3) - {617 "'7587w17w3}\{€a7€a+1}7

contradicting the fact that |[N(z3)| > d = s+ 1. If |Q| = 2, then

N(x3) - {flv "'7587 JZ;, wl}\{gaa ga-&-l}a

a contradiction. Similarly, we can reach a contradiction when N(wq) Z V(C). Claim 5 is
proved. A

Case 2.2.1.2.1.1. &,41 # &,

By Claim 2, w141 € E(G) and wq§, ¢ E(G). By Claim 1, wywy € E(G). Moreover, if
N(w;) NV (I}) # 0, then there exist two independent intermediate edges between I, and I,
which by Lemma 2 yield |I,| + |I,| > 2p + 8 > 10, contradicting Claim 4(1). Furthermore,
if N(wy) NV (I}) =0 for each i € {1, ..., s}\{a, b}, then by Claim 5,

N<w1) - {517 "'7537w27w3}\{£a+1,£b}7

implying that [N (w;)| < s = §—1, a contradiction. Otherwise, w,v € E(G), where v € V (I})
for some f € {1,...,s}\{a,b}. By a similar way, it can be shown that wou € E(G), where
u € V(I;) forsome g € {1,...,s}\{a,b}. By Lemma 2, |I,|+|If| > 2p+6 = 8, that is |I;| > 4.
By Claim 4(5), |I;| = 4. By a symmetric argument, |I;| = 4. Put I; = {pwrwswelsii. By
Claim 1, v = wy, ie., wywy € E(G). If d = f, then |Y(/,,Is)| = 2 and by Lemma 2,
\Io| + |If| > 2p+ 7 =9, a contradiction. Otherwise, there are at least four elementary
segments of length at least 4, contradicting Claim 4(4).

Case 2.2.1.2.1.2. {11 =&,

Assume w.l.o.g. that a = 1 and b = 2. If Y([4, s, ....I5) = Y(I[1,15) = {wsws}, then
clearly, 7 < 1, a contradiction. Otherwise, there is an intermediate edge uv such that
u € V(I}) UV (IL;) and v € V(IF) for some f € {1,2,...,s}\{1,2}. Assume w.lo.g. that
uw € V(I7). If u = ws, then as above, & = £y, a contradiction. Let u # w3;. By Lemma 2,
\Ii| + |If] > 8, ie. |If| > 4. By Claim 4(5), |If| = 4. Put Iy = {wrwswolprr. If u = wy,
then by Claim 1, v = wg and

«— —
|&wiwg C wywsboxariEp C & | > |Cl+ 1,
a contradiction. If u = w,, then by Claim 1, v = wg and
— —
|§1wiwaws C wywséazox 1§51 C &1 > |Cl + 1,
again a contradiction.

Case 2.2.1.2.2. y = ws.
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By Claim 1, z = ws and Y(I,, I) = {wews}. If |I;| = 3 for each i € {1,2,...,s}\{a, b},
then by Lemma 2, Y (I, I, ..., I;) = {wows} and 7 < 1, contradicting the hypothesis. Oth-
erwise, |If| > 4 for some f € {1,2,...,s}\{a, b} and |I;| = 3 for each i € {1,2,...,s}\{a,b, f}.
By Claim 4(5), |If| = 4. Put Iy = {wrwswelprr. Clearly, Y (I, Io, ..., Is) = Y (1,4, I, I5).
If Y(I,,If) = Y(Ip,If) = 0, then again 7 < 1, a contradiction. Let uwv € E(G), where
we IXUIfand v € V(IF). Assume w.l.o.g. that u € V(I}). If u € {w;, w3}, then we can
argue as in Case 1.2.1.2.1. Let u = wy. By Claim 1, v = wg. If wyws € E(G), then

— —
§a$1$2§b C wzwiwows C fa

is longer than C, a contradiction. Let wyws ¢ E(G). Analogously, wywg ¢ E(G) and
wrwe ¢ E(G). But then {ws,ws,wy, ws, wy,we} is an independent set of vertices and
G\{&, ..., &, we, ws, ws} has at least s + 4 connected components. Hence 7 < 1, contra-
dicting the hypothesis.

Case 2.2.2. |I,| + || = 9.
Since |;| > 3 (i = 1,...,8), we can assume w.l.o.g. that either |I,| = 3, || = 6 or
|I,| =4, || = 5.

Case 2.2.2.1. |I,| = 3 and |I| = 6.
By Claim 4(3), |/;| = 3 for each i € {1, ..., s}\{b}. Put

I, = Sauiwabayr, I = SuswawswewrEpqt.

Since |I,| = 3, we can assume w.l.0.g. that y = wy. By Claim 1, z € {wy, ws}.

Case 2.2.2.1.1. z = wy.

By Claim 1, wywy ¢ E(G). Next, if N(w;) NV (I;}) # 0, then there are two independent
intermediate edges between I, and [, and by Lemma 2, |I,|+|[,| > 2p+8 = 10, contradicting
Claim 4(1). By Claim 2, wi&,11 ¢ E(G). Finally, by Lemma 2 and Claim 4(3), N(w;) N
V(I}) =0 for each i € {1,...,s}\{a,b}. So, if N(w;) C V(C), then

N(wl) - {517 "'7587w2}\{£a+1}7

contradicting the fact that |N(w;)| > 0 = s+ 1. Now assume that N(w;) € V(C'). Choose
H

a longest path @ = w; @ 3 having only w; in common with C. Clearly, V(Q) NV (P) = 0.

Since C' is extreme, 23¢, € F(G) and z3x2 € E(G). If 23,11 € E(G), then

— — —
§a1228p C Ea173 Q wiwaws C',
is longer than C, a contradiction. Let x3¢,+1 &€ E(G). If |Q| = 1, then

N(xfi) - {617 ""€S>w1}\{5aafa+l}a

contradicting the fact that |[N(z3)| > d = s+ 1. If |Q] = 2, then

N(I?’) - {glv "'758’ x{?’ wl}\{£a7§a+1}7

contradicting the fact that |[N(z3)] > d = s+ 1.
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Case 2.2.2.1.2. z = ws.
If wow, € E(G), then we can argue as in Case 2.2.2.1.1. Let wowy ¢ E(G). It means
that ws belongs to all intermediate edges. This implies 7 < 1, contradicting the hypothesis.

Case 2.2.2.2. |I,| =4 and |[;| = 5.

By Claim 4(2), |;| = 3 and Y(I,, I;) = 0 for each ¢ € {1,..., s}\{a,b}. If Y(I,, I) # 0 for
some f € {1,...,s}\{a,b}, then we can argue as in Case 2.2.1.1. Otherwise Y(Iy,...,[5) =
Y(1,,1,). If there are two independent edges in Y(I,, I;), then by Lemma 2, |I,| + |I,| > 10,
contradicting Claim 4(1). Otherwise 7 < 1, a contradiction.

Case 3. 2<p<d—3.

It follows that |Ng(z;)| > 6 —p >3 (i = 1,2). If No(x1) # Ne(xz), then by Lemma 1,
|IC] > 46 —2p > 36 —p+ 3 > 20 + 4, contradicting (1). Hence No(z1) = Ne(za), implying
that |;| > p+2 (i = 1,2,...,s). Clearly, s > |No(z1)| — (|V(P)|—=1) >d—p > 3. If
s>0—p+1, then

ICl=s(p+2)=2(0—-p+1)(P+2)
=0-p—-1)(Pp—-1)+36—Dp+1>30—p+3>20+4,
again contradicting (1). Hence s = § — p. It means that xi2o € E(G), that is G[V (P)]
is Hamiltonian. By symmetric arguments, N¢(y) = Neo(xp) for each y € V(P). If
Y(I1, I, ..., Is) = 0, then 7 < 1, contradicting the hypothesis. Otherwise Y(I,, I) # ()
for some elementary segments I, and [I,. By definition, there is an intermediate path L
between I, and I,. If |L| > 2, then by lemma 2,

\Io| + |Ip] > 2p+2|L| +4>2p+8.

Hence
Cl = L]+ LI+ Y. |LI>=20+8+(s—2)(p+2)
i€{1 s\ {a,b}

=0-p—-2)P—1)+30—p+2>35—p+3>25+4,
contradicting (1). Thus, |L| =1, i.e. Y([1, s, ...,1s) C E(G). By Lemma 2,
| La| + 1| = 2P+ 2|L| + 4 = 2p + 6,
which yields

Cl=1Ll+ LI+ > [LI=2p+6+(s—2)(F+2)
1€{1,...,s}\{a,b}
=(s—2)p—2)+(—-p—3)+B0—p+1)>3—p+1>25+4,
contradicting (1).
Case 4. 2<p=06—2.
It follows that |[Ne(z;)| > 6 —p =2 (i = 1,2). If No(21) # Ne(x2), then by Lemma 1,

|C] > 46 —2p = 35 — P+ 2 = 20 + 4, contradicting (1). Hence, No(x1) = Ne(xg). Clearly,
s = |N¢(z1)| > 2. Further, if s > 3, then

IC]>s(P+2)>30>30—p+2=20+4,
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again contradicting (1). Hence, s = 2. It follows that x5 € E(G), that is G[V(P)] is
Hamiltonian. By symmetric arguments, Ng(v) = Ng(z1) = {&1, &} for each v € V(P).
If Y(I,1I5) = 0, then clearly, 7 < 1, contradicting the hypothesis. Otherwise, there is an
intermediate path L = yz such that y € V(I{) and z € V(13). If |L| > 2, then by Lemma 2,

ICl = |Li|+ || >2p+2|L| +4>2p+8 =36 —p+2 =26 + 4,

contradicting (1). Hence |L| = 1, implying that Y([;,I5) C E(G). If there are two inde-
pendent intermediate edges between I, I5, then by Lemma 2, |C| = || + |I2| > 2p+ 8 =
30 — P+ 2 =2d + 4, contradicting (1). Otherwise 7 < 1, contradicting the hypothesis.

Case 5. 2<p=0—1.
It follows that |No(z;)| >0 —p=1 (i = 1,2).

Case 5.1. |Neo(z;)| > 2 (i =1,2).
If Ne(x1) # Ne(z3), then by Lemma 1, |C| > 2p+8 = 30 —p+5 > 2§ + 4, contradicting
(1). Hence, N¢(z1) = No(xg). Clearly s > 2. Further, if s > 3, then

IC] >s(@+2)>3(0+1)>25+4,

contradicting (1). Let s = 2. Since k > 3, there is an edge zw such that z € V(P) and
w € V(O)\{&1,&}. Assume w.l.o.g. that w € V(I]). Then it is easy to see that |I;| > § + 3.
Since |I3] > 0 + 1, we have |C] > 20 + 4, contradicting (1).

Case 5.2. Either |No(z1)| =1 or |No(z9)| = 1.

Assume w.lo.g. that |[Ng(xzy)| = 1. Put No(z1) = {y1}. I Ne(xy) # Ne(za),
then xoys € E(G) for some y, € V(C)\{y1} and we can argue as in Case 4.1. Let
Ne(x1) = Ne(za) = {y1}. Since £ > 1, there is an edge zw such that z € V(P) and
w € V(C)\{w1}. Clearly, z & {x1, 22} and 122 € E(G), where z~ is the previous vertex of

z along P. Then replacing P with 2 ?Z_JJQ P z, we can argue as in Case 4.1.

Case 6. p > 0.

If |C| > k(6 + 1), then clearly |C| > 2§ + 4, contradicting (1). Otherwise, by Lemma 3,
we can assume that |No(z;)| > 2 (i = 1,2). Then |C| > 2(p+2) > 2§ + 4, contradicting (1).
[

4. Conclusion

The present work studied the lower bound for the length of a longest cycle in a simple graph
in terms of toughness and minimum degree. Received lower bound is a natural extension of
the results due to Bauer and Schmeichel.
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e-mail: zhora@ipia.sci.am

Udthnthnid

Uwwgnigynid k£, np tpl 6 GuqugnijG wunmhdwl niGtgnn n-ququpwlh qpudbl niGh
I-hg ko YnpunipymG, www wjld mbGh weGJuql min{n, 26 + 4} tpyupnipjub ghyp, Jud
hwipGyGnd £ NbntiputiGh qpubh htin:

PuiGwih puntp’ hwdhyumnGyuG ghy), tpupugnyG ghyp, GJuqugniG ghlyy, wunhdwd,
YnpumnipjniG:

AAVHHEBIE ITUKABL B t-’)KE€CTKUX rpadax mpu ¢ > 1

sKopa I'. Hukorocan

WHcTuTyT 1pobaeM mHPOPMATUKU U aBToMaTtuzanuu HAH PA
e-mail: zhora@ipia.sci.am

AnHoTanuys

AOKa3bIBAeTCs, 4YTO AIOOON n-BEpIINMHHBIU (-’)KEeCTKUM rpad ¢ MHUHUMaABHOU
CTEeINeHbIO § Ipu ¢t > 1 MMeeT IUKA AMAUHBI He MeHblile min{n, 29 + 4}.

KaroueBele CAOBA: FaMUABTOHOBBIU IIMKA, OKPY’Ke€HUE, MUHUMAABHBIU CTEIlEHb,
IIPOYHOCTb.
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