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Abstract

The asymptotically optimal Neyman-Pearson procedures of detection for models
characterized by M discrete probability distributions arranged into K, 2 < K < M
groups considered as hypotheses are investigated. The sequence of tests based on a
growing number of observations is logarithmically asymptotically optimal (LAO) when
a certain part of the given error probability exponents (reliabilities) provides positives
values for all other reliabilities. LAO tests sequences for some models of objects,
including cases, when rejection of decision may be permitted, and when part, or all
given error probabilities decrease subexponentially with an increase in the of number of
experiments, are desined. For all reliabilities of such tests single-letter characterizations
are obtained. A simple case with three distributions and two hypotheses is considered.

Keywords: Statistical hypotheses testing, Families of hypotheses, Optimal de-
tection, Test with no match detection, Neyman-Pearson approach, Neyman-Pearson
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1. Introduction

This paper is devoted to the generalization of Neyman-Pearson criterion for some specific
universal hypotheses testing problem pointed out in the title. In [8] and in the following
papers [9], [10], Cox formulated a number of divers examples of problems for two families of
hypotheses testing and developed a general modification of the Neyman-Pearson maximum-
likelihood ratio procedures for solving such problems. In a series of papers and in disseration
of F. Harmosi-nejad and all [27], two stage procedures were investigated for certain models of
problems of hypotheses testing. The first stage in these actions executes detecting between
families of distributions, and the second stage performs detection of certain distribution in
the selected family. Investigation of the present paper can be considered as a more detailed
analysis of this first-stage problems.

The asymptotically optimal testing of two hypotheses was investigated by Hoeffding in
[32], also the concept of universal hypotheses testing was introduced there.
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The hypotheses testing problems for two hypotheses were also studied by Borovkov [6],
Levy [35], van Trees [40], Csiszar and Longo [12], Tusnady [39], Longo and Sgarro [36].

Neyman-Pearson criterion of multiple hypotheses testing for discrete random variables
was explored in [25]. In publications [1], [24] and [26], many hypotheses logarithmically
asymptotically optimal (LAO) testing for the models consisting of many independent ob-
jects was investigated. Following Birgé [3], we called the sequence of tests logarithmically
asymptotically optimal (LAO), when for given values of some reliabilities (error probabil-
ity exponents) the test ensures the best values for the rest of them. Haroutunian [18]-[20]
investigated the problem of multiple hypotheses testing at the suggestion of R. L. Dobrushin.

Construction of LAO tests sequence is realized applying “Kullback-Leibler balls” around
the hypothetic distributions in the space of distributions as sets for detection of corresponding
hypotheses. This concept, introduced in [16]-[17] and applied in [20]-[31] and in the present
paper, conforms to the idea of “r-divergent sequences” defined in [17] and used in other
works.

Hypotheses testing with no-match decision was considered by Gutman [16]. In papers
[28]-[30] the results of researches of characteristics of LAO hypotheses testing with possibility
of rejection of decision for some models with one or multiple objects, with side information
are presented.

Our study is based on information theoretic methods including the method of types.
Applications of methods of information theory in mathematical statistics, in particular in
hypotheses testing, are exposed in the monographs by Csiszar and Korner [11], Blahut [5],
Cover and Thomas [7], Csiszar and Shields [13], Poor [37], Kullback [33] Haroutunian and
all [31] , in paper of Blahut [4].

The structure of this paper is as follows. Section 2 contains definitions, notations and
problem argument. In central Section 3 the construction of desired LAO tests is exposed for
model with groups of distributions and with possibility of rejection of decision. In Section 4,
the theorem of the Section 3 is reformulated for the case without rejection option. Section 5
is devoted to the models with some reliabilities equal to 0. In final Section 6, the testing for
simplest model with three distributions and two hypotheses is discussed. Conclusion also
contains some open problems.

2. Problem Presentation

Let P(X) be the space of all probability distributions (PDs) on a finite alphabet X. Let
X be a random variable (RV) taking values in the set X with one of M possible PDs
Gm € P(X), m = 1I,M. Let x = (z1,29,...,2n), 2, € X, n = 1,N, be a vector of
N
results of NV independent observations of the RV X. Then the PD G (x) = [] G,(x,) and
n=1
Gy e P(&N)
The M different PDs are arranged into K, 2 < K < M different groups By, Bs, ...,
By, which we consider as K hypotheses (suppositions) Hj concerning the distributions of

the studied object. We consider also an empty “group” Bk 1. These groups are mutually
disjoint, contain |By|, |Bal, ..., |Bx+1| PDs such that

K
> Byl =M, |Bki| =0.
k=1
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When |Bj| > 1, the hypothesis Hy is composite [6], [14], [35]. In applications, the groups
may be formed with some different values of parameters of a certain PD.

We study the hypothesis testing problem, which is that to decide, based on the observed
sample x, where this vector has originated from a source with a PD from a series By, k = 1, K,
or to accept By 1, that is to reject to make any judgement. The procedure is the universal
test (do not specializing individual PDs in groups), we denote it by @y [34]. This problem
may also be considered as specific task of detection for multiple composite hypotheses, also
having the possibility to refuse any decision.

The test @y can be defined by partition of the space XY into K + 1 disjoint subsets

VLAY, AR L, where AY, k =1, K, contains all vectors x for which the test adopts the
hypothesis Hy, and A%, includes all vectors x for which the test refuses to take a certain
answer.

We denote by @ the infinite sequence of tests ®y. Let oy (Py) for I # k, [ = 1, K,

k =1, K be the probability of the erroneous acceptance of the hypothesis H; by the test ®y
provided that the hypothesis Hj, is true, we define (see [6], [35]):

ozlll\;€ = oyi(Pn) £ max GN(AN). (1)

Gm€By,
When we decline any decision, but the hypothesis Hj is true, we consider the following

probability of error:

A _
04%+1|k = agp(Pn) = dhax G%(A%H), k=1K. (2)

The probability of not accepting the true hypothesis Hj, we define in the following way:

aﬁk = ae(Pw) = > al]‘i = Jnax G%(.AikN), k=1

K. (3)
Gm Bk
Ik, I=T,K+1

Note that our approach differs from the approaches in [6], where only akle are studied, and
in [38] where the ajj, are not considered.

We study the corresponding reliabilities (error probabilities exponents) Ej, of the tests
sequence P:

1 I
Eyi = Eyp(®) 2 lim (—Nlogozﬂ/k> k=T K, =T K+1. (4)
—00

All reliabilities are arranged in (K + 1) x K matrix. For instance, at K = 3 the matrix of
reliabilities has the following form

Evj Eap Espp Eap
E(®) = | Euig Eap s Eyp
Ej3 Bz L3 Eys

Definitions (3) and (4) imply that

Ek:|k: = min E”k, k= 1,K. (5)
l#k,1=1,K+1

We call the tests sequence ®* logarithmically asymptotically optimal (LAO) for this
model if for given positive values of certain K elements of the reliabilities matrix E(®*) the
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procedure ®* provides maximal values for all other elements of it [3]. This criterion can be
considered as a proper specification of the Neyman-Pearson approach to the universal test
of multiple hypotheses in the sense of optimality of reliabilities. In certain publications, the
LAO approach is referred to as the “exponential rate optimal” (ERO) [32], [16], [39].

In opposition to the criterion adopted by Gutman [16], we recognize the asymmetry in the
importance of different hypotheses and consider unequal requirements to error probabilities,
or reliabilities of their detection.

We use the following notions and notations:

Shannon entropy of PD P on alphabet X:

ZP )log P(x

divergence, Kullback-Leibler information, relative entropy, or“distance” of two PDs P, and

P, on X:
P (z)

® Pyr)’

a new notion introduced in [22], divergence of three PDs Py, Py, P; on X’

D(P||P,) ZPl

D(P\||R||Ps) = Zpl Pzgmg D(Py||Py) — D(P,||Ps).

As was noted in mtroductlon, our study applies the method of types, developed in infor-
mation theory [7, 11, 13, 31]. The basic notion in this method is the notion of the type Qy of
the vector x € X'V, which is equivalent to the statistical notion of the empirical distribution
of the sample x:

Qx = {Qx(7) = N(z/x)/N,z € X},
where N(x/x) is the number of repetitions of the element z in the sample x. We denote by
Q(XN) the set of all possible types on X, It is clear that Q(XY) C P(X).

We will denote divergence by DV (Q||P) when Q € Q(X") and P € P(X). Note that
DY (Q||P) — D(Q||P), when N — oo.

Let 7'(X) be the family of all vectors x of the type Q. For @ ¢ Q(X") , we have
75 (X) = 0. We will use the following estimates [11], [31]:

[ Q™) [< (N + 1), (6)
(N +1) M exp{NH(Q)} < |T3(X)| < exp{ NH(Q)}. (7)
We will denote for brevity:
for Q@ € P(X), D(QIIBy) = min D(Q||Gon). (8)
and for Q € Q™). D(QIIB) = min DV(QIC.n). (9)
for R CP(X), D(Ri|By) £ min D(Q||By), (10)
and for RY ¢ Q(xN), DV(RN||By) & ngl}v DN(Q||By). (11)

In the following sections, we present ways of optimal tests construction for the considered
models and investigate the corresponding error probabilities and reliabilities.
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3. Testing for Model with Rejection Option

To construct the desired LAO test corresponding to preliminary given strictly positive num-
bers K1, B, ..., Exx we define the following subsets of distributions:

RY 2{Q € Q™) : DY(QIIBy) < By}, k=TK, (12)
A
Ricr1 = 1Q € 9(XY) : DY(QI|By) > Eyp, k=1,K}, (13)
Ry £{Q € P(X): D(QIBy) < By}, k=TK, (14)
Ric1 = {Q € P(X) : D(Q|IBy) > By, b =T1,K}, (15)
It is clear that

Ry CRy, k=1,K + 1. (16)

Define also the following values of reliabilities:

* * A 1 717
Eiy = Ein(Ey) = D(RIIBY), k=TK, k#1, 1=TK, (18)
* * A * —_

Bt = Ereop(Buns Egj, o, Ex i) = D(Rica||By) = Ejy, k=1, K. (19)
Theorem 1: If all distributions G,,, m = 1, M, are different in the sense that

D(Gw||Gr) > 0, m' # m, and the strictly positive numbers Ey, Eajs, ..., Ex are such
that the following inequalities hold

B{, < min D(Ry||By) (20)
1=2,K
B <min( min_Ey, (Eyp), min_ D(R,||By)) (20')
1=1,k—1 I=k+1,K
I=T,K—1

then there exists an LAQO sequence of tests, all elements of the reliability matriz E* = {El*‘k}
of which are defined in (17)-(19) and are strictly positive.

When at least one of the inequalities in (20) is violated, then at least one element of the
matriz of reliabilities E* is equal to 0. More than that, if we try to detect with such Ejy
which for some | € [1; K + 1] and k € [1; K| is greater than D(R,||By), then the test for all
N =1,2,... will make an error with the probability 1.

Proof: Having a collection of numbers satisfying the conditions (20) we pass to the proof
of the positive statement of the theorem, that is, to the construction of the test.

Consider a sequence of tests ®*, which is defined by partition of sample space X on the
following K + 1 subsets:

A = U 10(X), k=1K,
QERY

(21)

K
Ape = 2N - A, N=1,2, ...
k=1
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This Ay € XN, because when Q ¢ Q(X"), then 7' (X) is empty. Let us prove that the
collection of sets in (21) determines a test, namely, each x belongs to one and only to one

subset AJ*

K41
AN VAN =0, 7 £k, and 30 AN = A
k=1
Really, for k =2, K, r =1, K — 1, for each k > r let us consider arbitrary x € AY*. We see
that in accordance with (21) and (12) there exists 75, (X) C Ap*, such that DN(QX|\Bk) <
Eyk- As k > r from conditions (20) it follows that E,, < Ej, (Egx). From definition (18) and
inequality DV (Qx||By) < Eyp we obtain Ey, < Eg, (Eyg) = th}v D(Q||B,) < DN (Q«]|B,).
€R

k

Hence Qx ¢ RY and from (21) it follows that x ¢ AN*.

We can verify that AY*, NAY* =0, k=1,K, because if x € AY% |, then by (15) for
type Qx the inequality DV (Qx||Bk) > Eyy, is true for k =1, K. According to the definition
(21) of AN*, k=1, K, we see that x ¢ AN*.

The sample x from 722N (X) C Q(XN) has the following probability:

= 1:[1 G(n) = H Gm(x)N(x/x H Gm NQX

— exp (N 3~ Qulo) o 2 + @uln) g Q)
= exp{~N[D(Qul|Gn) + H(@)) 2

Now for k =1, K, using (3), (21), (6), (7), (12) and (22) we can upper estimate oy,(Py) as
follows:

apr(®y) = max GN(AN*) = max GN( (U 7))

GmeB k Gm GBk ¢RN

< (N 4+ D) max max GN (T (X
- ( ) Gm€EBy Q:DN(QHBk)>Ek\k ( @ ( ))

< (N + 1) max exp{—NDV B
SO ma e -NDY(Q]IB))

< —-N inf DV —on(1
<exp{-N[ . f  DYQIIB) —on(V)]}

= exp{—N(Eyr —on (1))}, (23)
where oy(1) — 0 with N — co. From here Ej; > Ey, k=1, K.

Now let us prove the lower inequalities for [ = 1, K, k=1, K, | # k. From (1), (21), (7)
and (22) we obtain

* N N* o N
() = max G (AY) = max Gy (Q¢L7J€N7Zz (X))
k

> max max G (75 (X))
Gm€Br Q¢RY

> (N 4+ 1) max max exp{—NDV G
> ( ) B o p{ (QlIGm)}

= exp{ N( min inf (QHGm) + 0(1))}

Gm€Br Q:DN(Q||Br)>Ep .
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B exp{_N(Q:DN(Qiﬁlek)>Eklk DHQIIBY) + o)}

= exp{—N(Ex + o(1))}. (24)

(23) and (24) give us (17). We can obtain similar upper estimates Ejj, > Ey for | =
LK, k=1,K,1# k. According to (1), (6), (7) and (10) we have

k() = Jnax GL(AY) = max GL( U T5'(x

Cim €8x QERN
< (N 41D ‘Gryrigxk Cgrelaux exp{—NDN(Q||G,n)}
= exp{—N(D"(Ru[[By) — on(1))}- (25)

Again for [ = 1, K,k =1, K, # k, we lower estimate

* N Nx N N
ay(®y) = max G, (A7) = max G, QgNT X))

> (N + 1)~ max i exp{~ND(Q||Gm)}

= exp{—N(D(Ry||Bi) + on(1))} = exp{ =N (Eyr + on(1))}. (26)
According to the definition (4), the reliability Fj,(®*) of the test sequence ®* is the limit
inferiour lim (—+ log ay,(®})), taking into account (25), (26) and the continuity of the
N—o00
functional DY (Q||G)), we obtain that lim (—i log ay (7)) exists and (18) is correct.

Similarly we can obtain upper and lower bounds for ax1x(Py), k =1, K. Applying the
analogous resoning we get (19).

The proof of the first part of the theorem will be accomplished if we demonstrate that
the sequence of tests ®* is LAO, that is, for every other sequence of tests ®** with the same
reliabilities Eyp, ..., B for all | = 1, K +1, | # k, k = 1, K, inequalities Ej,(®**) <
Ey;(®*) hold. Suppose the contrary is the case, that is there exists sequence of tests ®**
defined by the sets DY, ..., D¥_, such that

El|k(q)**) > E”k(q)*) for some [ € [1,K+ 1}, ke [1,K], ) 7é k. (27)

For tests ®* and ®** the space X'V is decomposed into subsets AN* and, respectively, into
DN, 1 =1,K +1, such that for | = 1, K and N large enough.

max GN(AN*) = Jnax GN(DN) =1—exp{—-NEy} (28)

Gm€EB,;

and AN* are constructed in (21) with sets of types 7' (X) including almost all vectors x

having positive probability Jnax G- From here for the set AN* — DY C DN* we have
Gme€ 1
N NY < 1 _ -0
Jim_ Jnax GN(AY* —DN) < Jim_ exp(—NEy;;) =0 (29)

By (4), (1) and (27)

1
Eyjp(®*) = lim (—Nlog max GN(DN)>

N—oo Gm€By,
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1
> 7; _ N/ N > .
> lim ( NlogGmmgjgk G (AY)
That is for N large enough

N < N Nx
Jax G, (D) Joax G (A,

and hence
max G (A" — DY) > 0,
Gm€By,
which contradicts (29). So, we must conclude that (27) is not possible.

For the proof of the second part of Theorem 1, it is enough to note that if one of the
conditions (20) is violated, then from (12)-(19) it follows that at least one of the elements
Eyi, is equal to 0. In case when £y > D(R,||B;) from (3), (21), (12), (22), (7) we have for
all N

°ii = gug, On(AT) = g Ol U T0'(4) 2 gy s, G (70 ()
QERY

=exp{—N mle%l Qm;zr}v DN(Q||Gn)} = exp{—N x 0} =1,

because for G,, € B we have min min DV(Q||G,,) = 0. Theorem 1 is proved.
GmeB; QeRYN

4. Case without Rejection of Decision

Consider also the standard case when the decision is obligatory. Again we have M possible
PDs G,, € P(X), m = 1, M, which are placed in K groups By, B, ..., Br, which we envisage
as hypotheses Hj, k = 1, K. The unknown hypothesis must be detected on the base of
sample X = (2, Ty, ...,xy). The test @y can be designed by dividing the sample space XV
into K subsets AN, AY ..., A¥ as acceptance regions for the hypotheses of the same number.
The test is characterized by error probabilities.

afl, = ayp(@y) 2 Juax GR(AY), 14k LE=TK.

AN
Oél]c\fk = Oék|k<CI)N) = Z Oél]ﬁ, ]{? = 1, K
l#k, lzl,iK

The reliabilities are difined as in (4)

1 _
Eye = Eyi(®) 2 lim (—Nlog a%) . kil=1K.

N—oo

We shape the LAO sequence of tests ® for preliminary given positive numbers
Eyp, B, ..., Ex_1x—1 by the following regions of PDs

£{Q e P(X), DQIIBy) < By}, k=TK 1,

Ric ={Q € P(X), D(Q||By) > Eyp, k=T1K —1}.
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Let the corresponding reliabilities be as in (17)-(19)

B}y, = Ejy(Bw) & Eq, k=1,K — 1, (30)
Ejy, = B (By) 2 D(RY||By), k=1K, k#1, |=1K — 1, (31)
ke = Exp(Evn, Eop, ooy Ex—1x-1) 2 D(Rkl||Bk), k=1,K. (32)

Theorem 2: If all PDs G,,, m = 1, M, are different, D(Gpy||Gm) > 0, m' # m, and the
strictly positive numbers Fy1, B, ..., Ex_1x—1 are such that the following inequlities hold

Ej; < min_ D(R,|[B1)) (33)
I=2,K—1
B <min( min_Ey, (E);), min  D(Ry||By)) k=2, K — 2, (33)
I=1k—1 I=Ft1,K—1
Ex g1 < miinEﬁKfl(Eﬁl) (33")
I=1,K—2

then there exists an LAO sequence of tests, all elements of the reliabilities matriz E of which
are defined in (30)-(32) and are strictly positive. When one of the inequalities in (33) is
wolated then at least one element of the matrix of reliabilities E* is equal to 0.

5. Some or All Given Reliabilities are Equal to Zero

The well-known Stein lemma [11] also called Chernoff-Stein lemma in [7] provides the es-
timate of the error probability for the case of two hypotheses. It asserts that when the
error probability aflfl is postulated as a constant, then the error probability aé\‘g goes to 0 as
exp{—ND(Py||P;)} as the number of observations N tends to infinity.

In this section, we present a generalization of Stein lemma in two directions. First, a
more general model, when Section 2 consists of M PDs grouped in K hypotheses and the
test has to detect an unknown hypothesis or reject any decision. And secondly, it is known
that some error probabilities aﬁ’; , or all K of them, tend to 0 when N goes to infinity as a
function 5% , such that

| 1
lim (—Nlogagfl) 0. (34)

N—o0

In practice, 5l]|\§ can be constants or polynomials by N. The following theorem is a general-
ization of a result from [23] as an addition to Theorem 1.

Theorem 3: When all distributions G,,, m = 1,M are different in the sense that
D(Gwl||Gw) > 0, m" # m and given numbers Eyi, k = 1,K partly or all of them are
equal to 0 and verify condition (34), then there exists an LAO test sequence ®*, the elements
of reliabilities matriz E(®*) = {Ej,} of which are defined by (14), (15), (17)-(19), if the
conditions (20) hold. But in the case when the given Ly is equal to zero, the formula (18)
changes as follows:

By = B (0) = D(B||By), k=1,K, k#1.

For the proof, it is enough to replace (12) by the following expressions:

1
——logém}.

2{Q e oxM): DV(Q|IB) < N
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6. Case of Three Distributions and Two Hypotheses

In this Section, we discuss a number of questions concerning the most simple model amongst
the considered in this paper. At first we represent a generalization of the fundamental result
of Neyman-Pearson lemma for the noted case of 3 PDs and two groups. There are given
three distributions GG1, G», G3 for a random variable X. These distributions are divided
into two groups (hypotheses) such that the first hypothesis H; is the first distribution and
the second hypothesis is the group of two other PDs

Hy = (G1), Hy= (G, G3). (35)
The statistician must accept or reject the first hypothesis on the base of the sample x.

Theorem 4: (Neyman-Pearson lemma) For a threshold t > 1, consider test Uy, defined by

the region of acceptance AN* for hypothesis H, :

A
max(Go™ (x); G3™ (x))

AV = {x > t}, (36)

and acceptance region AN* for Hy. The corresponding error probabilities are
affi (t) = ag)i (t) = GY (AN)

o3 (1) = i (1) = max(G3 (AY"): G (A).
Let AN C XN be the decision region for Hy of the another test ®y with error probabilities

N N N N N N
oqpy and ogpy. If gy < ag)y, then agy > ag)y.

Proof: The numbers N and t are fixed, we can do not note them during proof. Let
U 4~v« and W 4~ be indicator functions of the regions. It is not difficult to verify that for all
x € XV,
(T awe (%) = U4 (%)) (G (x) — tmax(Go" (x); G (x))) = 0.

Then
Z (U g (X)G]lv(x) — tW v+ (X) maX(GgN(x); G3N(x))

—U N (X)G]lv(x) + tU 4~ (%) maX(GgN(X); G3N(X)))
= > (GY(x) —tmax(Gy'(x); G (%)) — > (GY (x) — tmax(Gy'(x); G5 (x)))

xeAN=* xe AN
— (1 — Oéﬁl) — ta§|2 — (1 — a1|1) + t042|2
= (oup — aj)y) + tage — agy) > 0.

So from aq); < a’{ll it follows that aqp > oz§|2.
Now we reformulate Theorem 2 for the model given in (35).

Theorem 5: If PDs G, Ga, G5 are different, the strictly positive number Ey); is such that

B < min(D(Gel|Gy), D(Gs||Gh)),
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for
Ri£{Q € P(X), D(Q||G)) < Eyu},

Re £{Q € P(X), D(Q||G)) > Ep},

we consider
* _ _ *
Em - Elll = E2|1

E§|2 = ET\Z = &1%11 min(D(Q||G2), D(Q||G3))

then for the hypotheses in (35) there exists an LAO sequence of tests with strictly positive
reliabilities given above and with regions of decision for hypotheses Hy,

A= T5(X), k=12

QERy

In the paper [20] of 1990 Haroutunian noted that “the principle of maximum of likelihood
is equivalent to the principle of maximum of Kullback-Leibler distance” and “the desired
tests sequence is constructed by means of distances between the sample distribution and the
hypothetical distributions”. It is worth to note that this assertion is something in common
with the following note in Cover and Thomas monograph of 1991 (p. 307) [7] concerning the
test of two hypotheses (the next one with our adopted exposition). ”In the above theorem
(the Neyman-Pearson lemma), we have shown that the optimum test is a likelihood ratio
test. We can rewrite the log-likelihood ratio as the difference between the relative entropy
distances of the sample type to each of the two distributions. Hence the likelihood ratio test
(in our notation)

Gy (%)
Gy (x)

>t>1

is equivalent to

DG - D(QulIGY) > B!

or (with our new notation of divergence of three PDs)

logt

N N
p(RuIGYIGY) > &

It remains to add that for the case of simple model in (36) the likelihood ratio test is
equivalent to the following condition specifying the region of detection of the first hypothesis
in (36)

. logt
min[D(Ql|GY1GY), D@ GG > 2.

7. Conclusion

Here we offer some concluding remarks and open problems. In this paper, we have discussed
error exponents trade-off of Neyman-Pearson suitable strategy of hypotheses testing for
models with M known discrete probability distributions joined in K (2 < K < M) clusters,
considered as hypotheses.

We presented a single letter characterization of the error exponents of all possible pairs
of hypotheses of tests for some cases. After a detailed proof of the point in question for a
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general case with the possibility of decision rejection, analogical results are announced the
case without a rejection option, the case when all or a part of the given reliabilities are
equal to zero, and finally, for a particular case of three disributions and two hypotheses. The
reasonings at the end of the previous section confirm the optimality of the tests considered
in the paper based on the use of distances between the sample and hypotheses.

For further works it is deserving exploration of characteristics of testing for generalization
and enlargement of models studied in this paper. Interesting is the case with multiple objects
[cf. 21, 24, 26, 27]. Significant are arbitrarily varying models with a sequence of states known
to the decision maker [cf. 12] and also the case when states are not known to the statistician
[cf. 2, 25]. Important is the problem of hypothesis identification [cf. 1, 18, 23]. Bayesian
framework of the problem, and sources with other than independent issues, for instance with
Markov dependence must also be investigated [cf. 16].
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Puwpfumibbph fudptipng juqiwo puqiwphy JupwoGtph
UhijdwGh-NhpunGh hwdplnhwlnip mtunwynpiwl
hwwnni] ninh

GyqtiGh U. <wpnipjniGyjul L Upwd O. GuwjwG

<< QUU hGpnpiwwmhlyuwgh L wjmniwnmwgdwl ypnpitidGiph hGunhnnon
e-mail: eghishe@sci.am, armfrance@yahoo.fr

Udthnthnid

Ltuwgnuyty GG UhjdwGh-MphpunGh  wuhdyununnpbl  owywhdiw] hwjymbGuptpdwd
pGpwgwluwpgtipn wjlG dnnbGtph hwdwp, npnlp pGmipwgpynud GG M phulpbwun
hwjwlwlywlmpjniGGaph pwpundGtpny, npnlp fudpwynpjuo GG pun K nuubtpp, 2 <
K < M, npnlp nhunwnpyynud GG nputiv Jupuottp: “FhnwpynuiGaph pwlwyh wéh ypu
hhi(Jwo wmbumbph hwonpnulwlnmpynilp nquphpinptl wuhdwywmnumhynptlG owunhdwy
(LUO) Lk, tpp wipwo gmghyGtph (hntuwjhnpniGGiph) npnpuwyh dwup wwywhnynmd
LuGwgwo pnnp hntuwwihnmpyniGGiph hwdwp gpuiuwl wpdtplGtn mGaGwn: Guemgybty GG
opjjmGtph npn) dnnbGtph hwiwp LUO wmbuwmtiph wjyl ntwptpp, Gpp poyjuumpymd k
hpwdwpyt) npnpmy plnnilGtnmg L Gpp vjuwGtph hwywlwywlnipyniGGtph dh dwup jud
pninpp thnpdtinh pyh wéh htinn dtyunbn GJugmd GG GipugngswjhG optilipny: Umwgyby GG
wjnuhuh wmtumtiph pninp hntuwhnmpym GGtph shwnwn pnipugpmiGtpp: “Fhnwpyywo L
th hwuwpuwly nbwp, tpp pwpfuntdGph phyp tpbp b, huly JupyuoGtph phyp” tpyne:

Pwlwih pwntn” Jhdwjugpuul qupyuwolGtph uvnnignud, Jupywoltph pGunwihpGhp,
owywmhiw] hwjymbGupbpnd, LtjdwG-NhpunGh dnnbgnid, ‘Lhydwl-Nhpunbh Eddw, Uniypwlyh-
Lnjpitph htinwynpnipjul dwpuhinudh uyqpnilp, ufuwh gnighy:

CrnenuansHuM 0yTh HeliMaHa-ITupcoHa K YHUBEPCAABHOU
IIPOBEPKE MHOT'UX T'UIIOTEe3, CPOPMUPOBAHHEIX
rpyHIaMu pacupeAeAeHUu

Eprenuit A. Apyrynsan u ApaMm O. Ecaan

WHctuTyT 1pobaeM mHPOPMATUKU U aBToMaTtuzanuu HAH PA
e-mail: eghishe@sci.am, armfrance@yahoo.fr

AnHoTanuys

HMccaepyroTcsl aCUMITOTHUYECKU OIITMMAAbHBIE IIpolleAyphl Helimana-IIupcona
OOHApPy’>KeHUs A MOAEAEH, XapaKTepusyomuxcsa M AUCKPETHBIMU PACIIPEAEACHUSIMU
BEPOSITHOCTEM, CrpynnupoBaHHBIMU B K rpynn, 2 < K < M, paccMaTpuBaeMBIX
KaK I'MIoTe3bl. [locarepOBaTEABHOCTB TECTOB, IIPU BO3PACTAHUU YUCAA HAOAIOACHUIM,
ABASIETCSI AOTapUPMUUECKU acUMITOTHYeCKH onnTuMarbHOU (LAQO), Koraa onpeaereHHasa
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YaCTh 3aAQHHBIX OKCIIOHEHT (HaAEXKHOCTEN) o0eclieunBaeT NOAOKUTEABHbIE 3HAUEHU S
AN BCeX ApPyrux HapeskHocTer. CkoHcTpympoBaHbl LAO nocaepOBAaTEABHOCTH
TECTOB AASl HEKOTOPBIX MOAEAEM, B TOM YHCAEe B CAydYadX, KOIAd pa3pelleH OTKa3
OT TPHUHATUSA PelIeHUsI W KOTAA YaCThb UAU BCe 3aAaHHBIE BEPOSITHOCTH OIIUOOK
yOBIBAIOT CYO3KCIIOHEHIIMAABHO C POCTOM KOAMYECTBA JKCIIEepUMEHTOB. [loaydeHEI
OAHOOYKBEHHBIE XapaKTEPUCTHUKU AN BCEX HAAEKHOCTEN TaKUX TeCTOB. PaccMoTpeH
IIPOCTOM CAYYaM C TpeMs PACIIpPEAEAeHUSIMU U ABYMS I'MIIOTE3aMU.

KAroueBele CAOBa: [poOBepKa CTAaTUCTUYECKUX TUIIOTE3, CEeMeUCTBa TUIIOTe3,
onTUMarbHOEe OOHapy>keHMe, oaxop Helimana-ITupcona, aemma Helimana-ITupcona,
IIPUHITUII MaKCUMyMa paccTosgHua KyabOaka-/\eibaepa, IT0Ka3aTeAb OITUOKH.
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